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Abstract

Identifying neoepitopes that elicit an adaptive immune response is a major bottleneck to 

developing personalized cancer vaccines. Experimental validation of candidate neoepitopes is 
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extremely resource intensive and the vast majority of candidates are non-immunogenic, creating a 

needle-in-a-haystack problem. Here we address this challenge, presenting computational methods 

for predicting class I major histocompatibility complex (MHC-I) epitopes and identifying 

immunogenic neoepitopes with improved precision. The BigMHC method comprises an ensemble 

of seven pan-allelic deep neural networks trained on peptide–MHC eluted ligand data from 

mass spectrometry assays and transfer learned on data from assays of antigen-specific immune 

response. Compared with four state-of-the-art classifiers, BigMHC significantly improves the 

prediction of epitope presentation on a test set of 45,409 MHC ligands among 900,592 random 

negatives (area under the receiver operating characteristic = 0.9733; area under the precision-recall 

curve = 0.8779). After transfer learning on immunogenicity data, BigMHC yields significantly 

higher precision than seven state-of-the-art models in identifying immunogenic neoepitopes, 

making BigMHC effective in clinical settings.

Class I MHC plays a crucial role in vertebrate adaptive immunity. The MHC region is highly 

polymorphic and comprises thousands of known alleles, each encoding a molecule with 

varying ligand specificities. Identifying non-self antigens that are presented by a patient’s 

MHC molecules and elicit strong immune responses may yield precise immunotherapies1. 

Tumour-specific antigens, called neoantigens, and their antigenic determinants, neoepitopes, 

are valuable targets for personalized cancer immunotherapies. However, identifying 

neoepitopes that elicit an antigen-specific immune response is a needle-in-a-haystack 

problem; the number of non-immunogenic candidates far surpasses the few immunogenic 

ones. Because experimental validation of immunogenicity is extremely resource intensive, it 

is critical that the top neoepitope predictions are immunogenic. To address this challenge, 

we present a deep neural network ensemble called BigMHC for predicting immunogenic 

neoepitopes with improved precision.

Intracellular proteins are degraded by proteasomes, after which the resulting peptides 

may be carried by transporters associated with antigen processing (TAP) molecules to 

the endoplasmic reticulum. Within the endoplasmic reticulum, MHC-I molecules may 

bind peptides to form a peptide–MHC (pMHC) complex, which may be presented at 

the cell surface for T-cell receptor (TCR) recognition and subsequent CD8+ (cluster of 

differentiation 8 positive) T-cell expansion. The set of peptides in each stage is a superset 

of the following; in other words, given an MHC molecule M, then C⊃A⊃B⊃P⊃R⊃T⊃S, 

where:

• C is the set of peptides derived from proteasomal cleavage.

• A is the set of peptides transported by TAP molecules to the endoplasmic 

reticulum.

• B is the set of peptides that binds to M to form a pMHC complex.

• P is the set of peptides present on the cell surface.

• R is the set of peptides that forms TCR–MHC complexes.

• T is the set of peptides that elicits CD8+ T-cell clonal expansion.
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• S is the set of peptides that elicits a clinically observable antigen-specific 

immune response.

Some prior works have explicitly incorporated set C by modelling proteasome cleavage2–4 

and set A by estimating TAP transport efficiency4. Classifiers of set B train on in vitro 

binding affinity (BA) assay data1,2,4–11; however, BA data do not capture the endogenous 

processes that yield sets C and A, so BA data capture a strict superset of set B. BA data may 

be qualitative readings or quantitative half-maximal inhibitory concentration (IC50) data. 

Qualitative readings were mapped to IC50 values12, and the domain of IC50 measurements 

was scaled such that the weakest BA of interest, 5 × 105 nmol l−1, was mapped to 0 

accordingly: f IC50 = max 0, 1 − log5 × 105 IC50 .

Mass spectrometry data include naturally presented MHC ligands, referred to as eluted 

ligands (EL); mass spectrometry data implicitly capture sets C, A and B while explicitly 

representing set P. EL data provide positive training examples and random pMHC data are 

generated for negative training examples. Some models1,2,6,9–11 train on both BA and EL 

data, whereas other models3,13,14, including BigMHC, do not train on BA. To classify set 

R, a recent method15 incorporated complementarity-determining region (CDR)3β sequences 

from the TCR to predict the BA between TCR and pMHC. Although TCR information may 

be useful for predicting immunogenicity, most current datasets do not include such data. 

Data for classes R, T and S were also very limited, making it difficult to train classifiers 

directly for these sets. Prior classifiers of set T incorporate13,14,16 the predictions from 

classifiers of sets B and P. To the best of our knowledge, there are no predictors of set S.

We briefly overview seven state-of-the-art methods to which we compare the proposed 

BigMHC (bɪg mæk) method. NetMHCpan-4.16 predicts sets B and P using an 

ensemble of 100 single-layer neural networks. NetMHCpan introduced the idea of a 

pan-allelic network7,8, which consumes a peptide and a short representation of an MHC 

allele of interest, thereby allowing a single model to generalize across MHC alleles. 

NetMHCpan-4.1, like many prior models, predicts raw scores in the range [0,1] in 

addition to a percentage rank output in the range [0,100], which normalizes the score to 

a given allele. MHCflurry-2.02 is a pan-allelic method that predicts sets B and P using 

an ensemble of multilayer feed-forward networks, convolutional networks and logistic 

regression. MHCflurry-2.0 optionally consumes the regions flanking the N- and C-terminals 

to explicitly model set C. TransPHLA11 is a pan-allelic method that predicts set P, using a 

transformer-based model. MHCnuggets1 predicts set B, using allele-specific long short-term 

memory (LSTM) networks. HLAthena3 has pan-allele models that predict set P with single-

layer neural networks and optionally consume transcript abundance and peptide flanking 

sequences. MixMHCpred9,10 predicts set P, using a mixture model and position weight 

matrices to extract epitope motifs. PRIME13,14 is an extension of MixMHCpred to predict 

set T and was designed to infer the mechanisms of TCR recognition of pMHC complexes.

Using the procedure illustrated in Fig. 1, we developed two BigMHC models: BigMHC EL 

and BigMHC IM. To predict set P, BigMHC EL trains on EL mass spectrometry data and 

random negatives. Then, using BigMHC EL as a base model, BigMHC IM transfer learns 

directly on immunogenicity data to predict set T. Because P⊃T, transfer learning narrows 
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the original classification task rather than transferring to an entirely new one. Transfer 

learning was performed by retraining the final and penultimate fully connected layers of the 

base model on immunogenicity data.

Each BigMHC network model (Fig. 2a) comprises over 87 million parameters, totalling 

about 612 million parameters in the ensemble of seven networks. The architecture is 

designed to capture recurrent patterns via a wide, dense, multilayered, bidirectional LSTM 

(BiLSTM) and pMHC anchor site binding information via an anchor block. The BiLSTM 

cells are preceded by self-attention modules; these units are equivalent to transformer multi-

headed attention modules17 where the number of heads is set to one. Each wide BiLSTM 

cell unroll, illustrated in Fig. 2b, consumes the entire MHC representation while recurrently 

processing the variable-length epitope. Although this imposes a minimum epitope length 

of eight, few peptides of length seven or less are presented3. The MHC representations are 

novel pseudosequences generated from multiple sequence alignment; the 30 positions with 

highest information content are chosen to represent each allele. These positions are one-hot 

encoded based on the residues present at the given position, with probabilities of occurrence 

illustrated in Fig. 2c. The anchor block consumes the MHC pseudosequence along with the 

first and last four residues of the peptide to focus on the anchor-site residues. The anchor 

block comprises two dense18 linear layers with tanh activations, followed by Dropout19 units 

with a probability of 0.5. The outputs of the BiLSTM and the anchor block are concatenated 

before being consumed by a pre-attention block, which also comprises two dense linear 

layers with tanh activations, proceeded by Dropout with a probability of 0.5. The output is 

projected to the same size as the MHC one-hot encoding and passed through tanh activation 

to attend to the MHC encoding. This attention vector can then be superimposed onto a 

three-dimensional structure of an MHC allele of interest to identify important amino acid 

residue positions for a given pMHC, as illustrated in Extended Data Figs. 1 and 2. Moreover, 

because the final output of the model is a linear combination of the MHC one-hot encoding, 

the scalar output is interpretable, each MHC position is assigned a weight that contributes 

in favour of, or against, presentation, and their sum is the model output prior to sigmoid 

activation.

We compared the features of BigMHC with those of seven state-of-the-art methods, as 

shown in Table 1. We also included information on whether the models are retrainable, 

open-source, offer GPU acceleration, minimum and maximum peptide length, allow 

additional context such as flanking sequences or gene expression data, webserver availability 

and peptide amino acid restrictions.

Results

Epitope presentation prediction

BigMHC, NetMHCpan-4.1, TransPHLA, MixMHCpred-2.1 and MHCnuggets-2.4.0 were 

first evaluated on a set of 45,409 EL (set P) and 900,592 random decoys serving as 

negatives. This dataset is the same as that used to evaluate NetMHCpan-4.16, but with 140 

deduplicated instances. Some prior methods2,3,13,14 could not be evaluated on this dataset as 

they trained on the EL or do not predict set P.
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The results, illustrated in Fig. 3a, suggest that BigMHC improves EL predictive capability, 

reaching 0.9733 mean area under the receiver operating characteristic (AUROC) and 0.8779 

mean area under the precision-recall curve (AUPRC) when stratifying by MHC. The 

best prior method was NetMHCpan-4.1 ranks, with 0.9496 mean AUROC and 0.8329 

mean AUPRC. The distributions of AUROC and AUPRC across human leukocyte antigen 

(HLA) loci are illustrated for each classifier in Fig. 3b. BigMHC demonstrates strong 

performance across HLA loci, whereas the performance of other methods degrades slightly 

on HLA-A, and particularly HLA-C. The median positive predictive value among the top 

n outputs (PPVn) across alleles, as previously calculated6, for each method are BigMHC 

(0.8617), NetMHCpan-4.1 ranks and scores (0.8279), MixMHCpred-2.1 ranks (0.7907), 

MixMHCpred-2.1 scores (0.7898), TransPHLA (0.6839) and MHCnuggets-2.4.0 (0.6507).

We further stratify by both MHC and peptide length, as illustrated in Fig. 3c. After applying 

this more granular stratification, BigMHC yields mean AUROC and AUPRC of 0.9290 and 

0.6132, respectively. By comparison, NetMHCpan-4.1 yielded mean AUROC and AUPRC 

of 0.8544 and 0.5266, respectively. BigMHC is most effective for peptides of length 

nine, which is the most common length of peptides presented by MHC-I3,10. Although 

the predictive capability of BigMHC decreases as the peptide length increases, it is still 

superior to that of the compared methods for all peptide lengths. Overall, BigMHC achieves 

higher AUROC and AUPRC than these prior methods across both types of stratifications. 

The two-tailed Wilcoxon signed-rank tests illustrated in Fig. 3d suggest that the BigMHC 

improvements are statistically significant (adjusted P < 0.05) after Bonferroni correction 

across the number of compared predictors. Tabular results are provided in Source Data Fig. 

1.

Immunogenicity prediction

The vast majority of neoepitopes are not immunogenic. Furthermore, experimental 

validation of immunogenicity currently is not high throughput, so it is necessary to select a 

short list of candidate neoepitopes that can be validated per patient in a clinical setting. It 

is therefore critical that predictors of immunogenic neoepitopes have high precision among 

their most highly ranked outputs, as only the top predictions are used in practice. To measure 

this precision, it is common to evaluate PPVn1,2,6. To calculate PPVn, the pMHCs are first 

sorted by a predictor’s output. Then, PPVn is the fraction of the top n pMHCs that are 

actually immunogenic.

Evaluation of immunogenicity prediction is conducted on two independent datasets: one 

comprising neoepitopes and the other comprising infectious disease antigens. The precision 

of predicting immunogenic neoepitopes is shown in Fig. 4a; we plot PPVn against all 

choices of n such that a perfect predictor yields a PPVn of one. This shows that the 

top nine predictions are all immunogenic, and as the number of predictions increases, the 

fraction of predictions that are actually immunogenic remains well above the PPVn of 

prior methods for all n. To summarize this PPVn curve, the mean PPVn is plotted with 

95% confidence interval (CI) whiskers in Fig. 4c, showing that BigMHC IM achieves 

a mean PPVn of 0.4375 (95% CI: [0.4108, 0.4642]), significantly improving over the 

best prior method, HLAthena ranks, which achieves a mean PPVn of 0.2638 (95% CI: 
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[0.2572, 0.2705]). Additionally, these data demonstrate the utility of transfer learning to 

the immunogenicity domain as BigMHC IM significantly outperforms BigMHC EL, which 

achieves mean PPVn of 0.2704 (95% CI: [0.2632, 0.2776]). A third BigMHC curve is 

plotted, called BigMHC ELIM, for which we use BigMHC IM predictions on HLA-A and 

HLA-B peptides and BigMHC EL predictions for HLA-C peptides. Because there were very 

few HLA-C instances on which to transfer learn, we hypothesized that BigMHC IM may 

struggle with HLA-C prediction. BigMHC ELIM improved neoepitope immunogenicity 

AUROC and AUPRC, but did not improve on the infectious disease dataset; this is likely 

due to the neoepitope dataset being enriched in negative HLA-C peptides compared with 

the infectious disease dataset, as seen in Extended Data Fig. 5. BigMHC IM and BigMHC 

ELIM mean PPVn is not significantly different for neoepitope immunogenicity and slightly 

degrades (adjusted P < 0.05) for infectious disease immunogenicity as determined by two-

tailed Wilcoxon signed-rank test with Bonferroni correction. Immunogenicity prediction 

results stratified by epitope length are presented in Extended Data Fig. 3 for neoepitopes and 

Extended Data Fig. 4 for infectious disease epitopes.

Precision curves and the corresponding mean PPVn for the infectious disease antigen dataset 

is illustrated in Fig. 4b,d. BigMHC IM achieves a mean PPVn of 0.7999 (95% CI: [0.7980, 

0.8018]). The best prior method, PRIME-2.0 scores, achieves a mean PPVn of 0.7991 (95% 

CI: [0.7967, 0.8015]). The two-tailed Wilcoxon signed-rank test suggests that the difference 

between BigMHC IM and PRIME-2.0 scores is asymmetric about zero (adjusted P < 0.05), 

but because BigMHC IM just barely improves over PRIME-2.0 precision, we consider these 

two methods comparable for infectious disease immunogenicity prediction precision.

In addition to precision, we also report AUROC and AUPRC for each dataset along with 

1,000-fold bootstrapped 95% CIs. The AUROC scores for the neoepitope and infectious 

disease immunogenicity datasets are reported in Fig. 4e,f and the AUPRC scores are in Fig. 

4g,h. MHCnuggets-2.4.0 achieved the highest AUROC on the neoepitope dataset at 0.5852 

(95% CI: [0.5833, 0.5862]) and BigMHC ELIM achieved the next best AUROC at 0.5736 

(95% CI: [0.5721, 0.5750]). BigMHC ELIM significantly outperformed all prior methods 

on neoepitope AUPRC, reaching a mean AUPRC of 0.3234 (95% CI: [0.3216, 0.3253]), 

whereas the best prior method, NetMHCpan-4.1 scores, yielded a mean AUPRC of 0.2462 

(95% CI: [0.2441, 0.2483]). BigMHC IM yielded AUROC of 0.5348 (95% CI: [0.5332, 

0.5363]) and AUPRC of 0.3147 (95% CI: [0.3129, 0.3165]) on the neoepitope dataset, 

whereas BigMHC EL yielded a mean AUROC of 0.5264 (95% CI: [0.5249, 0.5280]) 

and AUPRC of 0.2415 (95% CI: [0.2401, 0.2428]), further demonstrating significant 

improvement after transfer learning.

On the infectious disease antigen dataset, PRIME-2.0 scores achieved the best AUROC 

and AUPRC, reaching 0.5953 (95% CI: [0.5940, 0.5966]) and 0.7905 (95% CI: [0.7893, 

0.7916]), respectively. BigMHC ELIM achieved the next best AUROC at 0.5876 (95% CI: 

[0.5863, 0.5890]) and BigMHC IM achieved the next best AUPRC at 0.7869 (95% CI: 

[0.7856, 0.7882]), though both BigMHC IM and BigMHC ELIM yielded similar AUROC 

and AUPRC on this dataset. As with the neoepitope dataset, both BigMHC IM and BigMHC 

ELIM improved AUROC and AUPRC over BigMHC EL. The best AUROC and AUPRC for 

both immunogenicity datasets are statistically higher (adjusted P < 0.05) than the next best 
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as suggested by two-tailed Wilcoxon signed-rank tests with Bonferroni corrections. Tabular 

results are provided in Source Data Fig. 2.

MHC attention

The BigMHC network architecture offers a unique attention mechanism whereby prior 

to sigmoidal activation, the scalar output of the network is a linear combination of the 

input MHC encoding. Hence, we were able to visualize interpretable attention, the amino 

acid residue positions important for classification, in the form of a heatmap overlay on a 

modelled three-dimensional structure of an MHC molecule of interest. The mean attention 

for each pseudosequence position per allele in the EL evaluation dataset is illustrated in 

Extended Data Fig. 1a. The MHC molecules from each HLA locus that yielded the highest 

AUPRC are visualized with attention colouring in Extended Data Fig. 1b using py3Dmol20 

and AlphaFold21 to generate MHC protein structure models. The EL training set attention 

values are visualized in Extended Data Fig. 2. The proposed MHC pseudosequences 

are comprised of the top 30 aligned positions from a cross-species alignment of 18,929 

MHC-I sequences by information content; the most important are those that are in the 

binding groove. For certain alleles, however, some transmembrane and intracellular residues 

strongly contribute to EL prediction, such as position 320 for HLA-C*07:02 and 329 for 

many HLA-B alleles. This suggests that the NetMHCpan pseudosequences, which capture 

positions only nearest to the peptide, may lose information valuable for predicting pMHC 

presentation. Importantly, this affects all the referenced pan-allele state-of-the-art methods as 

they currently adopt NetMHCpan pseudosequence MHC representations.

Discussion

We first trained BigMHC to predict peptide presentation (set P) because an enormous 

amount of EL mass spectrometry data for MHC class I peptide presentation is publicly 

available, making it feasible to train deep learning models with over 87 million 

parameters. BigMHC EL achieved the highest predictive capability for set P, significantly 

outperforming the four compared methods across HLA loci and epitope lengths. We further 

demonstrated several technical findings: training on pMHC BA is unnecessary for predicting 

pMHC presentation, information content is a useful approach for deriving new MHC 

pseudosequence representations, and some transmembrane and intracellular MHC positions 

may be important for presentation prediction.

While the goal of neoepitope prediction is ultimately to predict neoepitopes that 

induce a clinically observable antigen-specific immune response (set S), there is limited 

immunogenicity data to train deep learning models. To address the data scarcity problem, 

after initially training the base models on presentation data (set P), we applied transfer 

learning using immunogenicity data (set T) to produce BigMHC IM. We evaluated BigMHC 

IM and seven other methods on two independent datasets: neoepitope immunogenicity 

and infectious disease antigen immunogenicity. We demonstrated strong precision on both 

datasets, but particularly outperformed all prior methods on the neoepitope immunogenicity 

prediction. We suspect that BigMHC IM outperforms other tools on neoepitope PPVn but 

performs similarly on the infectious disease set because of the composition of the training 

Albert et al. Page 7

Nat Mach Intell. Author manuscript; available in PMC 2023 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data used for transfer learning. This data is a mixture of neoepitopes, cancer–testis antigens, 

and viral antigens. The neoepitopes represent a majority of the examples; out of 6,873 

experimentally validated examples, 5,279 are neoepitopes.

However, there are several notable limitations to this study. Firstly, our evaluation of 

presentation prediction is based on eluted MHC ligands detected by mass spectrometry, but 

the negative data are random. Hence, positive data are limited to the detection efficiency of 

mass spectrometry, and negative data are not guaranteed negative. Two alleles, namely HLA-

B*07:02 and HLA-C*03:03, yielded slightly lower AUPRC than other alleles; we suspect 

that differences in allele performance are primarily caused by differing class imbalances 

across the peptide length distributions. Another limitation is that BigMHC can only operate 

on MHC class I data, whereas some other methods1,6 can predict both MHC-I and MHC-II 

presentation. Although we compare against state-of-the-art methods, there are many other 

such tools that are not compared here, and EL evaluation could not include MHCflurry-2.0, 

MixMHCpred-2.2, and HLAthena as their training data included most, or all, of the 

presented epitopes. The datasets used in this study do not have contextual information 

such as epitope flanking sequences and gene expression data, which may improve 

MHCflurry-2.0 and HLAthena results. We note that we could not compare performance 

in a leave-one-allele-out cross-validation experiment as NetMHCpan-4.1, MixMHCpred-2.1, 

and TransPHLA are not retrainable, and training BigMHC is computationally expensive. 

We note that a major limitation of our pseudosequences is that new alleles cannot be added 

without needing to retrain BigMHC from scratch; adding new alleles likely changes the 

resulting multiple sequence alignment, thereby affecting all other pseudosequences. We 

also could not answer the question as to whether BigMHC IM could discriminate between 

immunogenic neoepitopes and presented non-immunogenic neoepitopes; such an experiment 

would require pMHCs to be validated both in immunogenicity assays and mass spectrometry 

assays, and to our knowledge there is no such dataset available. Lastly, although our study 

emphasizes the importance of achieving high precision of immunogenicity in the top-ranked 

predictions, all evaluations were retrospective.

Future work will include prospective evaluation of the predictions of BigMHC 

with neoepitope immunogenicity assays. We are implementing BigMHC in ongoing 

computational analyses of mutation-associated neoepitope evolution under the selective 

pressure of immune checkpoint blockade in neoadjuvant clinical trials of patients with 

non-small cell lung cancer (NCT02259621), mesothelioma (NCT03918252) and gastro-

oesophageal cancer (NCT03044613).

Methods

Datasets

Epitope presentation training.—Presentation training data spanned 149 alleles and 

included 288,032 EL and 16,739,285 negative instances. The training dataset was compiled 

from the NetMHCpan-4.16 and MHCflurry-2.02 single-allelic EL datasets. These instances 

were split into training (positive = 259,298; negative = 15,065,287), and validation (positive 

= 28,734; negative = 1,673,998).
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Epitope presentation evaluation.—The presentation evaluation set spanned 36 HLA 

alleles and comprised 45,409 EL and 900,592 negative data. The test set is the same 

single-allelic EL dataset as that used in the NetMHCpan-4.1 study but with 140 deduplicated 

instances. The pMHC instances that existed in both EL training and EL testing were 

removed from the training dataset.

Immunogenicity training.—BigMHC IM transfer learned on PRIME-1.013 and 

PRIME-2.014 datasets. The original training data consisted of viral antigens, cancer–testis 

antigens, neoepitopes and 9-mer peptides randomly sampled from the human proteome to 

supplement the negative instances. BigMHC transfer learned only on the nonrandom pMHC 

data, of which 1,580 are positive and 5,293 are negative. The data were split into training 

(positive = 1,407; negative = 4,778), and validation (positive = 173; negative = 515).

Infectious disease antigen immunogenicity evaluation.—Infectious disease 

antigen immunogenicity prediction was evaluated using data collected from the Immune 

Epitope Database (IEDB)22 on 19 December 2022. The queries to IEDB included linear 

peptides, T-cell assays, MHC-I restriction, human hosts and infectious diseases. Data were 

further processed to allow all prior methods to be evaluated: only peptides of length at least 

8 and at most 11 were kept so that HLAthena could be evaluated, peptides with dummy 

amino acid ‘X’ were removed as many prior methods cannot handle dummy amino acids, 

and pMHCs with MHC alleles incompatible with MixMHCpred and PRIME were removed. 

After removing the intersection with all other pMHC data, a total of 1,701 immunogenic and 

644 non-immunogenic infectious disease antigens were collected.

Neoepitope immunogenicity evaluation.—The neoepitope immunogenicity dataset 

was compiled using NEPdb23 downloaded on 18 December 2022, Neopepsee24, TESLA16, 

and data collected from 16 cancer patients using the MANAFEST assay25. NEPdb is 

a database of neoepitopes curated from the literature with a semi-automated pipeline, 

whereas Neopepsee aggregated neoepitopes from two prior sources. TESLA validated 

immunogenicity of neoepitope predictions from a global consortium. The MANAFEST 

data comprised 167 immunogenic and 672 non-immunogenic neoepitopes. MANAFEST 

quantifies antigen-specific T-cell clonotype expansion in peptide-stimulated T-cell cultures. 

After removing the intersection with all other pMHC data, a total of 198 immunogenic and 

739 non-immunogenic neoepitopes were collected. As with the infectious disease antigen 

immunogenicity dataset, the only peptides kept were of length at least 8 and at most 11 so 

that HLAthena3 could be evaluated and peptides with dummy amino acid ‘X’ were removed.

MANAFEST data collection.—The MANAFEST neoepitope data were collected and 

processed using an established protocol25–27. It was generated from functional experiments 

of mutation-associated neoantigen-stimulated autologous T-cell cultures for 16 patients with 

non-small-cell lung cancer. Neoantigen-specific T cells were identified in peripheral blood 

using the MANAFEST assay as previously described25–27. For each case, tumour whole 

exome sequencing data were utilized to determine non-synonymous mutations and mutation-

associated neoantigen candidates matched to each patient’s MHC class I haplotypes 

were computed as previously described28. ImmunoSELECT-R software from Personal 
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Genome Diagnostics26,29 was used to select putative neoantigens and the neopeptides were 

synthesized by JPT Peptide Technologies. ImmunoSELECT-R incorporates several tools, 

including predicted MHC class I affinity from NetMHCpan 3.05, cytoxic T lymphocyte 

epitope prediction from NetCTLpan30, and average gene expression in the Cancer Genome 

Atlas non-small-cell lung cancer26,29. T cells were isolated from peripheral mononuclear 

cells for each case by negative selection (EasySep; STEMCELL Technologies) and 

cultured for 10 days as previously reported25–27. TCR Vβ next-generation sequencing 

utilizing DNA from cultured CD8+ cells was performed by the Johns Hopkins FEST 

and TCR Immunogenomics Core Facility using the Adaptive Biotechnologies hsTCRB 

Kit using survey-level sequencing (Adaptive Biotechnologies). Processed data files were 

analysed in the publicly available MANAFEST analysis web application (http://www.stat-

apps.onc.jhmi.edu/FEST) to define neoantigen-specific T-cell clonotypes. Briefly, following 

data preprocessing, alignment and trimming, productive frequencies of TCR clonotypes 

were calculated. Neoantigen-specific T-cell clonotypes met the following criteria: (1) 

significant expansion (Fisher’s exact test with Benjamini–Hochberg correction for false 

discovery rate, P < 0.05) compared with T cells cultured without peptide; (2) significant 

expansion compared with every other peptide-stimulated culture (false discovery rate < 

0.05); (3) an odds ratio greater than five compared with all other conditions; (4) at least 

30 reads in the positive well; and (5) at least twofold higher frequency than background 

clonotypic expansions as detected in the negative control condition25–27.

Dataset compositions.—The compositions of all datasets are illustrated in Extended 

Data Fig. 5.

BigMHC training

BigMHC was developed using Python 3.9.13, PyTorch 1.1331 and Compute Unified Device 

Architecture (CUDA) 11.7 on an AMD EPYC 7443P CPU with 256 GB of RAM, and four 

NVIDIA RTX 3090 GPUs each with 24 GB of RAM. The training data was split 9:1 into 

a training set and a validation set. Training used the AdamW optimizer32,33 to minimize 

binary cross entropy loss. We fine-tuned the optimizer learning rate from our initial guess 

of 1 × 10−5 to 5 × 10−5 by maximizing AUPRC on the EL validation dataset. The other 

AdamW hyperparameters were set to their default values: λ = 0.01, β1 = 0.9, β2 = 0.999, 

and ϵ = 10−8. Seven such BigMHC EL models were trained with varying batch sizes 

in 2k ∀k ∈ 9, 10, …, 15 , with the maximum batch size of 32,768 occupying all GPU 

memory. For each batch size, we chose the number of training epochs that maximized 

AUPRC on the EL validation data up to 50 maximum epochs. For the seven models trained 

with batch sizes 512, 1,024, …, 32,768, the best BigMHC EL epochs were, respectively: 11, 

10, 14, 14, 21, 30 and 46. On the validation data, these models yielded a mean AUROC of 

0.9930 and a mean AUPRC of 0.8592. Then, the EL validation set was concatenated with 

the EL training set and we trained a new set of seven models for the number of epochs 

that previously maximized AUPRC. This new ensemble was used to evaluate BigMHC EL 

performance on the EL testing dataset.

After evaluating EL prediction on the testing data, all EL data were merged to train a 

third set of seven models using the previously optimal number of EL training epochs. 
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This third ensemble is used as the base model for transfer learning immunogenicity. The 

immunogenicity training data is similarly split 9:1 for training and validation. We optimized 

both the batch size and number of epochs for transfer learning for each base model by 

choosing the batch size and epoch number that maximizes AUPRC on the immunogenicity 

validation data. We search all batch sizes in 2k ∀k ∈ 3, 4, 5, 6, 7  and all epochs up 

to 100. In order of least to greatest base model batch size, the best BigMHC IM (batch, 

epoch) numbers are: (16,23), (16,23), (8,15), (64,62), (32,27), (32,31) and (64,54). On the 

immunogenicity validation data, these models yielded a mean AUROC of 0.7767 and a 

mean AUPRC of 0.5685.

MHC pseudosequence

We introduced a new MHC pseudosequence representation. Prior pan-allele methods2,11 

adopted the NetMHCpan6 pseudosequences, which represent the MHC molecule based 

on residues estimated to be closest to the peptide, or used Kidera factors3 to encode 

the binding pocket residues. By contrast, BigMHC uses multiple sequence alignments to 

identify positions with high information content. In total, 18,929 MHC-I sequences across 

12 species from the IPD-IMGT/HLA34 database, IPD-MHC 2.035, and UniProt36 (accession 

numbers: P01899, P01900, P14427, P14426, Q31145, P01901, P01902, P04223, P14428, 

P01897, Q31151) were aligned using the buildmodel and align2model from the SAM 

suite37–39 version 3.5 with default parameters, yielding 414 aligned residues per sequence. 

The top 30 positions by information content were identified using makelogo from the SAM 

suite and were selected to represent the MHC sequences, which can be one-hot encoded with 

414 binary variables. These new pseudosequences are provided in our public Git repository.

Network architecture study

We further investigated how the two primary modules of the network architecture affect 

the BigMHC performance. Specifically, we studied the wide LSTM architecture and the 

anchor block modules. To perform this investigation, we first ablated the anchor block and 

evaluated this modified architecture. Then, in addition to the anchor block ablation, we 

reverted the Wide LSTM to the canonical implementation and evaluated the resulting model. 

These two studies suggest that the wide LSTM and anchor block both offer modest gains 

in performance. We did not ablate the LSTM because the anchor block alone is unable 

to differentiate between peptides of different lengths but with the same first and last four 

residues. Therefore, an ablated model with the anchor block alone would be unable to 

correctly map the input domain to the target outputs.

Anchor block.—The anchor block processes the first four and last four residues of the 

peptide, which we hypothesized would help BigMHC focus on the anchor site binding 

residues and encourage learning long-range interactions. We ablated the anchor block 

and, using this modified architecture, reconducted the training and evaluation protocols. 

When stratifying by allele and peptide length, the anchor block improved the EL AUROC 

by 0.0041 and EL AUPRC by 0.0058, and particularly improved on longer peptides 

(12–14 amino acid residues). However, these differences were not significant at the 0.05 

significance level as determined by the two-tailed Wilcoxon signed-rank test. The anchor 
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block improved neoepitope immunogenicity mean PPVn by 0.0061 P = 0.046 , AUPRC by 

0.0064 P = 1.6 × 10−17 , but worsened AUROC by 0.0038 P = 9.7 × 10−10 , as determined 

by the two-tailed Wilcoxon signed-rank test.

Wide LSTM.—Where a canonical LSTM implementation1 recurrently processes a single 

amino acid residue per LSTM cell unroll, we increase this window so that the BigMHC 

Wide LSTM processes eight amino acid residues per cell unroll, overlapping each window 

by seven residues as illustrated in Fig. 1b. In this ablation, we compare BigMHC with the 

wide LSTM to BigMHC with the canonical LSTM, and neither of these implementations 

include the anchor block. The wide LSTM implementation may reduce burden on the LSTM 

cell memory management at the expense of forcing a minimum peptide length of eight. 

However, most methods impose this restriction, as seen in Table 1, because most peptides 

presented by MHC-I are at least eight amino acids in length10, so imposing a minimum 

peptide length via the wide LSTM does not substantially limit BigMHC usage. Because the 

wide LSTM recurs seven fewer times than the canonical LSTM, the peptide interactions that 

it must learn are inherently shorter. The wide LSTM is also faster, improving execution 

speed per network on the EL test set by nearly 30%. The canonical LSTM required 

more memory than the wide LSTM, probably due to more cell unrolls, so the models of 

batch size 32,768 could not be trained. When stratifying by allele and length, the wide 

LSTM improved EL AUPRC by 0.0251 P = 2.5 × 10−14 , and although the canonical 

LSTM had higher AUROC by 0.0039, that difference was not significant P = 0.062  at 

the 0.05 significance level from the two-tailed Wilcoxon signed-rank test. For neoepitope 

immunogenicity prediction, the wide LSTM improved AUROC by 0.0024 P = 5.9 × 10−5 , 

and although the wide LSTM had higher mean PPVn by 0.0021 P = 0.41  and higher 

AUPRC by 0.0011 P = 0.056 , the latter two differences are not significant at the 0.05 

significance level as determined by the two-tailed Wilcoxon signed-rank test.

Compared methods—NetMHCpan-4.16 is a popular tool for simultaneously predicting 

BA and EL. This method consists of an ensemble of 100 single-layer networks, each of 

which consumes a peptide 9-mer binding core and a subsequence of the MHC molecule. 

The 9-mer core is extracted by the model, whereas the MHC representation, termed a 

‘pseudosequence,’ is a predetermined 34-mer core extracted from the MHC molecule 

sequence. The 34-mer residues were selected based on the estimated proximity to bound 

peptides so that only residues within 4 Å were included.

MHCflurry-2.02 is an ensemble of neural networks that predicts BA and EL for MHC-I. 

BA prediction is the output of a neural network ensemble, where each member is a two- 

or three-layer feed-forward neural network. Then, an antigen processing convolutional 

network is trained on a subset of the BA predictions, along with the regions flanking the 

N-terminus and C-terminus, to capture antigen processing information that is missed by the 

BA predictor. EL prediction is the result of logistically regressing BA and antigen processing 

outputs. The MHC representation was adopted from NetMHCpan pseudosequences and 

expanded by three residues to differentiate some HLA alleles. Although MHCflurry-2.0 

and some other tools use the EL test data in their training sets, we provide the results of 
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user-facing versions of each tool on all EL data, regardless of train or test data overlap, in 

Supplementary Table 5.

TransPHLA11 is a transformer-based model that adopts NetMHCpan pseudosequences for 

MHC encoding. This model encodes peptides and MHC pseudosequences using the original 

transformer encoding procedure17 before inferring the encodings via rectified linear unit 

(ReLU)-activated fully connected layers. TransPHLA was trained on the BA and EL data, 

although the BA data were binarized as binding or non-binding instances. We found that the 

final softmax activation of TransPHLA forces many outputs to precisely zero or one, which 

prevents the calculation of metrics, such as AUROC and AUPRC. Therefore, we removed 

the final softmax activation from TransPHLA to increase model output granularity. Because 

softmax is monotonic and none of the evaluation metrics rely on arbitrarily thresholding 

model outputs, removing the final softmax activation does not affect the evaluation metrics 

used in this study.

MHCnuggets1 comprises many allele-specific LSTM networks to handle arbitrary-length 

peptides for MHC-I and MHC-II. Transfer learning was used across the alleles to address 

data scarcity. MHCnuggets trained on qualitative BA, quantitative BA, and EL data. 

MHCnuggets trained on up to two orders of magnitude fewer data than the other methods.

MixMHCpred9,10,14 is built using positional weight matrices to extract epitope motifs for 

each allele in their training data for peptides of lengths 8 to 14. MixMHCpred-2.1 was 

used to evaluate EL performance because MixMHCpred-2.2 trained on the EL testing 

data. PRIME13,14 builds off MixMHCpred, training directly on immunogenicity, and was 

designed to infer the mechanisms of TCR recognition of pMHC complexes. Upon evaluating 

MixMHCpred versions 2.1 and 2.2 and PRIME versions 1.0 and 2.0, both of the methods’ 

newest versions offer substantial improvement over their predecessors.

HLAthena3 uses three single-layer neural networks trained on mass spectrometry data to 

predict presentation on short peptides with length in the range [8,11]. Each of the three 

networks trained on a separate peptide encoding: one-hot, BLOSUM62, and PMBEC40. 

In addition, the networks consumed peptide-level characteristics, and also amino acid 

physicochemical properties. The outputs of these networks were used to train logistic 

regression models that also accounted for proteasomal cleavage, gene expression and 

presentation bias. HLAthena also saw performance gains when considering RNA-seq as 

a proxy for peptide abundance.
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Extended Data

Extended Data Fig. 1 |. Visualization of BigMHC average attention to MHC encodings on the EL 
test data.
a Heatmap visualization of the average attention value for each position in the MHC 

pseudosequence on the EL testing dataset. The heatmap is stratified by MHC allele as rows, 

and separated by positive and negative testing instances. The position of each amino acid 

in the sequences from IPD-IMGT/HLA is provided at the bottom of each column. Darker 

values indicate MHC positions that are more influential on the final model output. The 

column of Differences depicts the Negatives values subtracted from the Positives values; 

thus, darker blue colours are most correctly discriminative whereas darker red attention 

values in this column highlight erroneous inferences. b Overlays of the Differences column 

from the training dataset on the MHC molecule using py3Dmol. MHC protein structure 

models are generated using AlphaFold.
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Extended Data Fig. 2 |. Visualization of the average MHC attention on the EL training data.
Heatmap visualization method of Extended Data Fig. 1a applied to the EL training data.
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Extended Data Fig. 3 |. Neoepitope immunogenicity prediction results stratified by neoepitope 
length.
PPVn, mean PPVn, AUROC, and AUPRC are calculated and visualized in the same 

manner as Fig. 4. Bars represent means and error bars are 95% CIs. Neoepitope prediction 

performance from Fig. 4 is stratified by neoepitope length: 8 (n = 184), 9 (n = 281), 10 

(n = 241), and 11 (n = 231).
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Extended Data Fig. 4 |. IEDB infectious disease antigen immunogenicity prediction results 
stratified by epitope length.
PPVn, mean PPVn, AUROC, and AUPRC are calculated and visualized in the same 

manner as Fig. 4. Bars represent means and error bars are 95% CIs. Infectious disease 

antigen prediction performance from Fig. 4 is stratified by epitope length: 8 (n = 112), 9 

(n = 1486), 10 (n = 555), and 11 (n = 192).
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Extended Data Fig. 5 |. Composition of all training and evaluation datasets.
Positive and negative instances were stratified by HLA loci in the first two columns and by 

epitope length in the latter two columns. Positives in the EL datasets are detected by mass 

spectrometry, whereas negatives in the EL datasets are decoys. Both positives and negatives 

in the immunogenicity datasets are experimentally validated by immunogenicity assays.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Experimental procedure.
The procedure includes presentation training, immunogenicity transfer learning and 

independent evaluation on multiple datasets. The circles labelled ‘Con’ indicate dataset 

concatenation. Input and database symbols are color-coded by data type: presentation 

(yellow), immunogenicity training and neoepitope evaluation data (red), and infectious 

disease (orange). Rectangles are the processes: removing data overlap (purple), choosing 

best models (pink), training (blue), and evaluation (green).
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Fig. 2 |. BigMHC network architecture and pseudosequence composition.
a, The BigMHC deep neural network architecture, where the BigMHC ensemble comprises 

seven such networks. Pseudosequences and peptides are one-hot encoded prior to feeding 

them into the model. The circles labelled ‘Con’ indicate concatenation and the circle 

labelled ‘×’ denotes element-wise multiplication. The anchor block consists of two densely 

connected layers that each receive the first and last four peptide residues along with the 

MHC encoding. The self-attention modules are single-headed attention units, which is 

analogous to setting the number of heads of a standard multi-headed transformer attention 

module to one. Prior to the final sigmoid activation, the output of the model is a weighted 

sum of the MHC pseudosequence one-hot encoding; the weights are referred to as attention. 

Because all connections except internal BiLSTM cell connections are dense, data are not 

bottlenecked until the MHC attention node maps the pre-attention block output to a tensor 

of the same shape as the one-hot-encoded MHC pseudosequences. b, A wide LSTM. Each 

cell unroll processes the entire MHC pseudosequence but only a fixed-length window of the 

peptide. Where a canonical LSTM uses a window length of one, BigMHC uses a window 

length of eight to capitalize on the minimum pMHC peptide length. c, The pseudosequence 

amino acid residue probability (represented by the color scale) per alignment position. Note 
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that not all amino acid residues are present for each position, as indicated by grey cells, 

so the one-hot encoding uses a ragged array, encoding only the residues present at a given 

position.
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Fig. 3 |. EL prediction results.
a, AUROC and AUPRC for each allele in the EL testing dataset. b, AUROC and AUPRC 

violin plots with embedded box-and-whisker plots stratified by allele and grouped by MHC 

locus. c, Mean AUROC and AUPRC per peptide allele length with 95% CI by MHC 

stratification. Baseline (random) classifier performance is 0.5 for AUROC and illustrated in 

grey for AUPRC. d, Mean AUROC and AUPRC and 95% CI stratified by MHC (n = 36) 

and both MHC and epitope length (n = 252) with two-tailed Wilcoxon signed-rank test 

adjusted P-values across methods.
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Fig. 4 |. Performance of immunogenicity predictions for all methods.
a,b, PPVn is calculated for each method as the fraction of neoepitopes (a) or infectious 

disease antigens (b) that are immunogenic within the top n predictions. c,d, The mean 

PPVn and 95% CI whiskers are reported for neoepitopes (c; n = 937) and infectious disease 

antigens (d; n = 2,345), summarizing the PPVn curves for all valid choices of n. The 

baseline PPVn, representing a random classifier, is illustrated as a horizontal line at 0.2113 

for neoepitopes and 0.7254 for infectious disease antigens. e–h, Mean AUROC (e,f) and 
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mean AUPRC (g,h) of all methods with 95% bootstrap CIs from n = 1,000 iterations for 

neoepitopes (e,g) and infectious disease antigens (f,h).
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Table 1 |

Method and feature comparison of BigMHC and prior works

BigMHC PRIME-2.0 MixMHCpred-2.2 TransPHLA PRIME-1.0 MixMHCpred-2.1 MHCflurry-2.0 NetMHCpan-4.1 MHCnuggets-2.4.0 HLAthena

Publication year 2023 2023 2023 2022 2021 2020 2020 2020 2020 2020

Training BA X X X X X

EL X X X X X X X X

IM X X X

Prediction BA X X X

EL X X X X X X X X

IM X X X

Optional extra 
context

X X

Retrainable X X X X

Transfer 
Learning

X

Open source X X X X X X X X X

Pan-allele X X X X X

Optional single-
GPU

X X X X

Optional multi-
GPU

X

Has webserver X X X X X X X

Min peptide 
Length

8 8 8 8 8 8 5 8 None 8

Max peptide 
Length

None 14 14 15 14 14 15 None None 11

Allows wild-type 
amino acids

X X X X

Cells with ‘X’ indicate that the method has the given feature. Training rows indicate the type of data on which models are trained, whereas 
prediction rows indicate what type of peptides the model explicitly predicts. Models that are provided with executables or source code for retraining 
on new data are considered retrainable. Pan-allele methods are those that encode the MHC sequence to generalize predictions across alleles rather 
than employing multiple allele-specific models. Optional extra context refers to any optional input, such as N-terminal and C-terminal flanking 
sequences or gene expression data. Models that can consume wild-type amino acids, are indicated in the final row. IM, immunogenicity.
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