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ABSTRACT

Influenza viruses pose a significant and ongoing threat to human health. Many host
factors have been identified to be associated with influenza virus infection. However,
there is currently a lack of an integrated resource for these host factors. This study

integrated human genes and proteins associated with influenza virus infections for 14
subtypes of influenza A viruses, as well as influenza B and C viruses, and built a database
named H2Flu to store and organize these genes or proteins. The database includes

28,639 differentially expressed genes (DEGs), 1,850 differentially expressed proteins,
and 442 proteins with differential posttranslational modifications after influenza virus
infection, as well as 3,040 human proteins that interact with influenza virus proteins
and 57 human susceptibility genes. Further analysis showed that the dynamic response
of human cells to virus infection, cell type and strain specificity contribute significantly
to the diversity of DEGs. Additionally, large heterogeneity was also observed in protein-
protein interactions between humans and different types or subtypes of influenza

viruses. Overall, the study deepens our understanding of the diversity and complexity
of interactions between influenza viruses and humans, and provides a valuable resource

for further studies on such interactions.

Subjects Bioinformatics, Virology
Keywords Influenza virus, Bioinformatics, Multi-omics data

INTRODUCTION

Influenza viruses are segmented RNA viruses that belong to the negative-sense, single-
stranded category (Steinhauer & Skehel, 2002; Javanian et al., 2021). They can be classified
into four types: A, B, C and D (Krammer et al., 2018). Among them, type A can be
further subdivided into various subtypes based on surface proteins hemagglutinin (HA)
and neuraminidase (NA), such as HIN1, H3N2, H5N1, H7N9, and others (Krammer et
al., 2018; Zhuang et al., 2019). Influenza viruses cause infections in 5-15% of the global
population and over 400,000 deaths annually and pose a significant threat to human
health (Al Farroukh et al., 2022; Lampejo, 2020). The life cycle of the influenza virus
encompasses several essential steps including virus entry, replication of the genomic
RNA, translation of mRNA, protein processing, as well as assembly and release of virus
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particles (Watanabe, Watanabe & Kawaoka, 2010; Peteranderl, Herold ¢ Schmoldt, 2016).
A comprehensive understanding of the host cell’s response to influenza virus infection

is critical for effective treatment of the viral infections and antiviral drug development

(Lampejo, 2020; De Chassey et al., 2014).

A large number of host factors have been reported to participate in the process of
influenza virus infection (Luo, 2012; Moreira, Yamauchi & Matthias, 2021). Although
traditional methods have identified several important host factors associated with
influenza virus infection such as HLA and TMRPSS2 (McMichael et al., 1977; Cheng et
al., 2015), they are generally low-throughput, time-consuming and labor-intensive, which
hinder a systematic understanding of the virus-host interactions. Thus, numerous high-
throughput experimental and computational methods have been developed to identify
host factors associated with influenza virus infections (Friedel ¢» Haas, 2011; Trimarco
& Heaton, 2022). Transcriptome and proteome sequencing have been instrumental in
identifying numerous host genes and proteins that play crucial roles in virus infections
through differential expression analysis (Vijayakumar et al., 2022; Babu & Snyder, 2023).
As an illustration, Hancock et al. (2018) identified a total of 1,903 genes differentially
expressed in type 2 alveolar epithelial cells infected with HIN1 and revealed that influenza
virus downregulated Wnt signaling in the lung. Besides the transcriptome and proteome
level, influenza virus infections also disrupt the post-translational modification of host
proteins, and proteins with differential post-translation modification may also participate
in the virus infection process (Kumar et al., 2020; Séderholm et al., 2016). For instance,
the phosphorylation of 1113 proteins was regulated in primary human macrophages
after influenza virus infection, highlighting the importance of global phosphoproteomic
profiling in primary cells following viral infections (Sdderholm et al., 2016). The high-
throughput methods of detecting protein-protein interactions such as yeast two-hybrid
experiments and affinity purification-mass spectrometry experiments, are also very helpful
in identifying host proteins involved in virus infection (Schaack ¢ Mehle, 2020; Wang
et al., 2016). For example, 560 interactions were observed between 79 human proteins
and NS1/NS2 proteins of 9 distinct influenza virus strains using the yeast two-hybrid
method (Chassey et al., 2013). Whole genome or exome sequencing has also aided in
identifying host susceptibility genes by genome-wide association analysis (Tam et al., 2019;
Khor & Hibberd, 2012). For instance, the MXI gene was demonstrated to play a critical
role in host’s antiviral defense against influenza H7N9 viruses based on whole-genome
sequencing (Chen et al., 2021). Integrating host factors associated with influenza virus
infection can facilitate a comprehensive understanding of interactions between influenza
viruses and their hosts (De Chassey et al., 2014; Moreira, Yamauchi ¢ Matthias, 2021).

Although databases like H2V contain information about human genes and proteins that
respond to infections of multiple viruses such as the Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-
CoV) (Zhou, Bao & Ning, 2021), there is currently a lack of an integrated resource for
influenza viruses. To address this gap, we undertook the integration of human genes or
proteins associated with influenza virus infection at different levels and further developed
a dedicated database called H2Flu to effectively organize and store these human factors.
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This comprehensive effort greatly facilitates research on the role of host factors in virus
infections and contributes to the development of antiviral drugs (De Chassey et al., 2014;
Friedel ¢ Haas, 2011).

MATERIAL AND METHODS

Data collection

Five kinds of genes or proteins including differentially expressed genes (DEGs),
differentially expressed proteins (DEPs), proteins with differential post-translational
modifications (DPMs), proteins that participate in human-virus protein—protein
interactions (P-PPIs) and human susceptibility factors (SHFs) associated with infection
of human or human cells were obtained for 14 subtypes of influenza A viruses, as well as
influenza B and C viruses, from publicly available databases and the literature.

Specifically, DEGs were extracted from the HVIDB (Version 1.0) (Yang et al., 2021)
database. The DEPs were manually collected from the Influenza Research Database
(IRD) (https:/www.tfludb.org)) (Zhang et al., 2017) and from literatures in the PubMed
database by searching “(influenza[TIAB] OR flu[TIAB]) AND ((proteome[TIAB]) OR
(proteomics[TIAB]))” on March 1st, 2023. The DPMs were manually collected from
literatures in the PubMed database. The PPIs between influenza viruses and humans were
obtained from public databases including Viruses.STRING (Version 10.5) (Cook et al.,
2018), IntAct (Version 4.2.3.2) (Orchard et al., 2014), BioGrid (Version 4.4.208) (Stark
et al., 2006), Virhostnet(Version 3.0) (Guirimand, Delmotte ¢ Navratil, 2015), HVIDB
(Version 1.0), VirusMINT (Version 1.0) (Chatr-aryamontri et al., 2009), VirusMentha
(Version 1.0) (Calderone, Licata ¢ Cesareni, 2015) and HVPPI (Version 1.0) (Li et al.,
2022). To ensure the reliability of the data, only experimentally validated PPIs from these
databases were selected. The PPIs were organized by virus type or subtypes.

To obtain the SHFs of the influenza virus, we firstly collected 1254 abstracts from
the PubMed database (Canese & Weis, 2013) by searching “(influenza[TIAB] OR
flu[TIAB]) AND human[TTIAB] AND((susceptible[TIAB]) OR (susceptibility[TIAB])
OR (sensibility[TIAB]) OR (sensitiveness[TIAB]) OR (susceptivenes[TIAB]))” on April
13th, 2023. Then, each abstract was manually screened based on whether it contained SHFs,
which resulted in 48 abstracts. Finally, the full texts of these abstracts were read carefully
and 57 SHFs were compiled from these papers.

Functional enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis of human genes were conducted with functions of enrichGO()
and enrichKEGG() in the package “clusterProfiler” (version 4.8.2) (Wu et al., 2021) and
org.Hs.eg.db(version 3.17.0) (Carlson et al., 2019) in R (version 4.0.3) (R Core Team, 2013).

Statistical analysis

All statistical analyses were conducted in R (version 4.0.3) (R Core Team, 2013). The
Wilcoxon rank-sum test was conducted using the wilcox.test() function; the linear regression
fitting was performed using the /m() function; the correlation coefficient was calculated
using the cor.test () function.
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RESULTS

Data summary

As shown in Fig. 1A and Table S1, two human influenza A viruses including A(HIN1)
and A(H3N2) had a large number of genes or proteins associated with human infection
(for clarity, they were defined as Virus-Infection-associated Human Factors (VIHFs)). The
former had a total of 12,556 VIHFs which included 10,068 DEGs, 1,435 DEPs, 104 DPMs,
2,654 P-PPIs and 48 SHFs; the latter had 15,857 VIHFs which included 15,250 DEGs, 41
DEPs, 342 DPMs, 534 P-PPIs and seven SHFs. Besides human influenza A viruses, two
avian influenza viruses, i.e., A(H5N1) and A(H7N9), also had a large number of VIHFs,
with the former having 24,683 VIHFs and the latter having 6,244 VIHFs. The remaining
viruses, including H3N8, H4N6, H5N2, H5N3, H5N6, H6NS, H7N1, H7N4, H7N7, HON2,
Influenza B virus and Influenza C virus possessed one, one 286, 83, one, one, one, one
5,093, 128, 21 and six VIHFs, respectively.

When comparing VIHFs between influenza types or subtypes, as shown in Fig. 1B, we
observed a very small proportion of shared VIHFs. Two human influenza A viruses, i.e.,
A(HIN1) and A(H3N2), had a high ratio of shared VIHFs. Subtypes with the same HA
subtype seemed to have a relatively high ratio of shared VIHFs, such as subtypes of H5N1,
H5N2 and H5N3, and subtypes of H7N9 and H7N?7.

When comparing VIHFs of different types, we found a large difference between them.
Although DEGs accounted for most VIHFs, each kind of VIHFs had unique genes. As
shown in Fig. 1C, DEPs, DPMs, P-PPIs and SHFs had 180, 257, 508 and five unique genes,
respectively. Interestingly, there were some genes shared among multiple kinds of VIHFs.
For example, 19 genes were shared between DEGs, DEPs, DPMs and P-PPIs, suggesting
that they may play important roles in influenza virus infections. As shown in Fig. 1D, over
90% of SHFs overlapped with other kinds of VIHFs, indicating that most susceptible genes
were disrupted after influenza virus infection.

The meta information of VIHFs including the relavant viral strains, cell type and
infection time points were also provided (Fig. 1E). Transcriptomic data from 14 influenza
virus strains infecting 8 cells at 16 different time points, and proteomic data from seven
influenza virus strains infecting 3 cell lines at 8 time points, were compiled separately.

Dynamic response of human cells to influenza virus infection

The dynamic response of humans to influenza virus infection was analyzed since there
were a large number of DEGs. The number of DEGs identified at different time points post
infection was analyzed for 14 viral strains which infected 8 different cell types (Fig. 2A). It
was found that there was a small number of DEGs within 10 h post infection(hpi); then,
the number of DEGs increased rapidly from 10 to 20 hpi, reaching a peak around 20 hpi;
then, it began to decrease and kept stable after 30 hpi. When comparing the shared DEGs
between different time points, we found that there was a negative correlation (Pearson
Correlation Coefficient = —0.30) between the shared ratio of DEGs and the size of time
intervals (Fig. 2B). DEGs in different time points had a small ratio of overlaps except those
after 24 hpi (Fig. 2C), indicating distinct DEGs at different stages of virus infections.
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Figure 1 Data summary of genes or proteins associated with human infection of influenza viruses. For
clarity, these genes or proteins were defined as Virus-Infection-associated Human Factors (VIHFs). (A)
The number of five types of VIHFs in different influenza types or subtypes. (B) The shared ratio of VIHFs
between influenza types or subtypes which was colored according to the figure legend on the top left. The
shared ratios of VIHFs in the upper- and lower-triangular heatmaps were calculated by taking the total
number of VIHFs in the left and top type or subtypes, respectively, as the denominator, and by taking the
shared number of VIHFs between the left and top types or subtypes as the nominator. (C) Overlap of VI-
HFs between DEGs, DEPs, DPMs and P-PPIs. (D) Overlap of VIHFs between SHFs and other kinds of VI-
HFs. (E) Distribution of data by viral strain, cell type and infection time points. The data above and below
the black line referred to the transcriptomic and proteomic data, respectively. The blue stars indicated that
data for both transcriptomic and proteomic data were available.

Full-size & DOI: 10.7717/peerj.16194/fig-1

The cell specificity contributed larger to the diversity of DEGs than
the strain specificity

We further analyzed the strain and cell type specificity for DEGs. As shown in Fig. 3A,
different strains of influenza viruses had varying numbers of DEGs with the median number
of DEGs ranging from 22 to 4,798. Even within the same subtype such as A(HIN1), DEGs
in different strains also differed much. Interestingly, two strains of highly pathogenic avian
influenza H5N1 viruses which led to human infection and death, i.e., A/Vietnam/1203/2004
and A/Vietnam/UT302811/03, had the largest number of DEGs, while avian influenza viruses
such as A/duck/Malaysia/F118/08/2004 and A/duck/Malaysia/F119/3/1997 generally had a
small number of DEGs. To remove the influence of cell type, we also compared the number
of DEGs between virus strains which infected the same cell type. As shown in Fig. S1, large
differences were still observed between the number of DEGs of viral strains infecting the
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Full-size Gal DOI: 10.7717/peerj.16194/fig-2

same cell type, even for the strains of the same subtype such as four strains of A(HIN1)
infecting the A549 cell.

Similarly, we observed large differences between DEGs in different human cell types after
influenza virus infections (Fig. 3B). The median number of DEGs ranged from 55 to 6,710
across eight human cell types after influenza virus infections. Overall, when comparing the
shared ratios of DEGs between different strains and different cell types, we found that the
latter was smaller than the former, suggesting the cell specificity was greater than strain
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Figure 3 Analysis of the strain and cell specificity in DEGs. (A) Number of DEGs in different influenza
virus strains. (B) Number of DEGs in different cell types infected by influenza viruses. (C) The shared ra-
tio of DEGs between different strains and cell types. Asterisks (**) indicate p-value < 0.01.

Full-size &l DOL: 10.7717/peerj.16194/fig-3

specificity in DEGs, and both of them contributed significantly to the diversity of DEGs in
influenza virus infections.

The heterogeneity of P-PPIs in influenza viruses

The P-PPIs were the second largest type of VIHFs. Thus, the heterogeneity of P-PPIs
in different types or subtypes of influenza viruses was analyzed. As shown in Fig. 4A,
the shared ratios of P-PPIs between influenza virus types or subtypes were generally
smaller than 0.1, suggesting different influenza viruses had large differences between
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P-PPIs. Further analysis of the P-PPIs by proteins of the influenza virus still showed large
differences between different viruses (Fig. 4B).

Overview of the H2Flu

A database named H2Flu was created to store and organize different types of VIHFs of
influenza viruses. The database is publicly available at http:/computationalbiology.cn/
H2Flu. It mainly includes pages of Homepage, Browse, Search, Statistic, Download and
Contact us(Fig. 5).

Homepage. This page included simple introductions of the database, rapid links to the
Search page, news of the database and useful links.

Browse. The page displayed VIHFs by influenza virus types or subtypes, or by data types.
A given type of VIHFs for a given virus type or subtype would be shown in a table, based
on which gene function enrichment analysis would be conducted.

Search. Users can search for a VIHF by gene name, which would output the structure,
tissue specificity, related diseases and candidate drugs targeting the VIHF, or users can
search a combination of a given data type and a given virus type or subtype, which would
output a list of VIHFs that can be further used in gene function enrichment analysis.

Statistic. This page displayed a summary of statistics about the VIHFs by virus type or
subtype, or by data type.

Download. All VIHFs used in the database can be easily downloaded on the page.
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Contact us. To ensure quick communications with the authors in case users encounter any
issues, the email address of the H2Flu database developers and the laboratory’s addresses
were provided.

An application case of H2Flu

We illustrated the potential usage of H2Flu in integration of multi-omic data in influenza
virus infection by comparing the DEGs and DEPs during the infection of Calu-3 cells at
18 hpi by a viral strain of H5N1 virus (A/Vietnam/1203/2004). As shown in Fig. 6A, there
were only two genes that were both up-regulated at the transcription and proteome level,
suggesting the large difference of upregulated genes in host response to viral infection at
different levels. However, more than one-third of downregulated DEPs were also found
to be downregulated at the transcriptional level, suggesting the consistent role of these
genes in the viral infection. Functional analysis of these genes showed that they were
enriched in biological processes related to protein folding, localization, regulation of
protein stability, and in KEGG pathways related to metabolisms of carbon and amino acid,
actin cytoskeleton, focal adhesion, and so on.

DISCUSSION

As research on the influenza virus progresses, there is a growing emphasis not only on
the virus itself, but also on the human factors involved in virus infections (Sladkova ¢»
Kostolansky, 2006; Ali et al., 2022). However, the majority of research focuses on some
kinds of host factors such as DEGs for only one or a few influenza viruses (Hancock et al.,
2018; Schaack & Mehle, 2020). To bridge this gap, we have successfully integrated human
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genes and proteins at different levels that are associated with infections of more than ten
types or subtypes of influenza viruses and further built a database known as H2Flu. This
database serves as an organized and easily accessible resource for the scientific community,
providing valuable insights for further research on the complex relationship between
influenza viruses and humans.

The most important discovery of the study is the large heterogeneity of human factors
associated with influenza virus infections. The large difference between different types of
VIHFs (Figs. 1C & 1D) suggested that the influenza virus may disrupt the host system
at multiple levels from transcriptome, proteome and post-translation modification to
interactome. Thus, it is necessary to integrate multi-omics methods for a systematic
understanding of the virus-host interactions (Babu ¢ Snyder, 2023; Tang et al., 2022). The
dynamic changes in DEGs following influenza virus infection suggest different genes or
proteins involved in different stages of viral infection, which is consistent with previous
studies (Sladkova ¢ Kostolansky, 2006; Ali et al., 2022). Interestingly, both strain specificity
and cell specificity contributed much to the heterogeneity of DEGs, which suggests that it
is necessary to consider both the viral strain and cell type when comparing and integrating
DEGs in different experiments.

The largest limitation of the study is the limited and biased data in the database. Firstly,
only 16 types or subtypes of influenza viruses were used in the database, and most VIHFs
were identified in some types such as A(HIN1) and A(H3N2). There were more than 100
subtypes of influenza A viruses (Krammer et al., 2018; Zhuang et al., 2019). Thus, VIHFs
of other subtypes of influenza A viruses should be added to the database in the future.
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Secondly, only proteins or protein-coding genes were collected in the database. Actually,
RNAs also take part in virus infections (Liao et al., 2022; Guo et al., 2022). Thus, RNAs
associated with influenza virus infections should be also added to the database in the
future. Thirdly, only five kinds of VIHFs were included in the database and there was a
serious imbalance of these data types. More VIHFs at other levels such as the epigenetic
level can be added to the database as the influenza virus has been reported to influence the
epigenetic states of host cells. Nevertheless, this study systematically compiled human genes
and proteins associated with influenza virus infection in human cells, and further built a
database named H2Flu to store these genes. It deepens our understanding of the diversity
and complexity of interactions between influenza viruses and humans, and provides a
valuable resource for further studying such interactions.
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