Skip to main content
. 2023 Sep 28;14:1259958. doi: 10.3389/fneur.2023.1259958

Table 2.

Performance of various autoMLs and traditional ML algorithms for predicting mRS at discharge.

Sr. No Models Training accuracy Testing accuracy AUC Sensitivity Specificity
1 Auto-Gluon 94.09 88.23 0.95 0.74 0.91
2 MLJAR logloss 0.22* 84.7 0.85 0.83 0.89
3 Auto-Sklearn 94.03 83.52 0.87 0.73 0.89
4 TPOT 93.69 76.47 0.91 0.44 0.75
5 Decision tree classifier 99.99 74.11 0.83 0.78 0.89
6 H2O 89.93 72.9 NA* 0.53 0.84
7 Logistic regression 89.05 65.88 0.78 0.53 0.77
8 Random forest 68.7 65.88 0.65 0.34 0.67
9 kNN 92.12 64.7 0.69 0.46 0.74
10 SVM 89.49 57.64 0.73 0.42 0.71

The values of AUC, Sensitivity, and Specificity are for the testing set. *Due to the technical limitation of the concerned autoML, the values could not be calculated.