Skip to main content
. 2023 Sep 28;14:1259958. doi: 10.3389/fneur.2023.1259958

Table 3.

Performance of various autoMLs and traditional ML algorithms for predicting mRS at 3 months.

Sr. No. Models Training accuracy Testing accuracy AUC Sensitivity Specificity
1 Auto-Gluon 93.12 83.95 0.96 0.75 0.85
2 MLJAR logloss 0.15* 85.18 0.91 0.83 0.91
3 Auto-Sklearn 96.6 82.7 0.89 0.75 0.88
4 TPOT 96 76.54 0.9 0.7 0.85
5 H2O 70.67 72.8 NA* 0.63 0.83
6 Decision tree classifier 99.99 69.13 0.76 0.72 0.85
7 Logistic regression 91.33 72.83 0.89 0.69 0.84
8 Random forest 98.45 72.83 0.89 0.68 0.84
9 kNN 92 51.85 0.67 0.42 0.72
10 SVM 93.11 76.54 0.87 0.72 0.86

The values of AUC, sensitivity, and specificity are for the testing set. *Due to the technical limitation of the concerned autoML, the values could not be calculated.