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abstract

PURPOSE Synthetic data are artificial data generated without including any real patient information by an al-
gorithm trained to learn the characteristics of a real source data set and became widely used to accelerate
research in life sciences. We aimed to (1) apply generative artificial intelligence to build synthetic data in different
hematologic neoplasms; (2) develop a synthetic validation framework to assess data fidelity and privacy
preservability; and (3) test the capability of synthetic data to accelerate clinical/translational research in
hematology.

METHODS A conditional generative adversarial network architecture was implemented to generate syn-
thetic data. Use cases were myelodysplastic syndromes (MDS) and AML: 7,133 patients were included. A
fully explainable validation framework was created to assess fidelity and privacy preservability of
synthetic data.

RESULTS We generated MDS/AML synthetic cohorts (including information on clinical features, genomics,
treatment, and outcomes) with high fidelity and privacy performances. This technology allowed resolution of
lack/incomplete information and data augmentation. We then assessed the potential value of synthetic data on
accelerating research in hematology. Starting from 944 patients with MDS available since 2014, we generated a
300% augmented synthetic cohort and anticipated the development of molecular classification and molecular
scoring system obtainedmany years later from 2,043 to 2,957 real patients, respectively. Moreover, starting from
187 MDS treated with luspatercept into a clinical trial, we generated a synthetic cohort that recapitulated all the
clinical end points of the study. Finally, we developed a website to enable clinicians generating high-quality
synthetic data from an existing biobank of real patients.

CONCLUSION Synthetic data mimic real clinical-genomic features and outcomes, and anonymize patient in-
formation. The implementation of this technology allows to increase the scientific use and value of real data, thus
accelerating precision medicine in hematology and the conduction of clinical trials.
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INTRODUCTION

Personalized medicine combines established clinical-
pathologic parameters with advanced genomic pro-
filing to develop innovative diagnostic, prognostic, and
therapeutic strategies.1 Hematology has been rapidly
transformed by genome characterization and is the
forefront to reap the benefits of personalized medicine
for patient management.1

The clinical implementation of personalized medicine
requires the availability of a great amount of real-world
data, including clinical features, genomics, treat-
ments, and outcomes.2-4 Collecting such information
in large patient populations is challenging, especially

when facing rare diseases with heterogeneous
clinical/molecular background. Additionally, real data
often have imbalances or lack/incomplete information.5,6

Finally, there aremany issues concerning patient privacy
that may prevent use of data outside specific contexts
and that are to be accounted for.7

One approach that can circumvent these issues is the
creation of synthetic data. Synthetic data are artificial
data generated by a model trained to learn the essential
characteristics of a real source data set.8,9 Synthetic data
building techniques attempt to ensure that the generated
data are neither a copy nor a representation of the real
data, setting the grounds to data sharing without violating
the current legislation on privacy.8,9 Moreover, synthetic
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data allow to increase insufficient information obtained from
real patients by data augmentation and data integration, thus
potentially solving issues related with small sample size and
clinical/molecular class imbalance.10

Overall, synthetic data may overcome many of the pitfalls of
real data, allowing for faster, less expensive, and more
scalable access to information that is representative of the
underlying source and privacy-preserving.8-11 Synthetic
data is a growing technology8 and it is expected that in the
next 2-3 years, .60% of the data used in research and
development process across different domains (including
life sciences) will be synthetically generated.12

In this project, we addressed the issue of clinical validation
and research utility of synthetic data in hematology. To this
purpose, we aimed to (1) apply innovative synthetic data
generation methods to real-world data sets of different
hematologic malignancies including comprehensive clini-
cal and genomic information; (2) develop a synthetic val-
idation framework (SVF) to evaluate data fidelity and
privacy preservability; and (3) test the capability of synthetic
data to accelerate translational and clinical research.

As a paradigmatic use case, we focused on myeloid ma-
lignancies, which are rare neoplasms with high clinical
heterogeneity and complex genomic background and that
include patients with unmet clinical needs.13

METHODS

Study Populations

The study was conducted by GenoMed4All and Synthema
European consortia and supported by EuroBloodNET, the
European Reference Network on rare hematologic diseases.
Written informed consent was obtained from each partici-
pant. The Humanitas Ethics Committee approved the study.
This study was registered at ClinicalTrials.gov (identifier:
NCT04889729).

All the study procedures were compliant with the 2021
WHO guidance on ethics and governance of artificial in-
telligence for health.14

Inclusion criteria were age ≥18 years, a diagnosis of myeloid
neoplasm (eithermyelodysplastic syndromes [MDS] or AML)
according to WHO 2016 criteria,15 and information available
on demographics, clinical features, mutational screening/
chromosomal abnormalities, treatment, and survival. Overall,
7,133 patients were included.

Generative Model for Synthetic Data

Artificial intelligence (AI)–based generative models are
characterized by multi-layer neural networks that are able
to generate samples (patients) by learning the distribution
of a set of real data.16 In this context, generative adver-
sarial networks (GANs)17 create simulation scenarios where
models and processes interact to create completely newdata
sets of events. GANs consist of two networks: the generator
and the discriminator. These two networks are trained
adversarially. The generator creates artificial outputs that are
passed to the discriminator along with real data, while the
discriminator is tasked to identify which outputs were real
and which were fake. The final goal here is to reach equi-
librium, in which the generated samples follow the same
distribution as the real data. When this happens, the dis-
criminator can do no better than random guessing.16 Con-
ditional GANs are variants of GANs where a label is added as
a parameter to the input of the models to create more re-
alistic data by learning specific correlations.18 In this study,
we implemented a conditional Wasserstein’s tabular GAN18

with gradient penalty19 that ensures high performance in
modeling large data sets with complex distribution and in-
teractions among different features. We adopted different
preprocessing steps and training strategies to properly
prepare the input data and optimize the training steps.

Development of a Synthetic Validation Framework

A SVF was developed to evaluate fidelity and privacy
preservability of the newly generated synthetic data.

We assessed the quality of the following data types: demo-
graphics, clinical features, genomics (evaluated as categorical
variables), and clinical outcomes (probability of overall sur-
vival and leukemia-free survival). Distribution, correlation, and

CONTEXT

Key Objective
Are synthetic data able to recapitulate real clinical-genomic features and clinical outcomes, and to guarantee privacy

preservability? Can this technology accelerate clinical/translational research in hematology?
Knowledge Generated
We developed a new technology on the basis of generative artificial intelligence that allows to generate synthetic patient

cohorts with high clinical fidelity and privacy performances. We created a prototype web portal for synthetic data generation
to help clinicians to be familiar with this new technology.

Relevance
This technology allows the resolution of lack/incomplete information and data augmentation starting from real patients.

Synthetic data generate new knowledge to accelerate both translational research and the conduction of clinical trials.
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principal component analysis evaluation were then assessed
on all data types. Descriptive statistics and pairwise associ-
ation analyses were carried out. We calculated a clinical
synthetic fidelity (CSF) and a genomic synthetic fidelity (GSF)
as the average of multiple metric tests adopted; optimal
threshold was considered ≥85% in both systems.

Real and synthetic patients were stratified by hierarchical
Dirichlet clustering20 to identify genomic associations and
subgroups. Survival analyses were performed with Kaplan-
Meier curves. We implemented Cox proportional hazard and
L1-penalized Cox regression models to define features with
significant impact on survival probability.20,21 Model discrim-
ination was assessed using Harrell’s concordance index.22

To assess the privacy preservability and evaluate the risk
associated with synthetic datasets of resampling a patient
from a synthetic record, we first measured the exact
matches between synthetic and original data (identical
match share [IMS]). Moreover, we calculated the distance
to closest record that measures the absolute distances
between synthetic records to their nearest original records,
and we then calculated the nearest neighbor distance ratio
(NNDR), that is, the ratio of the distances of each synthetic
record to the nearest and to the second nearest neighbors,
that allows to compare inliers and outliers in the population
on an equal base.23 Optimal range for NNDR was con-
sidered from 0.60 to 0.85 (value closer to 0.50 indicating a
significant loss of similarity of the synthetic patients com-
pared with the real ones that can affect the fidelity of
synthetic data; value closer to 1.00 indicating an excess of
similarity of synthetic data with respect to the real ones,
thus possibly affecting the privacy preservability).23

Explainability of AI algorithms was assessed by Shapley
Additive Explanations (SHAP), a method to explain indi-
vidual predictions on the basis of the game theoretically
optimal Shapley values.24

Experimental Setup

We tested synthetic data generation process in different
experimental settings (Fig 1).

In setting A, we investigated the capability of the generative
model to create a synthetic reproduction of real data with
high grade of fidelity on clinical/genomic features, clinical
outcomes, and with high privacy preservability. We used
2043 patients with MDS from GenoMed4All cohort20 to
train and test the model.

In setting B, we tested the capability of the model to over-
come lack/incomplete information in real data and to allow
data augmentation; moreover, we assessed the generaliz-
ability of the model’s performances across different clinical
settings. We considered three different populations: 2,043
MDS from GenoMed4All cohort20; 2,957 MDS from the
International Working Group for Prognosis in MDS (IWG-PM)
cohort,21 and 1,002 AML from GenoMed4All cohort.20 In all
experiments, we calculated fidelity and privacy metrics.

In setting C, we investigated if the generation of synthetic
data can accelerate translational research. Starting from a
MDS cohort available in 2014 (N = 944),25 we generated a
300% augmented synthetic data set. We aimed to reca-
pitulate and anticipate in this cohort of synthetic patients
the most relevant and recent insights in personalized
medicine (ie, the definition of a new molecular MDS
classification and of a molecular scoring system, developed
on 2,043 and 2,957 real patients in 2022, respectively).20,21

In setting D, we generated synthetic patients to be used as a
control arm in clinical trials, thus possibly accelerating
clinical development of new drugs/new indications of
existing drugs. Starting from 187 MDS treated with lus-
patercept into a multicenter clinical trial,26 we generated a
new synthetic cohort of the same size. Then, we tested the
capability of newly generated synthetic patients to reca-
pitulate all the clinical end points of the original study.

RESULTS

Creation of a Synthetic, Reliable, and Private

Reproduction of Real Data (Setting A)

We used 2,043 real MDS from GenoMed4All cohort20 to
generate a new cohort of 2,043 synthetic patients. The
model showed high-fidelity performances for both clinical
and genomic features (CSF = 93%; GSF = 90%; Fig 2 and
Appendix Fig A1). We then applied Dirichlet processes to
compare complex interactions and broad dependencies
among genomic features in real versus synthetic patients
and we obtained highly comparable results; explainability
analysis (SHAP) showed that similar features drive patients’
classification in both data sets (Appendix Fig A2).

Synthetic patients had comparable survival outcomes with
respect to the real ones. When applying the reference
scoring system for MDS prognostication (Revised Inter-
national Prognostic Scoring System), the probability of
survival of the five risk categories between synthetic and
real patients was comparable (Fig 3).

We build a CoxPHmodel including all features of prognostic
relevance with a unique binary covariate (indicating the
belonging of the patient to the real or the synthetic data set)
that obtained a P value of .742, suggesting that there is no
significant difference in the survival probability between the
two cohorts in a multivariable setting (Fig 3). Concordances
obtained for the different category included in the model
(demographics, clinical, and genomics) were comparable
in both cohorts. Considering the global concordance of the
model, we obtained similar results with the model fitted
on real versus synthetic data (0.736 6 0.012 v 0.769 6
0.012; Fig 3).

In terms of privacy metrics, the IMS analysis showed that
none of the real patients were copied in the synthetic
dataset; moreover, we obtained good results for NNDR
(0.64), indicating adequate distance to real data and poor
privacy risk.23
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Setting A: Create a synthetic reliable and private copy of the real data

Evaluation

Synthetic data fidelity on clinical and omics features
Hierarchical Dirichlet-based clustering

Kaplan-Meier survival curves
CoxPH model

Patient classification/prognostication and explainability analysis
Privacy preservabilityReal source data 100% real size

synthetic data

Data
synthetizer

Train Sample

Setting C: Accelerating translational research

Train

Real source data
(MDS cohort, 2014)

300% real size
synthetic data

Real data
(IPSS-M & GenoMed4ALL cohorts, 2022)

Data
synthetizer

Evaluation

Synthetic data fidelity on clinical and omics features
Hierarchical Dirichlet-based clustering

Patient classification/prognostication and explainability
analysis Synthetic molecular prognostic score by CoxPH model

Privacy preservability

Sample

Setting D: Accelerating clinical research and design/conduction of clinical trials

Evaluation

Synthetic data fidelity on clinical features
Privacy preservability

Clinical end points

Real source data 100% real size
synthetic data

Data
synthetizer

Train Sample

Setting B: Assessment of generated patients, data augmentation, privacy preservability,

and generalizability of the generative model across different clinical settings

Real source data

Train set

Test set

100% real size
synthetic data

Test set size
synthetic data

200% real size
synthetic data

Data
synthetizer

Evaluation

Synthetic data fidelity on clinical and omics features
Privacy preservability

Evaluation

Synthetic data fidelity on clinical and omics features
Privacy preservability

Evaluation

Synthetic data fidelity on clinical and omics features
Privacy preservability

Train

Sample

Data
synthetizer

Test set size
synthetic data

Evaluation

Synthetic data fidelity on clinical and omics features
Privacy preservability

Train Sample

FIG 1. Overview of experimental settings to validate synthetic data. Setting A: Create a synthetic reliable and private copy of the real data. Setting
B: Assessment of generated patients, data augmentation, privacy preservability, and generalizability of the generative model across different
clinical settings. Setting C: Accelerating translational research. Setting D: Accelerating clinical research and design/conduction of clinical trials.
IPSS-M, Molecular International Prognostic Scoring System; MDS, myelodysplastic syndromes.

4 © 2023 by American Society of Clinical Oncology

D’Amico et al



0 100 15050 200

Leukemia-Free Survival (months)

De
ns

ity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Real

Synthetic

2 1

Evolution to Acute Leukemia
(yes = 1/no = 2)

Pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

Kind

Real

Synthetic

–20 20 40 600 80 100 120

Bone Marrow Ring Sideroblasts (%)

De
ns

ity

0.00

0.02

0.04

0.06

0.08

0.10
Real

Synthetic

Real

Synthetic

0.000

0.005

De
ns

ity
20 40 60 80 100

Age at Diagnosis (years)

0.010

0.015

0.020

0.025

0.030

0.035

Distribution per Feature

Real

Synthetic

0 10 20 30 40

Neutrophils (109/L)

0.00

0.05

De
ns

ity

0.10

0.15

0.20

0.25

0.30

0.35

0.0

0.1

Pr
op

or
tio

n

0.2

0.3

0.4

0.5

0.6
Kind

Real

Synthetic

1 2

Sex (M = 1/F = 2)

Real

Synthetic

0.000

0.001

De
ns

ity

0.002

0.003

0.004

0.005

0.006

0 250 500 750 1,000 1,250 1,500

Platelets (109/L)
De

ns
ity

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

–5 5 100 15 20

Bone Marrow Blasts (%)

Real

Synthetic

Real

Synthetic

0 5 10 15 20

Hemoglobin (g/L)

0.05

De
ns

ity

0.10

0.15

0.20

A
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among genes and/or cytogenetics abnormalities. In the upper triangle, for each couple of genomic abnormalities, the numbers of patients showingmutation
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using odds ratio, illustrated using a green and yellow color scale according to odds ratio values. All results in (A), (B), and (C) are referring to one MDS
synthetic data set of 2,043 patients generated. Detailed results are reported in the Data Supplement. (D) Synthetic data fidelity calculated by SVF on clinical,
demographic, and genomic features and patient survival. Average over three training and sampling replications on MDS cohort of 2,043 patients. MDS,
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Resolution of Lack/Incomplete Information, Data

Augmentation, Privacy Preservability, and

Generalizability of the Model Across Different Clinical

Settings (Setting B)

Starting from the MDS GenoMed4all cohort (N = 2,043),20

we trained the model with a set of a smaller size (including
70% of the patients) and then with a set with 30% of
missing information across all features. We obtained the
same high-fidelity performances as in setting A, in which
synthetic patients were generated form the whole real data
set (CSF and GSF were .90% in both experiments).

Then we generated a 200% augmented data set of syn-
thetic MDS patients, resulting into a high fidelity of the
model (CSF = 91%; GSF = 89%) that was maintained
when comparing the synthetic data sets with the real test
set never seen by the model during the training phase
(CSF = 90%; GSF = 88%).

When considering a more complex data set (IWG-PM MDS
cohort, N = 2,604) including a higher number of genomic
features (245 v 65), we obtained comparable fidelity per-
formances to the previous experiments (CSF = 93%;
GSF = 93%).

Importantly, a similar trend was noted by replicating all
these experiments in a cohort of 1,002 synthetic patients
with AML generated form an equal number of real subjects
(CSF . 90%; GSF . 88% in all cases), thus providing
evidence for a generalizability of the generative model
across different clinical settings.

In terms of privacy metrics, in all experiments on the three
different synthetic patient populations, the IMS analy-
sis showed that none of the real patients were copied in
the synthetic data sets; moreover, we obtained similar good

distance results in all experiments for NNDR (values from
0.60 to 0.71).

Accelerating Translational Research by Synthetic Data

(Setting C)

Starting from a MDS cohort available in 2014 (N = 944),25

we generated a 300%augmented synthetic data set of 2,832
patients. Fidelity and privacy performances were comparable
with previous experiments (CSF = 92%; GSF = 89%;
NNDR = 0.62). We aimed to recapitulate and anticipate in
this cohort of synthetic patients the most relevant insights in
the field of personalized medicine (ie, the definition of new
molecular MDS classification provided on a cohort of 2,043
real patients20 and the definition of the Molecular Interna-
tional Prognostic Scoring Systems [IPSS-M], defined on a
cohort 2,897 real patients21).

First, Dirichlet processes were applied to synthetic data to
define genomic-based clinical entities, resulting in the
identification of the same eight disease categories de-
scribed in a real cohort of 2,043 patients in 2022. Patients’
classification into clinical groups followed a similar distri-
bution as the real cohort, and explainability analysis (SHAP)
also showed that similar features drive the patients’ clas-
sification in both data sets (Fig 4 and Appendix Fig A3).

As a second experiment, we applied a L1-penalized Cox
regression model to the synthetic data set of 2,832 patients
to generate a molecular prognostic score (synthetic IPSS-M).
After feature selection, we developed a prognostic tool on the
synthetic cohort and compared it with IPSS-M developed on
real patients. The comparison of the two scores reveals
the same feature extraction and the identification of six risk
categories with comparable probability of overall survival
and leukemia-free survival (Fig 5 and Appendix Fig A4).

Clinical, Demographic, and Survival Mixed-Type Features Synthetic Fidelity

Distributions 0.90

Correlation matrices 0.96

Principal component analysis 0.93

Average 0.93

Multi-Omics Categorical Features Synthetic Fidelity

Mutation frequencies 0.99

No. of mutation per patient 0.99

Omics pairwise associations (co-occurrence) 0.99

Omics pairwise associations (odds ratio) 0.63

Average 0.90

D

FIG 2. (Continued).
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Accelerating Clinical Research and Conduction of Clinical

Trials by Using Synthetic Data (Setting D)

We investigated the possibility to use a synthetic data set as
a comparison group in a clinical trial. We therefore aimed to
replicate a real patient cohort from a multicenter study
including 187 patients with MDS who were treated with
luspatercept.26

Eligible patients were age 18 years or older and had an MDS
with ring sideroblasts; were receiving regular red blood cells
transfusions; and were refractory to erythropoiesis-stimulating
agent therapy. Primary end point was transfusion indepen-
dence (TI) for ≥8 weeks during weeks 1-24; key secondary
end point was TI for ≥12 weeks during both weeks 1-24
and 1-48.

We generated a synthetic cohort (N = 187) from the patients
included in the study using all data for training, and we
compared the synthetic end points with the original study
results. All the characteristics and metrics of the synthetic

cohort were comparable with respect to the original data set,
as shown in Figure 6 and Appendix Figure A5, with high
efficient coefficient of privacy preservability (NNDR = 0.71).

Generator of Synthetic Data

To help clinicians to be familiar with generative AI to build
synthetic data, we have created a prototype web portal27

that allows to generate synthetic patients starting from
2,957 real MDS of IWG-PM cohort.21 This portal allows to
generate synthetic cohorts with different sizes, to verify the
performance of the newly generated data (fidelity and
privacy preservability), and to download the synthetic data
set for research use.

DISCUSSION

In this study, we showed that synthetic data may (1) effi-
ciently recapitulate statistical properties and complex in-
teractions between clinical and genomic features in
hematologic malignancies; (2) replicate reliable estimates
of survival and effectiveness of specific treatments;
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(3) overcome lack/imbalance of information of real
data; and (4) allow effective data augmentation.

The implementation of this technology may allow to in-
crease the scientific use and value of real data, and it is
expected to accelerate precision medicine in hematology
and the conduction of clinical trials.

To help clinicians to be familiar with this new technology,
we created a prototype web portal that allows to generate
synthetic data from a real data set of patients with clinical
and genomic information, and that provides a report of the
quality of the newly generated synthetic patients.

The implementability of synthetic data in translational and
clinical research depends on two main properties: (1) fi-
delity, ie, the newly generated data should be plausible and
preserve structural properties of the real data; (2) privacy,
that is, it should be possible to precisely quantify how much
information about the original data is revealed through the
releasing of the synthetic sample.28,29

The use of generative AI rapidly increased the imple-
mentation of synthetic data in life sciences in past years.8-10

As an example, SyntheticMass hosts over one million syn-
thetic patient records from the state of Massachusetts.30 In

Group 0 MDS without specific genomics profiles

Group 1 MDS with SF3B1 with coexisting mutations

Group 2 MDS with TP53 mutations and/or complex karyotype

Group 3 MDS with SRSF2 and concomitant TET2 mutations

Group 4
MDS with U2AF1 mutations associated with delection of
chromosome 20q, isolated del(7q), or chromosome7 monosomy

Group 5 MDS with SRSF2 mutations with coexisting mutations

Group 6
MDS with isolated SF3B1 mutations (or associated with mutations
of clonal hematopoiesis and/or JAK/STAT pathways genes)

Group 7 MDS with AML-like mutations
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Europe, synthetic data sets that mimic a part of the Neth-
erlands Cancer Registry and Public Health England’s Cancer
Registration are now available for research purposes.31,32

The creation of a synthetic data bank makes the information
accessible while also streamlining the data sets that medical
research teams have to work with. But, there are limitations:
the more complex the data query, the more approximate the
results; in particular, the generation of high-fidelity synthetic
patients with comprehensive clinical and genomic infor-
mation reproducing complex interactions among different
data layers is still a challenge.8-10

In this study, we used an optimized method (conditional
GAN)17-19 to recapitulate clinical and genomic properties
of real patients with myeloid neoplasms, which are rare
diseases characterized by large clinical and biological

heterogeneity.13,15 The methodologic advantage of con-
ditional GAN allowed us to face specific challenges in
research on rare diseases (such as lack/imbalance of
data) and we provided evidence for a high generalizability
of the performances of the model across different clinical
settings.

Synthetic data require an extensive validation of their reli-
ability in recapitulating properties of real patients.8-10,28-30 We
therefore created a SVF to perform a clear fidelity analysis of
clinical, survival, and genomic information and that may
represent a solid basis to define the quality of a newly
generated synthetic data set. Moreover, we implemented a
comprehensive approach for data explainability,24 thus fa-
cilitating the clinical interpretation of the results of deep
learning analysis on synthetic data.
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FIG 5. Survival analysis on synthetic molecular prognostic score generated (synthetic IPSS-M) performed in setting C. (A) Kaplan-Meier probability estimates
of OS for synthetic patients with MDS are represented and stratified by IPSS-M risk categories as defined by Bernard et al.21 P value is from log-rank test. (B)
Kaplan-Meier probability estimates of OS for synthetic patients with MDS are represented and stratified by synthetic IPSS-M risk categories. P value is from
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Sharing data has the potential to improve decision making
and accelerate research and innovation.2-4,11 At the same
time, many data are highly sensitive and sharing them may
violate fundamental rights guarded by modern privacy
regulations.7,11 Anonymization (where potentially identifi-
able variables are removed) is one way to make data
available; however, intensive anonymization can degrade
the data to the extent that they are no longer fit for purpose.
Moreover, several reidentification attempts on anonymized
data have been successful and have harmed public and
regulators’ trust in such methods.33,34 We showed that
generative AI can guarantee a high privacy preservability of
newly generated synthetic data. We focused on analyzing
the distance between the real and synthetic patients and we
showed that there was enough distance between the real
and synthetic patients to avoid the risk of revealing sensitive
information from the training data and not too far away to
maintain correlations of the source real population.23

We provided evidence that synthetic data can accelerate
translational research inhematology. Since thefirst publication

on clinical relevance of genemutations in MDS, it took several
years to collect real large patient populations for defining a
molecular classification and molecular prognostic score.20,21

By generating synthetic data from a relative small cohort of
patients available in 2014,25 we were able to recapitulate the
definition of genomic-based subgroups and of a molecular
prognostic score as described in real cohorts many years
later.20,21

Finally, synthetic patients could be used in the future to
improve the conduction of clinical trials. The use of synthetic
control arms may reduce clinical trial costs and duration.
Moreover, using a synthetic control arm may ensure that all
participants receive the active treatment, thus eliminating
patient concerns about treatment assignment.35

Secondary analyses of data from clinical trials can provide
new insights compared with the original publications.36 In
this context, our findings suggest that generative AI can
create synthetic patients that efficiently reproduce clinical
characteristics and efficacy end points of the original
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study and that can be promptly available for secondary
analyses.

As a possible improvement of our approach, recently, GAN
technology was optimized to generate synthetic patients with
time-series records and longitudinal evaluation of treatment
response (multilabel time-series GAN [MTGAN]).37 MTGAN
can preserve temporal information by developing a temporally

correlated generation process, thus finally increasing the
generation quality of uncommon diseases and the perfor-
mance of predictive models.

To maximize the impact of this technology in accelerating
precision medicine in hematology, it will be relevant to develop
regulatory frameworks involving synthetic data and to define
standards for synthetic data quality andprivacy preservability.8,12
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FIG A1. SVF on synthetic MDS cohort (N = 2,043), as performed in setting A. (A) Distributions of the patients according to the number of recurrently
mutated genes and chromosomal abnormalities. (B) Evaluation of the real (blue) and synthetic (red) patients’ distribution considering WHO 2016
classification and IPSS-R risk value. (C) PCA for clinical, demographic, and survival features. (D) Correlationmatrices for clinical, demographic, and survival
features, indicating the interdependencies per column on real and synthetic data sets. All results are referring to one MDS synthetic data set of 2,043
patients generated. Detailed results are reported in the Data Supplement. IPSS-R, Revised International Prognostic Scoring System; MDS, myelodysplastic
syndromes; PCA, principal component analysis; SVF, synthetic validation framework.
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FIG A3. Definition of a molecular classification on augmented synthetic MDS cohort starting from 944 patients available in 2014, as performed in setting C.
SHAP summary plot analysis on the top 10most important features for a real test set, a synthetic test set, and a complete augmented synthetic data set for the
genomic groups 1 and 2. MDS, myelodysplastic syndromes; SHAP, Shapley Additive Explanations.
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FIG A4. Survival analysis on syntheticmolecular prognostic score generated (synthetic IPSS-M) performed in
setting C. (A) Kaplan-Meier probability estimates of LFS for synthetic MDS patients are represented and
stratified by IPSS-M risk categories as defined by Bernard et al.21 P value is from log-rank test. (B) Kaplan-
Meier probability estimates of LFS for synthetic MDS patients are represented and stratified by synthetic
IPSS-M risk categories. P value is from log-rank test. IPSS-M, Molecular International Prognostic Scoring
System; LFS, leukemia-free survival; MDS, myelodysplastic syndromes.
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Real Data

�4 (N = 51) 5-7 (N = 51) �8 (N = 76) P

RBC-TI ≥ 8 weeks 1-24 26 (51) 17 (33.3) 13 (17.1) < .01

RBC-TI ≥ 8 weeks 1-48 29 (56.9) 20 (39.2) 19 (25.0) < .01

RBC-TI ≥ 12 weeks 1-24 16 (31.4) 13 (25.5) 7 (9.2) < .01

RBC-TI ≥ 12 weeks 1-48 22 (43.1) 18 (35.3) 11 (14.5) < .01

Reduction ≥ 4RBC NA 17 (33.3) 41 (53.9) < .01

Reduction ≥ 50% NA 21 (41.2) 35 (46.1) NS

Dose at first response, mg/kg

1 16 (55.2) 9 (45.0) 8 (32.0)

1.33 6 (20.7) 5 (25.0) 7 (28.0)

1.75 7 (24.1) 6 (30.0) 10 (40.0)

Synthetic Data

�4 (N = 40) 5-7 (N = 56) �8 (N = 82) P

RBC-TI ≥ 8weeks1-24 26 (65.0) 14 (25.0) 16 (19.5) < .01

RBC-TI ≥ 8weeks1-48 26 (65.0) 17 (30.4) 18 (22.0) < .01

RBC-TI ≥ 12weeks1-24 20 (50.0) 12 (21.4) 9 (11.0) < .01

RBC-TI ≥ 12weeks1-48 22 (55.0) 12 (21.4) 13 (15.9) < .01

Reduction ≥ 4RBC NA 18 (32.1) 27 (32.9) NS

Reduction ≥ 50% NA 22 (39.3) 24 (29.3) < .01

Dose at first response, mg/kg

1 17 (65.4) 7 (41.2) 8 (44.4)

1.33 6 (23.1) 8 (47.1) 4 (22.2)

1.75 3 (11.5) 2 (11.8) 6 (33.3)

FIG A5. Comparison of clinical trial end points between real and synthetic patients, as performed in setting D.
Response rate and dose at first response, stratified by baseline transfusion burden, in both real and synthetic
cohorts. RBC-TI, rate of red blood cell transfusion independence.
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