Table 2.
Sr. No | Models | Training accuracy | Testing accuracy | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|---|
1 | Auto-Gluon | 94.09 | 88.23 | 0.95 | 0.74 | 0.91 |
2 | MLJAR | logloss 0.22* | 84.7 | 0.85 | 0.83 | 0.89 |
3 | Auto-Sklearn | 94.03 | 83.52 | 0.87 | 0.73 | 0.89 |
4 | TPOT | 93.69 | 76.47 | 0.91 | 0.44 | 0.75 |
5 | Decision tree classifier | 99.99 | 74.11 | 0.83 | 0.78 | 0.89 |
6 | H2O | 89.93 | 72.9 | NA* | 0.53 | 0.84 |
7 | Logistic regression | 89.05 | 65.88 | 0.78 | 0.53 | 0.77 |
8 | Random forest | 68.7 | 65.88 | 0.65 | 0.34 | 0.67 |
9 | kNN | 92.12 | 64.7 | 0.69 | 0.46 | 0.74 |
10 | SVM | 89.49 | 57.64 | 0.73 | 0.42 | 0.71 |
The values of AUC, Sensitivity, and Specificity are for the testing set. *Due to the technical limitation of the concerned autoML, the values could not be calculated.