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The cellular complexity of the human brain is established via dynamic changes in gene expression throughout 
development that is mediated, in part, by the spatiotemporal activity of cis-regulatory elements (CREs). We si-
multaneously profiled gene expression and chromatin accessibility in 45,549 cortical nuclei across six broad 
developmental time points from fetus to adult. We identified cell type–specific domains in which chromatin 
accessibility is highly correlated with gene expression. Differentiation pseudotime trajectory analysis indicates 
that chromatin accessibility at CREs precedes transcription and that dynamic changes in chromatin structure 
play a critical role in neuronal lineage commitment. In addition, we mapped cell type–specific and temporally 
specific genetic loci implicated in neuropsychiatric traits, including schizophrenia and bipolar disorder. Togeth-
er, our results describe the complex regulation of cell composition at critical stages in lineage determination and 
shed light on the impact of spatiotemporal alterations in gene expression on neuropsychiatric disease. 
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INTRODUCTION 
Human brain development starts during the early stages of embryo-
genesis and extends postnatally through infancy, childhood, adoles-
cence, and young adulthood (1, 2). To produce distinct circuits in 
the human cortex, neurons are born in an immature state and 
undergo a variety of molecular and morphological changes as 
they differentiate, migrate, and establish synaptic networks. Envi-
ronmental and genetic risk factors can disrupt these highly orches-
trated developmental processes, potentially leading to 
neuropsychiatric disease (3, 4). Given the variable age of onset of 
different neurodevelopmental disorders, it is critical to examine 
the effect of risk factors across the full spectrum of human brain 
development. 

The developmental transition of cell lineages is highly orches-
trated by dynamic changes in gene expression, mediated in part 
by spatiotemporal patterns of transcription factor (TF) binding to 
cis-regulatory DNA elements (5–9). Over the past decade, there has 
been an extensive effort to explore changes in the transcriptome 
and, to some extent, epigenome in the developing brain (10). 

Initial studies on bulk tissue samples surveyed broad spatiotemporal 
trajectories of gene expression (5) as well as dynamics of underlying 
molecular regulators (11). Single-cell transcriptome analysis has ex-
panded our knowledge of cellular diversity and the molecular 
changes that occur during differentiation, migration, and synaptic 
network formation in the human cortex (6, 9, 12–15). Although 
single-cell transcriptomics have been the primary focus of research, 
a recent study (16) also performed epigenetic profiling to examine 
the gene expression regulatory mechanisms. However, there has 
been no simultaneous multi-omic (joint gene expression and chro-
matin accessibility) single-cell profiling in the developing brain. The 
multi-omic profiling has emerged as a means to decipher how com-
binations of TFs drive gene expression programs and to infer cell 
lineage transitions during development (17). Consequently, joint 
analysis of gene expression and chromatin accessibility at the 
single-cell level can provide a more complete understanding of 
the gene-regulatory dynamics associated with human brain 
development. 

To that end, we generated a transcriptomic and chromatin acces-
sibility data collection, profiling 45,549 cells using multi-omic 
single-nucleus RNA sequencing (snRNA-seq) and assay for trans-
posase-accessible chromatin with sequencing (ATAC-seq), across a 
broad developmental time frame that includes human fetal cortical 
plate, early postnatal, adolescent, and adult specimens. We explored 
gene-regulatory interactions by combining chromatin accessibility 
with gene expression within the same cells, and identified a subset 
of genes that are regulated by multiple nearby putative enhancers 
and have an important role in lineage determination during cortical 
development. To better understand the regulatory mechanisms 
driving neurogenesis, we performed pseudotime trajectory analysis 
and detected dynamic changes in chromatin accessibility preceding 
transcript production as a critical component of neuronal lineage 
commitment. We evaluated the enrichment of lineage-specific 
genes and chromatin accessible regions with genetic risk loci for 
neuropsychiatric disorders to explore their cellular ontogeny. 
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Together, our data present a valuable resource for understanding 
the gene-regulatory dynamics associated with human brain devel-
opment and for prioritizing targets for further study as well as the 
generation of therapeutics to treat neurodevelopmental disorders. 

RESULTS 
Single-nucleus gene expression and chromatin accessibility 
profiles revealed congruent cell types in the human cortex 
We used the 10X Chromium Single Cell Multiome ATAC + Gene 
Expression kit to simultaneously profile the transcriptome (via 
snRNA-seq) and chromatin accessibility (via snATAC-seq) in 12 
samples of human neocortex from six developmental periods 
(early mid gestation fetal, late mid gestation fetal, infancy, child-
hood, adolescence, and adulthood) (Fig. 1A and table S1). To 
confirm that the paired profiles were truly derived from the same 
cells, we first performed multi-omic profiling on two samples con-
taining mixtures of human and mouse cell lines, and asked whether 
the coassayed cells were consistently assigned to the same species 
labels. As expected, no doublets were identified and we observed 
that human and mouse reads were well separated on the basis of 
the chromatin and transcriptome profiles of filtered cells (fig. S1A). 

We then processed human neocortex samples, obtaining joint 
profiles of chromatin accessibility and gene expression from 
45,549 of 53,185 single nuclei that met quality control and filtering 
criteria (Materials and Methods). To assess the similarities and dif-
ferences between the two modalities, we first clustered the RNA-seq 
and ATAC-seq datasets independently (Fig. 1B and Materials and 
Methods). Broadly, both modalities revealed the same major neo-
cortical cell types and that cell identities assigned to RNA-seq– 
and ATAC-seq–derived cell types were highly congruent [Fig. 1C; 
adjusted Rand index (ARI) = 0.78]. 

Similar to previous multi-omic single-cell studies (17, 18), the 
independent modality analyses exhibit differences, primarily in 
the composition of cell populations in the fetal and postnatal 
stages (fig. S1B). On one hand, some cell types were broadly iden-
tified but not distinguishable in the ATAC-seq clustering results. 
For example, the medial ganglionic eminence (MGE)–derived and 
caudal ganglionic eminence (CGE)–derived inhibitory neuron sub-
types were not distinguished; various stromal cell types with smaller 
population sizes, including endothelial cells, pericytes, and vascular 
smooth muscle cells (VSMCs), were blended together. On the other 
hand, RNA-seq data showed insufficient power to identify progen-
itor cells, as evidenced by nearly 20% fewer detected radial glia (RG) 
and intermediate progenitor cells (IPCs) when compared with the 
ATAC-seq results (1427 for RNA-seq versus 1743 for ATAC-seq), 
indicating that active gene-regulatory dynamics at different devel-
opmental stages might be better reflected in chromatin accessibility 
than in the transcriptome (19). These results motivated us to antic-
ipate more comprehensive information about cell type classifica-
tions by leveraging both modalities. 

Joint analysis of multi-omic data improves cell type 
identification 
We next performed joint clustering on the paired modalities of the 
same single cells using a weighted-nearest neighbor (WNN) analy-
sis (18). WNN is an unsupervised method that generates an inte-
grated representation of cellular identity by learning the 
information content of each modality. The WNN analysis results 

were in agreement with those derived from either single modality 
(ARI = 0.88 for RNA-seq, ARI = 0.86 for ATAC-seq), while the in-
ferred relative modality weights varied across cell types (fig. S1C), 
reflecting the biological importance of each modality in determin-
ing cellular identity. The WNN analysis resulted in 28 clusters, in-
cluding all the major and minor cell types in the human brain 
cortex, which were further grouped into 15 cell types (Fig. 1D 
and Materials and Methods). We confirmed that each cluster com-
prised cells from different samples (fig. S1D), suggesting that taxon-
omy was not determined by donor or other technical covariates. 

Gene activity inferred by gene expression and chromatin acces-
sibility of known cell type–specific markers consistently confirmed 
cluster identity (Fig. 1F and Materials and Methods). Specifically, 
we found neural progenitor cells (NPCs) expressing PAX6, includ-
ing RG (one cluster; HES5 and VIM) and IPCs (one cluster; 
EOMES). We also identified three subtypes of excitatory neurons 
(SATB2, SLC17A7, and NEUROD2) representing different develop-
mental stages, one enriched for cells from early fetal samples (“EN- 
fetal-early”; four clusters), one for late fetal samples (“EN-fetal-late”; 
two clusters), and the third for postnatal samples (“EN”; two clus-
ters). Similarly, there were three subtypes of inhibitory neurons 
identified (GAD1 and GAD2), two of which represent MGE- 
derived (“IN-MGE”; one cluster; LHX6) and CGE-derived (“IN- 
CGE”; one cluster; VIP and ADARB2) subtypes in postnatal 
samples, while the remaining subtype was enriched in fetal 
samples (“IN-fetal”; one cluster). The types of neurons that are dis-
tinct between fetal and postnatal human brain samples support pre-
vious findings (20). In addition, we observed clusters of major glial 
cell types in the neocortex, including oligodendrocyte progenitor 
cells (OPCs; two clusters; OLIG1 and SOX10), astrocytes (three 
clusters; AQP4 and GFAP), oligodendrocytes (three clusters; 
MOBP and OPALIN), microglia (four clusters; PTPRC and 
CX3CR1), as well as endothelial cells (one cluster; CLDN5), peri-
cytes (one cluster; PDGFRB), and VSMCs (one cluster; COL1A2) 
(see the lists of differentially expressed genes and accessible peaks 
in tables S2 and S3). 

Sample-specific cell type composition varied markedly across 
developmental stages (Fig. 1E). In the four fetal samples, neuronal 
populations accounted for the vast majority of cells, whereas post-
natal samples had much higher proportions of nonneuronal cells. 
The changing patterns of cell type composition were in line with 
the results from a previous deconvolution study using multiple 
bulk and single-cell datasets (21). Moreover, we found that most 
of the neural progenitors (91%), including the transient cell types 
of RG and IPCs, were only detected in the two early fetal samples 
[gestational week (GW) 18 to 19; Fig. 1E and fig. S1E], consistent 
with the fact that the bulk of neurogenesis in the human cerebral 
cortex has occurred by midgestation (at GW20) and these progen-
itor cells start disappearing or transforming with the completion of 
cortical development (9, 22). Notably, the results derived from joint 
analysis identified every cell type that was found in either single- 
omic analyses while not losing power for detection of neural pro-
genitors (1736 by joint analysis versus 1743 by ATAC-seq alone 
versus 1427 by RNA-seq alone). 

Cis-regulatory associations between chromatin peaks and 
target genes revealed extensive regulatory interactions 
Multi-omic data offer the advantage to explore gene-regulatory in-
teractions by combining chromatin accessibility with gene  
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Fig. 1. Joint single-cell profiling of RNA expression and chromatin accessibility of human neocortex. (A) Frozen human cortical brain specimens from six devel-
opmental time points were homogenized and purified by FANS before tagmentation and partitioning into single nuclei using the 10x Genomics platform. Libraries for 
snRNA-seq and snATAC-seq were prepared, sequenced, and analyzed independently. (B) UMAP visualizations of single cells defined by RNA-seq and ATAC-seq data, 
respectively. Cell type annotations are derived from either modality independently. (C) Heatmap showing the concordance of cell memberships between the two clus-
tering results, measured in F1 score. (D) UMAP visualization of single cells defined by integrating two modalities using WNN analysis. Cell type annotations are deter-
mined on the basis of marker genes. (E) Proportions of cell types in each age group. (F) Dot plot showing selected marker gene expression and chromatin-derived gene 
activity across cell types.  
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expression within the same cells. Because of the sparsity of snATAC- 
seq and snRNA-seq data, we examined the relationships between 
the two modalities using pseudobulk aggregates rather than individ-
ual cells (17, 19, 23). We generated 500 pseudobulk samples by ag-
gregating RNA-seq and ATAC-seq signals from similar cell types 
(fig. S2A and Materials and Methods). 

First, we sought to globally quantify the relative contribution of 
proximal (i.e., promoter) and distal (i.e., enhancer) chromatin ac-
cessibility to transcriptional variance. We applied a variance com-
ponent model to the expression of each gene using the covariance of 
chromatin accessibility at promoter and enhancer regions as inputs, 
and corrected for donor and age effects by adding the inter-individ-
ual and inter–age group covariance to the model (Materials and 
Methods) (24, 25). This approach does not model the relationship 
of each gene to its own promoters or enhancers, but instead models 
the genome-wide relationships to all enhancers or promoters. Our 
results suggested that more than 80% of expression variance was at-
tributed to promoter and enhancer accessibility (Fig. 2A), indicat-
ing that transcriptional heterogeneity is broadly associated with the 
variation of chromatin accessibility. As a control experiment, we 
randomly permuted the dataset and, as expected, a minimal propor-
tion of variance (<1%) was explained by the epigenome in the shuf-
fled analysis (fig. S2B). There was a small group of genes (n = 56) for 
which >60% of the expression variance could be best explained by 
the inter–age group covariance. Gene ontology (GO) enrichment 
analysis of these genes revealed enrichment in DNA binding tran-
scriptional activators [false discovery rate (FDR) q value = 0.02; in-
cluding those that encode known TFs such as SOX11, SOX4, 
NEUROD6, and NR3C1], suggesting the temporal role for these 
TFs in human brain development. 

With the aim of linking a regulatory element to its target gene(s), 
we next used a correlation-based approach to examine the pairwise 
relationships between chromatin accessibility and gene expression 
(Materials and Methods). This led to the identification of 7291 sig-
nificant peak-gene associations [within ±500 kb around transcrip-
tion start sites (TSSs), Spearman correlation coefficient |ρ| > 0.3, 
FDR-adjusted P < 0.1; table S4], involving 3082 unique genes. 
The majority (97.6%) of these links included peaks that were posi-
tively correlated with gene expression (fig. S2C). As expected, these 
associations were enriched in the vicinity of TSSs, and the correla-
tions decayed exponentially with distance (Fig. 2B). Nevertheless, 
only 22% of the peak-gene links occur between an ATAC-seq 
peak and the nearest gene, indicating that most predicted regulatory 
interactions skip at least one gene along the linear genome (Fig. 2C), 
demonstrating the shortcomings of purely applying the “nearest 
neighbor gene” rule to define regulatory targets (24, 26, 27). The 
expression of most genes is, on average, correlated with at least 
two different peaks, while most peaks (84%) are predicted to inter-
act with a single target gene (Fig. 2C). To validate the set of identi-
fied peak-gene links, we used the “activity-by-contact” (ABC) 
approach (28) (Materials and Methods) and compared them with 
the enhancer-promoter (E-P) interactions that were previously 
derived from the matched bulk brain tissues (26). We observed sig-
nificantly higher ABC scores in the group of E-P interactions over-
lapping with the peak-gene links (P < 2.2 × 10−16 by Wilcoxon test; 
fig. S2D), thereby providing further validation. 

Cell type–specific cis-regulatory domains determine cell 
lineage during cortical development 
To investigate the specificity of peak-gene associations across cell 
types and developmental stages, we assigned each interaction to 
the cell type with the highest average gene expression and chromatin 
accessibility. Peak-gene associations were strongest in the early de-
velopmental stages, while they became diminished in more differ-
entiated stages (fig. S2E). Specifically, RG-specific peak-gene links 
were the strongest across all cell types; in the group of neurons 
(either excitatory or inhibitory), which consists of samples from 
fetal to postnatal stages, we observed a clear weakening pattern of 
the associated links with developmental age. We defined a 
“pseudo-age” for each cell type (Materials and Methods) and con-
firmed a significantly negative relationship with the median link 
strengths (Pearson’s r = −0.57, P = 0.026; fig. S2E). 

Despite the fact that most genes involved in peak-gene links were 
associated with one or two peaks, a subset of genes were associated 
with a relatively large number of peaks, suggesting orchestrated cor-
egulation of the target gene activity by multiple factors that act upon 
a broad chromatin domain. In total, we identified 364 domains of 
regulatory chromatin (DORCs) (17) in which there are at least five 
significant peak-gene links associated with the same gene (Fig. 2D 
and Materials and Methods). In previous studies, it has been shown 
that DORCs are often associated with super-enhancers—large clus-
ters of enhancer regions that are known to play key regulatory roles 
in defining cell identity and are affected across multiple diseases (29, 
30). Consistent with these studies, we found that DORCs identified 
here were also prominently overlapped with super-enhancers, 
which were identified by using neuronal and glial chromatin immu-
noprecipitation sequencing (ChIP-seq) H3K27 acetylation data 
from human brain samples (P = 8.3 × 10−68 by hypergeometric 
test; table S5) (26). For example, the DORC of the DSCAML1 
gene contained 27 peak-gene associations. The epigenetic dysfunc-
tion of this super-enhancer has been implicated in Alzheimer ’s 
disease (AD) pathology (31). 

Motivated by a previous study (17), we hypothesized that 
DORCs are highly cell type specific. We defined a DORC score 
for each gene as the aggregated normalized counts from all peaks 
significantly associated with that gene (Materials and Methods). Co-
variation of chromatin accessibility and gene expression distin-
guished the identified cell types in both RNA-seq and ATAC-seq 
data (Fig. 2E), suggesting the cell type specificity of DORC-gene 
links. GO analysis of the genes involved in the top decile of the 
peak-gene correlations in DORCs revealed strong enrichment of de-
velopmental processes in both neurons and glia (Fig. 2F), highlight-
ing the important role of DORCs in cell fate determination during 
cortical development. Through comparison of neurons from differ-
ent developmental stages (table S6), we found a higher number of 
DORCs specific to earlier stages (e.g., fetal versus postnatal and 
early fetal versus late fetal), suggesting a role in regulating early neu-
rodevelopmental processes. 

Chromatin priming precedes gene expression during 
neuronal lineage commitment 
Having identified various neuronal subtypes from early fetal corti-
cal plate to adult cortical samples, we next used the paired multi- 
omic single nuclei profiles to infer the developmental dynamics of 
gene regulation throughout corticogenesis and neuron differentia-
tion. We performed a pseudotime trajectory analysis by focusing on  
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the neuronal populations (including RG, IPC, EN-fetal-early, EN- 
fetal-late, EN, IN-fetal, IN-MGE, and IN-CGE) and by anchoring 
the starting point in the RG cluster (Materials and Methods). Dif-
ferent cell types were properly laid on the inferred trajectories in 
terms of their developmental stages (Fig. 3A and fig. S3A), with 
the fetal sample–specific neuronal populations located between 
the initial progenitor populations and the mature neurons from 
postnatal samples (i.e., EN, IN-MGE, and IN-CGE). The develop-
mental trajectories separated into EN lineage and IN lineages 
shortly after the starting point, and the IN lineage later split into 
IN-MGE and IN-CGE subtypes (Fig. 3B). The respective numbers 
of cells assigned to each of the three lineages are as follows: EN 
lineage (14,146), IN-MGE lineage (5728), and IN-CGE 
lineage (4904). 

We repeated the peak-gene association analysis focusing on the 
neuronal populations (Materials and Methods), resulting in 1638 
significant associations involving 930 unique genes (table S7). Sim-
ilarly, we defined 55 neuron-specific DORCs (associated with at 
least five peaks), which strongly overlapped with the DORCs that 
we defined using all cells (P = 5.8 × 10−51, by hypergeometric 
test). GO analysis of the genes involved in these DORCs revealed 
a significant enrichment for neuron differentiation pathways as 
well as the overrepresentation of DNA binding TFs, either activators 
or repressors (table S8). 

Given the potentially tight regulation of DORC target genes by 
dynamic changes in chromatin accessibility during lineage commit-
ment, we sought to explore whether chromatin accessibility at 
DORCs precedes gene expression. For each of the DORCs, we 

Fig. 2. Global and local characterization of cis regulation patterns. (A) Variance component analysis showing chromatin accessibility explains variation in gene 
expression. Genes, in columns, are sorted by the decreasing proportion of variance explained by the epigenome (enhancers and promoters), with the mean-variance 
explained by each component shown in parenthesis. (B) Distribution of the distance from each peak to the TSS of the linked gene. (C) Histograms showing (from left to 
right) distribution of the number of peaks significantly linked per gene; distribution of the number genes significantly linked per peak; distribution of the number of genes 
“skipped” by a peak to reach its linked gene. (D) Number of significantly linked peaks for each gene, with genes sorted in increasing order. (E) Heatmap showing chro-
matin accessibility and gene expression of the linked peak-gene pairs (rows, left: aggregated peak accessibility, right: linked gene expression) in the DORCs across 500 
pseudobulk samples (columns, sorted in terms of cell types); values are z score normalized. (F) Top 15 GO enrichment results for genes linked to DORCs.  
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quantified a “residual” by subtracting the corresponding gene ex-
pression value from the DORC score (Materials and Methods) 
(17). We observed that the residuals were typically positive (46 of 
55) across lineages (Fig. 3C), which reflected the lineage priming 
of cis-regulatory elements, as the DORCs generally became accessi-
ble before onset of their associated gene’s expression. Furthermore, 
we found that the lineage-priming pattern became more robust for 

DORCs with a higher number of peaks, indicating higher confi-
dence in the chromatin accessibility–primed states. Overall, these 
findings suggest that dynamic changes in chromatin accessibility 
are a critical component of neuronal lineage commitment, similar 
to previous observations during hair follicle differentiation (17). 

Fig. 3. Trajectories of gene regula-
tion during neuronal develop-
ment. (A) Trajectories identified 
within the neuronal subpopulations, 
shown on the RNA gene expression 
coordinates (root node was annotat-
ed as “1”; cells were colored for an-
notated cell types). (B) Inferred 
pseudotime along the lineages for 
excitatory neurons (“EN-lineage”) and 
inhibitory neurons (“IN-lineage”), re-
spectively. (C) Average residuals 
between chromatin accessibility and 
gene expression versus the number 
of significantly linked peaks for each 
gene involved in the DORCs iden-
tified within the neuronal popula-
tions. Positive and negative residuals 
are colored in red and gray, respec-
tively. (D) Heatmap showing gene 
expression and DORC chromatin ac-
cessibility of the peak-gene links that 
significantly varied along the pseu-
dotime for the EN lineage. Rows 
(genes) are clustered using k-means 
clustering (k = 4), and columns (cells) 
are ordered by pseudotime. The top 
five most differentially expressed 
genes in each cluster (km1/2/3/4) are 
annotated. (E) Respective GO enrich-
ment of genes represented in the 
four peak-gene link clusters of the EN 
lineage. (F) P values of TF motif en-
richment in km2 peaks plotted 
against Spearman correlation of TF 
motif activity with CUX2 DORC score. 
(G) TF motif enrichment of peaks 
represented in the peak-gene link 
clusters of the EN lineage. (H) Lineage 
dynamics of NEUROD1 motif activity 
and expression precede CUX2 DORC 
chromatin accessibility and gene ex-
pression in the EN lineage, from the 
beginning to the end of the km2 
stage, using the min-max normalized, 
smoothed values over pseudotime.  
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NEUROD1 induces CUX2 chromatin priming and gene 
expression during development of excitatory neurons 
We next looked deeper into the peak-gene links on the EN lineage, 
which started from neuronal progenitors, including RGs and IPCs, 
and then differentiated into excitatory neuron subtypes specific to 
different developmental stages sequentially, from early fetal to late 
fetal and then to postnatal (Fig. 3, A and B). We found that the ex-
pression levels of over 87% of the linked genes (811 of 930) varied 
significantly along the pseudotime trajectory (Materials and 
Methods). We then grouped these genes into four clusters using 
k-means (km) clustering, each of which corresponding to a different 
developmental period (Fig. 3D). GO enrichment analysis on this 
gene set revealed the unique biological activities occurring during 
different time periods (Fig. 3E). Specifically, at the beginning of 
the trajectory (“km1”), the linked genes were enriched in processes 
relating to cell fate specification, timing regulation of cell differen-
tiation, and neural precursor cell proliferation. In the next early fetal 
period (km2), the peak-gene interactions became associated with 
neuron migration, morphogenesis, synapse organization, and axo-
nogenesis. Afterward, in the late fetal (km3) and postnatal stages 
(km4), the excitatory neurons acquired the ability for neurotrans-
mitter transport and regulation, indicating cell maturation. 

The dynamic regulatory activities during the developmental 
transition of cell lineages is highly orchestrated by the spatiotempo-
ral patterning of TFs. To identify TFs that control these dynamic 
regulatory activities, we performed TF motif enrichment analysis 
in the different clusters (Materials and Methods). TF motifs with 
an established function in cell differentiation and development 
were enriched in the earliest stage, including for EN1, which has 
been implicated as a crucial mediator of dopaminergic subset spec-
ification (32), and HESX1, which is encoded by a hub gene involved 
in neural commitment (Fig. 3G and table S9) (33). In the 

intermediate stages (including early and late fetal), the associated 
peak-gene links were more enriched in motifs of neuronal TFs 
such as NEUROD1, NEUROG2, and BHLHE22, suggesting that 
the most active neurogenesis processes occur during these particu-
lar developmental periods. Fewer TF motifs were found enriched in 
the last postnatal peak-gene link cluster, including cell cycle regula-
tors such as E2F2. 

Cut-like homeobox 2 (CUX2) was identified as a neuron-specific 
DORC gene, regulated by the highest number (n = 21) of nearby 
putative enhancers (Fig. 3C), and as a marker for the second earliest 
stage in the EN lineage (km2; Fig. 3D). This is consistent with the 
well-known function of CUX2 as a neuron-specific TF regulating 
dendritic branching and synapse formation (34). Next, we investi-
gated which TF(s) might activate CUX2 enhancers by leveraging the 
correlation between the DORC score of CUX2, the TF motif activity 
(inferred from ATAC-seq), and the TF motif enrichment for the 
km2 cluster (Materials and Methods). The binding motif for the 
TF NEUROD1 was strongly enriched in km2 chromatin accessible 
regions, and NEUROD1 activity was highly correlated with the 
CUX2 DORC chromatin accessibility state (Fig. 3F). NEUROD1 is 
essential for eliciting the neuronal development program and has 
the ability to reprogram other cell types into neurons (35). We 
next ordered single cells based on the inferred pseudotime for the 
km2 stage and identified a clear pattern where the activity of 
NEUROD1 precedes the CUX2 DORC chromatin state, followed 
by CUX2 gene expression (Fig. 3H). In addition, we found that, 
as NEUROD1 activity decreases, the rate of CUX2 expression 
slows down accordingly. These results suggest that NEUROD1 is 
likely a key TF during early neurogenesis (35) to induce CUX2 
DORC accessibility followed by CUX2 transcription. 

Fig. 4. Assessment of the relationship between NEUROD1 and CUX2 in differentiating NPCs. (A) Maximum intensity projection images (from 200-nm z stacks 
obtained at ×63 magnification) of CUX2 (red) and NEUROD1 (green) expression in NPCs 2 weeks after differentiation treated with scrambled gRNA, a NEUROD1- 
specific gRNA, and a CUX2-specific gRNA. Charts show frequency distributions of RNAscope dots per nucleus for CUX2 and NEUROD1 in cells treated with scrambled 
gRNA (n = 444 cells), NEUROD1-specific gRNA (n = 111 cells), and CUX2-specific gRNA (n = 183 cells). % ON corresponds to % of nuclei with detectable RNAs. (B) Violin 
plots of nuclear RNA frequency distributions in all conditions. A two-sided Wilcoxon rank sum test with continuity correction was performed. The center line (yellow) 
indicates the median, the box shows the interquartile range, and whiskers indicate the highest/lowest values within 1.5× the interquartile range.  
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Repression of NEUROD1 expression in cultured NPCs 
suppresses CUX2 expression 
We sought to validate the predicted causal relationship between 
NEUROD1 and CUX2 by performing CRISPRi in cultured NPCs 
followed by RNAscope to directly image mRNAs in single cells. 
We transfected guide RNAs (gRNAs) against both NEUROD1 
and CUX2 into NPCs stably expressing dCas9-KRAB and then dif-
ferentiated the NPCs using an established protocol (36). In the neg-
ative control experiment, in which cells were treated with a 
scrambled gRNA, we observe that CUX2 is widely expressed, 
albeit at low numbers per cell, whereas NEUROD1 expression is re-
stricted to a smaller subset of cells but with a broader range of 
mRNA numbers per cell, including a fraction displaying strong 
bursts of transcription (Fig. 4A). We quantified the frequency dis-
tribution of fluorescent dots per nucleus for both genes at week 2 
after differentiation and found that NEUROD1 expression is more 
variable than CUX2 across the population, as measured by the fano 
factor [(variance/mean), CUX2 = 1.78, NEUROD1 = 
17.02] (Fig. 4B). 

Inactivation of NEUROD1 led to a down-regulation of 
NEUROD1 mRNA compared to the control (P = 0.0002 by negative 
binomial test), while CUX2 transcription is completely suppressed 
(Fig. 4, A and B). Given that around 80% of nuclei in the control 
NPCs do not show transcription of NEUROD1, the NEUROD1 pro-
moter may be tightly repressed for long periods but allows for in-
frequent, strong bursts of transcription. In turn, inactivation of 
CUX2 with CRISPRi led to down-regulation of CUX2 mRNA and 
a decrease in the proportion of cells expressing CUX2 compared to 
control (P = 0.0006 by negative binomial test). Although we only 
achieved partial suppression of CUX2, this led to an apparent 
(albeit insignificant, P = 0.223 by negative binomial test) increase 
in expression of NEUROD1, suggesting that CUX2 may either di-
rectly or indirectly regulate NEUROD1, an observation that is con-
sistent with previous studies implicating CUX2 as a negative 
regulator of gene expression (37), including in cortical neurons 
(34, 38). Together, our data suggest that although NEUROD1 is ex-
pressed infrequently, it is required to maintain ongoing transcrip-
tion of CUX2. 

Leveraging cell type–specific genes and peaks in 
heritability analysis allows dissociation of risk loci for 
neuropsychiatric traits 
Despite the notable progress in exploring the genetic causes of neu-
ropsychiatric disorders, their underlying molecular mechanisms are 
still not fully understood (39). To reveal whether disorder-associat-
ed variants are enriched in a particular cell type or developmental 
stage, we used linkage disequilibrium (LD)–aware approaches (Ma-
terials and Methods) (40, 41) to assess the overlap between a collec-
tion of relevant genome-wide association studies (GWASs) and 
lineage-defining genes and chromatin peaks derived from our 
multi-omic single-cell data. By analyzing 9 neuropsychiatric and 3 
unrelated control traits in 15 cell types, we identified 33 and 28 sig-
nificant associations in cell type–specific chromatin accessibility 
and transcriptome data, respectively (Fig. 5A and tables S10 and 
S11). We observed a high overlap of significant cell type—GWAS 
trait pairs (20 of 41 of significant pairs are shared; Spearman corre-
lation of all pairs ρ = 0.62), suggesting that both modalities report 
reliable and informative associations. 

Consistent with previous studies, schizophrenia (SCZ), bipolar 
disorder (BD), attention deficit hyperactivity disorder (ADHD), 
and major depressive disorder (MDD) are enriched in multiple 
neuronal subtypes (42, 43). However, to our knowledge, our 
results identified several associations that have not yet been de-
scribed by genetic data (see Discussion), including oligodendro-
cytes for Tourette syndrome (TS), astrocytes for obsessive- 
compulsive disorder (OCD), OPCs for anxiety, and fetal neurons 
for anorexia nervosa (AN). For nonpsychiatric, immune-related 
traits, including AD, ulcerative colitis, and inflammatory bowel 
disease, we only observed enrichment for microglia, thus further 
strengthening the credibility of our results. To dissect the temporal 
specificity in neuropsychiatric diseases, we compared fetal and adult 
neuronal enrichment using both epigenome and transcriptome 
data. We found a high concordance between enrichment of both 
assays, allowing us to classify ADHD, AN, and autism as being 
more strongly associated with fetal neuronal stages, while, for TS, 
BD, SCZ, and MDD, we found an equal contribution of both fetal 
and adult neuronal stages (Fig. 5B). Analysis of rare exome (44, 45) 
and copy number variants (46, 47) for SCZ and autism identified 
similar cell types (fig. S4), further supporting the mechanistic con-
vergence of common and rare risk variants across neurodevelop-
mental disorders. In addition, de novo disruptive and benign 
variants identified by whole-genome sequencing of autism cases 
and controls were enriched with DORCs and epigenome markers 
(Materials and Methods and table S13) associated with differentia-
tion of late fetal excitatory neurons (table S13), suggesting the highly 
negative impact of mutations within regulatory regions with impor-
tant roles in development. 

We next aimed to nominate the candidate functional genes for 
disease-associated loci (Fig. 5D and Materials and Methods). First, 
we collected a set of 491 genome-wide significant variants associat-
ed with neuropsychiatric traits (P < 5 × 10−8) and extended it to 
16,005 variants based on the presence of high LD (R2 ≥ 0.8). We 
overlapped putative disease-relevant variants [index single-nucleo-
tide polymorphisms (SNPs) and LD buddies] with the peaks that 
demonstrate significant peak-gene associations to pinpoint at least 
one gene under regulation for 97 genome-wide significant loci 
(table S12). Of 152 genes mapped to those 97 loci, 7 were linked 
to two disease traits simultaneously and 17 genes were shown to 
have significantly altered expression along the pseudotime trajecto-
ry of neuronal lineage specification (km1/2/3/4) (Fig. 5C). While 
the original GWAS usually nominate several plausible gene 
targets for each disease-relevant locus, their prioritization is 
mostly based on imprecise distance-based annotation. Using our 
approach, we were able to refine their predictions and, in some 
cases, nominate target genes not previously associated with the 
disease. One example of a replicated finding is the association of 
DCLK3 (encoding a neuroprotective kinase) with both SCZ and 
BD, which was previously observed by transcriptome-wide associ-
ation study (TWAS) (48) and expression quantitative trait loci 
(eQTL) approaches (Fig. 5E) (49). Notably, this association is 
derived from the overlap of putative disease-relevant variants with 
two distinct peaks, both predominantly accessible in adult excitato-
ry neurons.  
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DISCUSSION 
We generated multimodal chromatin accessibility and gene expres-
sion data in the human cortex across six broad developmental time 
points from fetus to adult. Joint analysis of 45,549 individual nuclei 
facilitated the identification of genes and cis-regulatory elements 
with fundamental roles in lineage determination. Our results are 
consistent with a recent study implicating chromatin accessibility 

as a predetermining factor of lineage commitment in murine skin 
cells (17). By using the covariance of chromatin accessibility at pro-
moter and enhancer regions as inputs, we show that most expres-
sion variance was attributed to promoter and enhancer accessibility, 
indicating that gene expression is broadly associated with chromatin 
accessibility. Similar results have been reported in human blood 
cells following immune stimulation (50). Moreover, through 

Fig. 5. Mapping of risk variants associated 
with neuropsychiatric traits to causal 
genes using single cell–derived marker 
genes and peaks. (A) Heritability enrich-
ment of brain cell types in neuropsychiatric 
disorders and unrelated control traits. Heat-
maps highlight significant colocalization of 
GWAS-derived common genetic variants 
with cell-specific open chromatin regions in 
snATAC-seq data (left) and cell marker genes 
in snRNA-seq data (right) (Materials and 
Methods). “*”: significant after correction 
across all tests (FDR < 0.05). (B) Comparison 
between fetal and adult neuronal signals in 
selected neuropsychiatric disorders (traits 
need to be enriched in either fetal or adult 
category; therefore, OCD and anxiety were 
not involved). Fetal and adult neurons are 
represented by peak sets/gene sets com-
piled from unions of the top 2500/500 most 
cell-specific peaks/genes from each fetal 
neuron (i.e., EN-fetal-early, EN-fetal-late, and 
IN-fetal) and adult neuron (i.e., EN, IN-CGE, 
and IN-MGE) category. To calculate the ratio 
“fetal neurons/adult neurons” (y axis), we 
used LDsc regression coefficients (snATAC- 
seq) and MAGMA beta coefficients (snRNA- 
seq); joint score is an average of snATAC-seq 
and snRNA-seq scores. (C) Subset of candi-
date causal genes for risk variants that either 
are prioritized in two disorders or show sig-
nificantly altered expression along the de-
velopmental trajectory of the neuronal 
lineage (km1/2/3/4; full list of causal genes in 
table S12). (D) Schematic of the overall 
strategy to connect risk variants associated 
with neuropsychiatric disorders to their 
causal genes (Materials and Methods). (E) 
Normalized snATAC-seq–derived pseudo-
bulk tracks demonstrating the complex cell- 
specific regulation of the DCLK3 gene that is 
predicted to be the causal gene for SCZ and 
BD GWAS risk variants (rs75968099 and 
rs75968099).  
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comparison of neurons from different developmental stages, we 
found that there were more DORCs specific to earlier stages (e.g., 
fetal versus postnatal and early fetal versus late fetal), suggesting a 
role for chromatin reorganization in regulating early neurodevelop-
mental processes. 

The temporal nature of our data allowed us to examine neural 
trajectories across four broad developmental phases. The first of 
these contains genes involved in cell fate specification, differentia-
tion, and NPC proliferation. The second cluster specifies genes in-
volved in neuron migration, morphogenesis, synapse organization, 
and axonogenesis, while the third and fourth clusters contain genes 
associated with neurotransmitter transport and regulation. As an 
example, we chose to focus on CUX2, a TF involved in synaptogen-
esis that is expressed in the second cluster. CUX2 expression coin-
cides with a number of nearby open chromatin regions containing 
putative enhancers, among which are binding sites for NEUROD1, 
a well-known pioneer factor involved in neuronal cell fate specifica-
tion. It has recently been shown that overexpressing NEUROD1 in 
astrocytes can convert them into neurons, suppressing the astroglial 
gene expression program while up-regulating neuronal genes, in-
cluding CUX2 (51). Thus, we hypothesized that NEUROD1 might 
activate CUX2 during early neural development and subsequently 
showed that the inactivation of NEUROD1 in cultured NPCs led 
to a complete suppression of CUX2. 

In recent years, large-scale GWAS have identified numerous, 
broadly defined loci associated with increased risk for a range of 
brain-related phenotypes. Concurrent technological advances, in 
particular, those that facilitate examination of tissues at the 
single-cell level, have, in turn, significantly improved our under-
standing of the genetic basis of brain development and function 
(6, 9, 12–15). Previous single-cell studies, however, focused on sep-
arate modalities performed independently. By assaying the epige-
nome and gene expression in parallel in individual cells, we 
sought to better understand the role played by the regulome 
during brain development and to more accurately pinpoint causa-
tive risk variants within GWAS loci. Lineage-specific genes and 
chromatin accessible regions are enriched for risk loci associated 
with neuropsychiatric traits and implicate 152 putative risk genes 
in a range of disorders, including SCZ, BD, ADHD, and MDD. 
SCZ, BD, ADHD, and MDD are enriched in multiple neuronal sub-
types, consistent with previous studies (16, 42–43). The spatiotem-
poral resolution of our data allowed us to categorize common risk 
variants from ADHD, AN, and autism as more strongly associated 
with fetal neuronal stages compared to TS, BD, SCZ, and MDD. 
Despite the fact that rare variants are thought to contribute only 
marginally toward explaining missing heritability and population- 
level risk (52), we found concordant patterns of enrichment in cell 
type and developmental age between rare and common risk variants 
for autism and SCZ, suggesting that they are at least partially mech-
anistically convergent (44, 52, 53). 

Beyond already known associations between various cell types 
and diseases, our results identified several associations that, to our 
knowledge, have not been described previously. First, TS was found 
to be enriched in oligodendrocyte cells in both epigenome and tran-
scriptome assays. The critical role of oligodendrocytes is supported 
by tract-based spatial statistics measurements of TS patients, indi-
cating a reduced fractional anisotropy that reflects deficits in axonal 
myelination (54). Second, OCD was enriched in astrocytes. While 
the literature supporting this relationship is more established for the 

striatum (55), the involvement of the prefrontal cortex was previ-
ously studied through an astrocyte-specific deletion of glutamate 
transporter 1 (56), resulting in OCD-like behavior. Third, anxiety 
was enriched in OPCs, further implicating the well-established 
role for aberrant myelination in neuropsychiatric disorders (57). 
This relationship was emphasized by a recent study linking 
anxiety-like behavior in a mouse model of cuprizone-induced de-
myelination, which displays impaired OPC differentiation (58). 
Last, we report the enrichment of fetal neurons in AN. While this 
disorder phenotypically manifests in adolescence or early adult-
hood, a number of studies suggest substantial changes during 
earlier stages of development (59, 60). Furthermore, significant dif-
ferences in gene expression were previously measured between AN 
case and control subjects using human induced pluripotent stem 
cell (hiPSC)–derived cortical neurons (61), which are known to re-
semble fetal, rather than adult, brain cells (62). 

In conclusion, we generated a dataset of gene expression and 
chromatin accessibility in single nuclei from six developmental 
time points that provides additional insights into cell fate determi-
nation in the human cerebral cortex and on the molecular basis of 
neuropsychiatric disease. We present our data as an interactive web 
browser that can be used by the scientific community to explore 
spatiotemporal alterations in gene expression in development 
and disease. 

MATERIALS AND METHODS 
Description of postmortem brain samples 
Brain samples for this study were selected on the basis of age (six age 
groups) and sex (one male and one female in each age group). Fetal 
brain samples were collected from deidentified prenatal autopsy 
specimens without neuropathological abnormalities at the Icahn 
School of Medicine at Mount Sinai. The cortical plate was dissected 
fresh from the anterior frontal lobe of anatomically intact brain 
specimens. Young and old brain samples were accessed through 
the National Institutes of Health NeuroBioBanks at the University 
of Miami Brain Endowment Bank and Mount Sinai Brain Bank, re-
spectively. All neuropsychological, diagnostic, and autopsy proto-
cols were approved by the respective Institutional Review Boards. 
No sample size calculation was performed. For further processing, 
we randomized brain samples for sex and age. 

Isolation and FANS 
All buffers were supplemented with ribonuclease inhibitors 
(Takara). Four samples were processed in parallel. Twenty-five mil-
ligrams of frozen postmortem human brain tissue was homogenized 
in cold lysis buffer [0.32 M sucrose, 5 mM CaCl2, 3 mM magnesium 
acetate, 0.1 mM EDTA, 10 mM tris-HCl (pH 8), 1 mM dithiothrei-
tol (DTT), and 0.1% Triton X-100] and filtered through a 40-μm cell 
strainer. The flow-through was underlaid with sucrose solution [1.8 
M sucrose, 3 mM magnesium acetate, 1 mM DTT, and 10 mM tris- 
HCl (pH 8)] and centrifuged at 107,000g for 1 hour at 4°C. Pellets 
were resuspended in phosphate-buffered saline (PBS) supplement-
ed with 0.5% bovine serum albumin (BSA). Before fluorescence-ac-
tivated nuclear sorting (FANS), volumes were brought up to 250 μl 
with PBS and 7-Amino-Actinomycin D (7AAD) (Invitrogen) was 
added according to the manufacturer’s instructions. 7AAD-positive 
nuclei were sorted into tubes precoated with 5% BSA using a FAC-
SAria flow cytometer (BD Biosciences).  
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Multiome ATAC-seq and gene expression library 
preparation 
Following FANS, nuclei were subjected to two washes in 200 μl of 
wash buffer (10x Genomics), after which they were resuspended in 
30 μl of nuclei buffer (10x Genomics) and quantified (Countess II, 
Life Technologies). Eight thousand nuclei from each sample were 
subjected to the Chromium Next GEM Single-Cell Multiome 
ATAC-seq and Gene Expression protocol (10x Genomics) accord-
ing to the manufacturer ’s instructions. Resulting libraries were 
quantified using the KAPA library quantification kit (KAPA Biosys-
tems), and fragment sizes were determined by Tapestation 
(Agilent). All libraries were sequenced at New York Genome 
Center using the Novaseq platform (Illumina), obtaining 100– 
base pair (bp) paired-end reads. Individuals generating libraries 
were not blinded. We did not exclude any preselected brain 
sample or generated library. We generated one library for each 
brain sample. 

Data processing and quality control 
Fastq alignment, filtering, barcode counting, peak calling, and 
counting of both ATAC-seq and gene expression molecules were 
performed with cellranger-arc (v.1.0.0). Then, we applied Seurat 
v4.0 (18) and Signac v1.1.0 (63) to create a multi-omic Seurat 
object with paired gene expression and DNA accessibility profiles 
for each sample. For chromatin accessibility, we used MACS2 (64) 
as implemented in the function CallPeaks in Signac to call peaks 
from the fragment files. We removed any peaks on nonstandard 
chromosomes overlapping annotated genomic blacklist regions 
from the hg38 genome (65). We then quantified fragment counts 
for each peak, per cell, using the FeatureMatrix function in 
Signac. Per-cell quality control metrics for each modality were com-
puted, including mitochondrial percentage, nucleosome signal, and 
TSS enrichment score. Next, we combined the individual Seurat 
objects for all the samples into one single object using the merge 
function in Seurat. We then performed quality control based on 
metrics for both modalities by retaining cells with total RNA-seq 
count >200 and <50,000, total ATAC-seq count >200 and 
<100,000, mitochondrial percentage <5%, nucleosome signal <3, 
and TSS enrichment score >1. Genes or peaks that were detected 
in <10 cells were removed. As a result, 45,549 of 53,185 single 
cells were retained, with 5887 RNA Unique Molecular Identifier 
(UMI) counts and 18,066 unique ATAC-seq fragments (29.3% frag-
ments overlapping peaks) on average. We applied Scrublet (66) for 
doublet detection and the results showed that less than 1% of the 
total cell population were suspected as doublets, and the numbers 
for different cell types are listed in table S14. Given the small pro-
portion, we did not exclude these cells from the analysis. We tested 
that all samples showed at least moderate TSS enrichment (fig. S1F) 
and followed a stereotypical distribution of fragment lengths with a 
majority of short fragments (under 100 bp) followed by a tail of 
longer fragments (over 147 bp) in multiples of the nucleosomal 
unit size (fig. S1G). 

We normalized the gene expression count data using SCTrans-
form (67) and then performed principal components analysis 
(PCA) using the RunPCA function in Seurat. The first 30 principal 
components (PCs) were used in the downstream analysis. For the 
chromatin accessibility data, we performed latent semantic indexing 
(LSI) for dimension reduction (68). We first normalized the ATAC- 
seq peaks using the log-TF version of the term frequency–inverse 

document frequency (TF-IDF) transformation by using the Run-
TFIDF function in Signac (parameter setting: “method = 3”). The 
top 25% most frequently observed peaks of the TF-IDF matrix 
were then selected by the FindTopFeatures function for singular 
value decomposition (SVD) using the RunSVD function in 
Signac. The top 10 LSI components, excluding the first, were used 
in downstream analysis. The first LSI component was excluded 
because it typically captures sequencing depth (technical variation), 
as evidenced by the high correlation with the total number of counts 
for the cells (>0.5). We also created a gene activity matrix inferred 
from ATAC-seq by using the GeneActivity function in Signac, 
which assesses chromatin accessibility at gene body and promot-
er regions. 

Clustering and visualization 
We performed graph-based clustering using the reduced dimen-
sions that we selected for both assays, as described above. For 
joint multi-omic analysis, we used the function FindMultiModal-
Neighbors in Seurat v4.0 to construct a weighted nearest neighbor 
(WNN) graph by taking as input two-dimensional reductions com-
puted for each modality (18). WNN identifies the nearest neighbors 
for each cell based on a weighted combination of two modalities. 
For single modality assay, we used the function FindNeighbor to 
construct a shared nearest neighbor graph. We then applied the 
Smart Local Moving algorithm (69) on the derived graphs by 
using the function FindClusters (parameter settings: “algorithm = 
3” and “resolution = 0.2”). 

For two-dimensional visualization, we performed Uniform 
Manifold Approximation and Projection (UMAP) (70) as imple-
mented in the function RunUMAP in Seurat on the PCs and LSI 
components for gene expression and DNA accessibility data, re-
spectively. For joint data visualization, UMAP was computed 
using the multi-omic WNN graph (parameter setting: nn.name = 
“weighted.nn”). 

To find markers (genes or peaks) for each identified cell type, we 
used the function FindAllMarkers (parameter settings: “only.pos = 
TRUE”). For differentially expressed genes, we used additional pa-
rameters (“min.pct = 0.2,” “min.diff.pct = 0.1”) to ensure that the 
markers are sufficiently expressed in the corresponding cell 
group. For differentially accessible chromatin regions, we used a lo-
gistic regression model and added the total number of fragments as 
a latent variable, as suggested in the Signac tutorial (by specifying 
additional parameters: min.pct = 0.05, test.use = “LR,” latent.vars = 
“atac_peak_region_fragments”). Genes or peaks with adjusted P 
value (using Bonferroni correction) < 0.05 were retained as the 
cell type–specific markers. 

Variance component modeling of gene expression 
We performed variance component analysis to characterize how 
much gene expression variability could be explained by the patterns 
of chromatin covariance. We selected genes and peaks that are de-
tected in at least 10% of total pseudobulk samples. Then, for the ex-
pression vector of each gene g, we fit the following variance 
component model as suggested in previous studies (24, 25) 

Yg ≏ Nð0; Pσ2
p þ Eσ2

e þ Iσ2
i þ Aσ2

a þ Uσ2
uÞ

where Yg is the centered and scaled normalized gene expression 
vector of gene g; P and E are sample-sample correlation matrices  
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computed by chromatin accessibility in promoter (defined as within 
−1000 to +100 bp from TSSs) and enhancer regions (defined as 
within ±500 kb around TSSs), respectively; and I, A, and U 
capture the per-individual, per–age group, and noise terms, respec-
tively. The values of the variance parameters of the model were es-
timated by the average information restricted likelihood estimation 
(AIREML; “gaston” R package). To determine the proportion of the 
variance explained by each variance component, we generated a 
vector Vg which, by definition, sums to 1 

Vg ¼
σ2

p

σ2 ;
σ2

e
σ2 ;

σ2
i

σ2 ;
σ2

a
σ2 ;

σ2
u

σ2

* +

;where σ2 ¼ σ2
p þ σ2

e þ σ2
i þ σ2

a þ σ2
u   

For example, the proportion of the variance in expression for 
gene g explained by the promoters would be represented by the 
first element in the Vg vector. 

TF motif enrichment analysis 
We tested a set of peaks of interest for overrepresentation of each 
DNA motif from the JASPAR 2020 database (71) by using the Find-
Motifs function in Signac. The resulting P values are FDR adjusted. 
The per-cell motif activities were computed by using the Signac 
wrapper for chromVAR, which identifies motifs associated with 
variability in chromatin accessibility between cells. 

Linking gene-regulatory elements and gene expression 
We examined the peak-gene relationships by using pseudobulk 
samples aggregating ATAC-seq and RNA-seq counts. We created 
these pseudobulk samples by randomly sampling 500 cells from 
the entire single-cell dataset as seed cells. For each seed cell, we se-
lected its 49 nearest neighbors within the cells of the same cell type 
annotations. Therefore, we obtained 500 pseudobulk samples, each 
of which comprised 50 single cells. The ATAC-seq and RNA-seq 
counts for pseudobulk samples were obtained by summing peak 
and gene counts across the respective single-cell members. 

We then evaluated the peak-gene linkage scores by using a cor-
relation-based approach (17, 19) applied to these pseudobulk 
samples. We computed the Spearman correlation between all 
pairs of peaks and expression of nearby genes (within 0.5 Mbp) 
by using the LinkPeaks function implemented in Signac (RRID: 
SCR_021158) and then selected all peak-gene pairs with correlation 
coefficient |ρ| > 0.3 and FDR-adjusted P < 0.1. In addition, we 
removed peak-gene links that overlapped the promoter region 
(defined as within −1000 to +100 bp from the TSS). 

To define DORCs (a set of nearby peaks correlated with the ex-
pression of a target gene), we ranked genes by the number of signif-
icantly associated peaks among the peak-gene associations we 
identified above and determined five peaks per gene as a cutoff 
based on the elbow method. To quantify DORC score for a gene, 
we used the sum of normalized counts in all significantly associated 
peaks per gene, resulting in a DORC × cell matrix. 

Using the pseudobulk samples, we defined a normalized score 
(from 0 to 1) as the pseudo-age for each cell type based on the pro-
portion of cells found in the six different developmental stages. 
Taking into consideration the nonlinear developing speed across 
life span, we used log-scale weights, instead of equal weights, for 
each developmental stage: log10(1) = 0 for early fetal, log10(3) = 
0.48 for late fetal, log10(5) = 0.70 for infancy, log10(7) = 0.85 for 

childhood, log10(9) = 0.95 for adolescence, and log10(10) = 1 for 
adulthood. 

Pseudotime analysis on neuronal populations 
We extracted cells that were annotated as neuronal cell types (in-
cluding RG, IPC, EN-fetal-early, EN-fetal-late, EN, IN-fetal, IN- 
MGE, and IN-CGE). We reperformed dimension reduction on 
the corresponding RNA-seq data and derived UMAP representa-
tions based on the top 10 PCs. The rationale behind using only 
the RNA-seq modality here is that RNA-seq provides higher reso-
lution than ATAC-seq in terms of distinguishing cell types, especial-
ly maturely differentiated ones (Fig. 1C), which are usually the end 
points of trajectories and, hence, are necessary for accurate trajec-
tory inference. In addition, we removed a small population between 
the terminal clusters of IN-MGE and IN-CGE populations for 
sharper trajectory reconstruction of neuronal developmental line-
ages (fig. S3B). Next, we used the UMAP coordinates as input to 
monocle3 (72) to construct the trajectories across neuronal popula-
tions [parameters: learn_graph_control = list(minimal_branch_len 
= 20), use_partition = FALSE, close_loop = FALSE]. To calculate 
pseudotime, we selected RGs as the “root” nodes. For cell assign-
ment to lineages, we excluded cells for which the cell type annota-
tions were inconsistent. For example, any inhibitory neurons were 
excluded from the EN lineage, and any excitatory neurons were ex-
cluded from the IN-MGE or IN-CGE lineage. We used the graph_t-
est function in monocle3 to find differentially expressed genes on 
the trajectory of a specific lineage and selected genes with q 
value <0.01. 

For visualization and residual analysis purposes, we used the 
DORC scores and the associated gene expression, smoothed over 
the inferred pseudotime, by applying the tradeSeq package (73) 
with nine knots. The “knots” are points where a set of basis func-
tions are joined together to create the smoothers. The number of 
knots was selected to reach an optimal bias-variance trade-off for 
the smoother, according to the Akaike information criterion 
(AIC) (fig. S3B). Specifically, we fit a negative binomial generalized 
additive model (NB-GAM) for every gene in each lineage by using 
the fitGAM function (parameter setting: knots = 9) and then obtain 
the estimated smoother by using the predictSmooth function. The 
residual for each gene was calculated by subtracting the min-max 
normalized gene expression values from the min-max normalized 
DORC scores. 

Overlap with genetic risk variants 
To investigate whether the cell-specific peaks and genes might play a 
role in various brain and non-brain–related traits, we quantified 
their colocalization with common risk variants from 53 GWAS 
(tables S10 and S11). To perform this analysis for snATAC-seq 
data, we chose the top 2500 most specific peaks per cell type 
(padded by 1 kb in both directions to include adjacent variants) 
and applied LD score regression (LD-score) partitioned heritability 
(41). This method calculates whether common genetic variants 
located within cell type–specific peaks explain more of the heritabil-
ity than variants not in those regions when adjusting for the number 
of variants and also for genetic context (e.g., introns, exons, promot-
ers, or intergenic regions). To perform this analysis for snRNA-seq 
data, we selected the top 500 most specific genes per each cell type 
and applied MAGMA (40). Cell-specific genes were padded by 35 
kb upstream and 10 kb downstream to also include genetic variants  
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in the proximal regulatory regions. For all GWAS, we excluded the 
broad major histocompatibility complex region (hg19 coordinates 
on chr6: 25 to 35 Mb) due to its extensive and complex LD structure. 
LD was estimated from the European panel of 1000 Genome Project 
phase 3. For MDD GWAS, we used a version of summary statistics 
without 23andMe individuals. Summary statistics were downloaded 
from the designated locations mentioned in the original manu-
scripts that are referred to in tables S10 and S11. 

To decide whether the variants overlapping DORCs and km1 to 
km4 peaks (i.e., peaks linked to km1 to km4 genes) are associated 
with significantly higher negative impact in the context of neurode-
velopmental disorders, we retrieved 434 disruptive and 366 benign 
de novo variants prioritized by neural network model BPnet (74) 
from whole-genome sequencing on autism cases and controls 
(75). Then, we quantified the significance of the difference 
between the number of overlaps of disruptive variants and benign 
variants using the one-sided z test. 

To link risk loci associated with neuropsychiatric disorders to 
their causal genes, we first collected a list of genome-wide signifi-
cant variants of those disorders extended by the variants that are 
in strong LD (R2 ≥ 0.8). For this purpose, we used LD matrix for 
1000 Genomes Phase 1 of individuals of European ancestry down-
loaded from https://zenodo.org/record/3404275#.YaQec5HMJdC. 
Then, we overlapped these variants with the peaks for which we 
have at least one peak-gene defining the gene under regulation 
(peaks were lifted to hg19 to match default hg19 coordinates of 
index SNPs and LD buddies). 

Validation experiments 
CRISPRi 
The CRISPRi algorithm of the Broad Institute Genetic Perturbation 
Platform was used to design guides against all the targets except the 
CUX2 Enhancer. The Benchling CRISPR design tool was used to 
design guides against the CUX2 enhancer (Supplementary Text, 
“CRISPRi guides”). 
Plasmid preparation 
The top three guide sequences for every target and their reverse 
complement sequences were synthesized by IDT (Integrated DNA 
Technologies) with the appropriate overhang sequences to be 
cloned downstream of a constitutively expressed U6 promoter in 
a lentiviral vector (lentiGuide-Hygro-mTagBFP2, Addgene, 
catalog no. 99374) using the golden gate cloning method. Guide 
oligos and their reverse complement oligos were initially phosphor-
ylated and annealed using the protocol described in Supplementary 
Text, “Protocol for plasmid preparation.” 
Transduction/differentiation 
hiPSC-NPCs were differentiated into forebrain neurons as previ-
ously described (36). hiPSC-NPCs were seeded at low density 
with 1 μl of lentivirus per ml of NPC media [Dulbecco’s modified 
Eagle’s medium (DMEM)/F12, 1× N2, 1× B27-RA (Invitrogen), 
laminin (1 μg/ml), and fibroblast growth factor 2 (20 ng/ml) in Ma-
trigel-coated plates]. One to 2 days after plating, cells were treated 
with hygromycin (1 mg/ml; Thermo Fisher Scientific) to select for 
cells containing the gRNA. Two days after selection, cells were cul-
tured in neural differentiation medium [DMEM/F12 + GlutaMAX, 
1× N2, 1× B27-RA, brain-derived neurotrophic factor (20 ng/ml; 
PeproTech), glial cell line–derived neurotrophic factor (20 ng/ml; 
PeproTech), 1 mM dibutyryl-cyclic adenosine monophosphate 
(Sigma-Aldrich), 200 nM ascorbic acid (Sigma-Aldrich), and 

laminin (1 μg/ml; Thermo Fisher Scientific)]. NPC-derived 
hiPSC-(forebrain)-neurons were differentiated for 2 to 6 weeks de-
pending on the assay. 
RNAscope setup (plating) 
hiPSC-NPCs were plated into eight-well chamber slides (Lab-Tek) 
at a density of 3.0 × 104 per well for RNAscope. Lentiviral transduc-
tion and differentiation was carried out as previously described. 
Cells were harvested and RNAscope was performed at 2 weeks 
after differentiation. 
RNAscope 
Growth medium was removed from the eight-well chamber slides, 
and cells were washed with 1× PBS (500 μl per chamber). Cells were 
then fixed with 4% formaldehyde/1× PBS for 30 min at room tem-
perature (500 μl per chamber). After fixation, cells were washed 
three times with 1× PBS and dehydrated with 50, 70, and then 
100% EtOH according to instructions from ACD Biosciences for 
adherent cells grown in chamber slides. Chambers were removed, 
and the slides were stored in 100% EtOH at −20°C. Cells were re-
hydrated, and RNAscope was performed according to the manufac-
turer’s instructions. Primary probes targeting NEUROD1 [ACD 
Biosciences RNAscope Probe- Hs-NEUROD1-C2 (no. 437281- 
C2)] were hybridized and amplified with secondary and tertiary 
probes, which were then labeled with the fluorophore Opal 570 
(Akoya Biosciences FP1488001KT). Primary probes targeting 
CUX2 (ACD Biosciences RNAscope Probe- Hs-CUX2-C3 (no. 
425581-C3) were hybridized and amplified with secondary and ter-
tiary probes, which were then labeled with the fluorophore Opal 690 
(Akoya Biosciences FP1497001KT). Cells were counterstained with 
40,6-diamidino-2-phenylindole (DAPI) and mounted with ProLong 
Gold Antifade Reagent (Thermo Fisher Scientific P36934). Mount-
ing medium was allowed to dry overnight, and then slides were 
stored in the dark at 4°C before cells were imaged. 

RNAscope slides were imaged with the Zeiss Axioimager.Z2(M) 
widefield microscope with a Axiocam monochrome 503 charge- 
coupled device camera (pixel size: 4.54 μm × 4.54 μm). A 10× air/ 
dry objective [Fluar 10×/numerical aperture (NA) 0.5] was initially 
used to take snapshots of large fields of cells (400-ms exposure), and 
then a 63× oil immersion (PlanApo 63×/NA 1.4) objective was used 
to capture images at higher magnification for further quantitative 
analysis. With the 63× oil objective, 35 to 40 z stacks (each z stack 
is 200 nm) were acquired in three channels: Cy5 (Chroma 49006 
filter cube) to image CUX2, Cy3 (Chroma 49309 filter cube) to 
image NEUROD1, and DAPI (Chroma 49000 filter cube). For 
Cy5 and Cy3, the exposure time for each z stack was 200 ms, and 
for DAPI, it was 50 ms. Maximum intensity projections were gen-
erated from the Cy5 and Cy3 z stacks using FiJi. CUX2 (Cy5) and 
NEUROD1 (Cy3) RNAscope spots in the maximum intensity pro-
jections were localized using the IDL script LocalizeApp, which uses 
two-dimensional Gaussian fitting to calculate the center of diffrac-
tion-limited spots. For the DAPI z stack, the z plane in which nuclei 
were in focus was used for manual segmentation of nuclei and gen-
eration of binary nuclear masks. The IDL script FISHauxiliary was 
used to quantify the number of diffraction-limited spots in each 
nuclear mask for both CUX2 and NEUROD1.  

Correction (29 November 2023): In the original version of the Supplementary Materials, fig. S1 
was missing panels (F) and (G). The Supplementary Materials has been updated with the correct 
figure. The HTML has been updated.  
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