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What is grapevine red blotch disease and what are its symptoms?

Grapevine red blotch disease (GRBD) is a viral disease primarily affecting plants of Vitis spp. It
was first described by UC Davis researchers in the mid-2000s, when they observed unusual red
blotches on leaves (Fig 1A) and poor fruit ripening on “Cabernet Sauvignon” grapevines in
Napa Valley, California [1]. The symptoms initially suggested a new strain of grapevine leafroll
disease. Concurrently, similar symptoms were noticed in “Cabernet franc” vineyards in Lan-
sing, New York. By 2012, a virus with a unique genome structure was identified in symptom-
atic grapevines [2,3], and by 2018, grapevine red blotch virus (GRBV) was confirmed as the
causal agent of GRBD [4]. GRBV is taxonomically classified as a member of the Grablovirus
genus in the Geminiviridae family. The virus has a single-stranded, circular DNA genome
with 8 predicted bidirectional open reading frames (ORFs), 5 in the viral sense orientation and
3 in the complementary sense orientation. These ORFs encode proteins involved in various
functions, including encapsulation of the viral genome, cell-to-cell movement, and suppres-
sion of host defenses. It is striking that GRBV also follows a splicing strategy to increase its
coding capacity, with introns present in its genome, an observation relatively uncommon for
geminiviruses [5-7]. Genetic analyses revealed 2 distinct phylogenetic lineages of GRBV iso-
lates (Fig 1B) with up to 8.5% nucleotide sequence divergence [8]. Initially, the virus was
thought to be confined to North America, but it has since been discovered in various countries
worldwide, including the Republic of Korea, India, Switzerland, Italy, Mexico, France, Argen-
tina, and, most recently, Australia.

How does grapevine red blotch virus, the causative agent of GRBD,
impact grapevine cultivation and the wine industry?

GRBYV negatively affects grapevine cultivation and the wine industry. It impacts grape produc-
tion, particularly with regard to berry quality [9]. GRBV infects a range of grape varieties,
including red wine grape cultivars (e.g., Cabernet franc, Cabernet Sauvignon, Malbec, Merlot,
Mourvedre, Petit Verdot, Petite Syrah, Pinot noir, Zinfandel), white wine grape cultivars (e.g.,
Chardonnay, Riesling, Sauvignon blanc), interspecific hybrids, rootstocks, table grapes, and
Muscadine grapes. It also infects free-living vines in northern California and southern Oregon
but not in New York [10]. Symptoms in red grapevine cultivars include the eponymous red
blotches and marginal reddening on the leaves. In white cultivars, foliar disease symptoms are
less conspicuous, generally involving irregular chlorotic areas that may become necrotic late in
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Fig 1. (A) Typical symptoms in a GRBV-infected “Cabernet franc” plant, (B) a model for the translational regulation of GRBV v-sense
proteins [5], (C) the three-cornered alfalfa hopper (Spissistilus festinus) (courtesy of Victoria Hoyle), and (D) a coalescent tree for the
complete genomes of 163 grabloviruses. PrLV, Prunus latent virus; WvLV, wild Vitis latent virus; horizontal bars: 95% highest posterior
density (HPD) ranges for each node (shown with permission: Thompson, 2022).

https://doi.org/10.1371/journal.ppat.1011671.g001
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the season [9,11,12]. These symptoms resemble those of viruses associated with leafroll disease.
In addition to foliar symptoms, GRBV disrupts the primary and secondary metabolism of
grape berry maturation by repressing ripening pathways while activating early-development
metabolic routes. The virus notably reduces enzymes essential for flavonoid and anthocyanin
synthesis, leading to diminished anthocyanin accumulation but increased shikimic acid and
resveratrol levels. Moreover, GRBV alters key transcription factors and hormonal pathways,
like the abscisic acid, ethylene, and auxin pathways, affecting normal berry ripening. Symp-
toms predominantly manifest post-véraison, indicating that the disease onset aligns more with
the grapevine developmental stage than with viral accumulation [9,13]. GRBV threatens profit-
able and sustainable grape production, causing economic losses in the range of $2,231 to
$68,548 (USD) per hectare over a 25-year life span of a vineyard [14].

How is the GRBYV transmitted and are there any known vectors for
its transmission?

GRBV is graft-transmissible and primarily spread through infected propagative material. This
tends to be the most common source of contamination in new vineyards. Over time, an
increase in the number of diseased vines in certain vineyards, specifically in northern Califor-
nia and southern Oregon, suggests the involvement of a vector in the secondary spread of the
disease [10,11,15]. However, no such spread has been reported in New York, Switzerland,
France, or Italy. The three-cornered alfalfa hopper (Spissistilus festinus, Fig 1C) has been iden-
tified in greenhouse and vineyard experiments as a vector, transmitting GRBV from infected
to healthy vines [16]. Importantly, although S. festinus is not considered a pest of grapevine, it
has been shown to transmit GRBV between free-living vines, and between free-living vines
and Vitis vinifera “Cabernet franc” and vice versa [17]. The efficiency of GRBV transmission
by S. festinus seems to vary depending on the host, with greater efficiency observed with free-
living vines or the experimental herbaceous host, common bean, than with V. vinifera “Caber-
net franc” vines, possibly due to different host feeding behaviors of the hopper vector [17].
Furthermore, GRBV circulates within the body of the treehopper vector to be transmitted but
does not use the hopper as a host, although it is transferred from one development stage
through the molt to the next. Extended periods of exposure to an infected plant are necessary
for S. festinus to acquire the virus; for example, 10 days exposure to an infected grapevine, the
natural host, and 6 days exposure to an infected common bean were found to be required.
Studies in Californian vineyards indicate that S. festinus is a vector of epidemiological rele-
vance [16]. However, it should be noted that grapevine is not a preferred feeding host and not
a reproductive host of S. festinus, suggesting opportunistic interactions between the virus, its
vector, and the natural host.

What measures are recommended for the control and prevention of
GRBD in vineyards and why is it important for grapevine-growing
regions to monitor and verify the presence or absence of GRBV?

Despite analyses with existing related viruses suggesting divergence from its most common
recent ancestor occurred over 6,000 years ago [18], GRBV remained unnoticed in North
American vineyards probably due to its symptoms being mistaken for those of leafroll viruses
[2]. Given the epidemiological uncertainties of red blotch disease, the primary control mea-
sures currently advised are focused on the use of GRBV-free planting material [14]. In affected
vineyards, the removal of individual diseased vines is recommended if disease incidence is less
than 30%, while removing the entire vineyard is advised if disease incidence surpasses 30%.
Monitoring for GRBYV is vital not just for disease management at a vineyard or regional scale
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but also from a global perspective. Undetected GRBV can have broad implications, potentially

jeopardizing vineyards across continents. For this reason, including GRBV in certification and

quarantine measures is essential to ensure the health of global grapevine industries and prevent

the inadvertent spread of this covert virus [14].

What are emerging or open questions?

Despite substantial advances in understanding the biology of GRBV, several important questions
about its origin and spread remain unanswered. For example, Reynard and colleagues [19] sur-
veyed 816 Vitis spp. accessions from 50 countries and found GRBV in only 6 accessions, all of
which originated from the United States. Similarly, Bertazzon and colleagues [20] tested 596
grapevine samples in Northern Italy and found only 2 accessions infected with GRBV, “Queen”
of American origin and Italian “Incrocio Dalmasso VIII-5,” the latter’s infection source remain-

ing a mystery. Hence, it seems likely that GRBV originated in North America and spread globally
via the unintentional movement of infected cuttings. Evidence from symptomatic, GRBV-
infected leaves collected in Sonoma County, California in 1940 supports this hypothesis [21].

9.

10.

11.

12.

Despite these findings, several open questions warrant further investigation:

How widespread is the disease? There are concerns about potential spread wherever grapes
are grown, especially if propagative material was imported from California between 1920
and 2015.

How does GRBV damage grapevines?

Is GRBV the only causal agent of the disease? Grapevine diseases are typically caused by
multiple viruses, raising the question of whether other viruses could be involved in GRBD
—such as wild Vitis latent virus (WVLV).

Are there other vectors of the disease? This is a subject of ongoing research [22].
How much time is required for a vector to acquire the virus?

How long does the virus persist inside a vector? Preliminary experiments suggest that the
virus persists for at least 30 days within S. festinus.

How long does it take for a grapevine exposed to a viruliferous S. festinus to display disease
symptoms?

What are some refuge plants in a vineyard ecosystem, if V. vinifera is not a preferred feed-
ing and reproductive host?

What patterns can be observed in the vector’s movement across vineyard ecosystems?

What is the biological significance of the 2 phylogenetic clades of GRBV, given that isolates
of both clades are etiological agents of GRBD, cause similar disease symptoms, and are
transmitted by S. festinus?

Are there ways to reduce the disease’s impact beyond roguing, given that other cultural
responses have yet to prove satisfactory?

Can faster, less costly tests be developed for identifying the disease’s presence in vineyards?
Technologies such as LAMP [23] are currently being used in vineyards in Northern Cali-
fornia, but further advancements could enhance disease detection and management.

These unanswered questions underscore the intricate nature of GRBD and the challenges

faced in its prevention and management. Particularly pressing are concerns regarding the true
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extent of the disease’s spread, especially given the historical contribution of infected planting
stocks in primary infection, the existence of GRBV vectors other than S. festinus, and the
potential involvement of other viruses in GRBD’s causation. Furthermore, the quest for more
efficient virus detection methods, such as advanced versions of LAMP, highlights the indus-
try’s need for swift and cost-effective diagnostic measures. Continued research is paramount
to address these critical inquiries and ensure the sustainability and health of global grapevine
industries.
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