Table 3.
Sr. No. | Models | Training accuracy | Testing accuracy | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|---|
1 | Auto-Gluon | 93.12 | 83.95 | 0.96 | 0.75 | 0.85 |
2 | MLJAR logloss | 0.15* | 85.18 | 0.91 | 0.83 | 0.91 |
3 | Auto-Sklearn | 96.6 | 82.7 | 0.89 | 0.75 | 0.88 |
4 | TPOT | 96 | 76.54 | 0.9 | 0.7 | 0.85 |
5 | H2O | 70.67 | 72.8 | NA* | 0.63 | 0.83 |
6 | Decision tree classifier | 99.99 | 69.13 | 0.76 | 0.72 | 0.85 |
7 | Logistic regression | 91.33 | 72.83 | 0.89 | 0.69 | 0.84 |
8 | Random forest | 98.45 | 72.83 | 0.89 | 0.68 | 0.84 |
9 | kNN | 92 | 51.85 | 0.67 | 0.42 | 0.72 |
10 | SVM | 93.11 | 76.54 | 0.87 | 0.72 | 0.86 |
The values of AUC, sensitivity, and specificity are for the testing set. *Due to the technical limitation of the concerned autoML, the values could not be calculated.