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ABSTRACT

PURPOSE To determine prognostic and predictive clinical outcomes in metastatic
hormone-sensitive prostate cancer (mHSPC) and metastatic castrate-resistant
prostate cancer (mCRPC) on the basis of a combination of plasma-derived
genomic alterations and lipid features in a longitudinal cohort of patients
with advanced prostate cancer.

METHODS A multifeature classifier was constructed to predict clinical outcomes using
plasma-based genomic alterations detected in 120 genes and 772 lipidomic
species as informative features in a cohort of 71 patients with mHSPC and 144
patients with mCRPC. Outcomes of interest were collected over 11 years of
follow-up. These included inmHSPC state early failure of androgen-deprivation
therapy (ADT) and exceptional responders to ADT; early death (poor prognosis)
and long-term survivors in mCRPC state. The approach was to build binary
classification models that identified discriminative candidates with optimal
weights to predict outcomes. To achieve this, we built multi-omic feature-
based classifiers using traditional machine learning (ML) methods, including
logistic regression with sparse regularization, multi-kernel Gaussian process
regression, and support vector machines.

RESULTS The levels of specific ceramides (d18:1/14:0 and d18:1/17:0), and the presence of
CHEK2 mutations, AR amplification, and RB1 deletion were identified as the
most crucial factors associated with clinical outcomes. Using ML models, the
optimal multi-omics feature combination determined resulted in AUC scores of
0.751 for predictingmHSPC survival and 0.638 for predicting ADT failure; and in
mCRPC state, 0.687 for prognostication and 0.727 for exceptional survival. The
models were observed to be superior than using a limited candidate number of
features for developing multi-omic prognostic and predictive signatures.

CONCLUSION Using a ML approach that incorporates multiple omic features improves the
prediction accuracy for metastatic prostate cancer outcomes significantly.
Validation of these models will be needed in independent data sets in future.

INTRODUCTION

The complexity of tumorigenesis and clonal heterogeneity
has been rationalized in several hallmarks of cancer.1 Al-
though not all accumulating somatic alterations during
clonal expansion with cancer initiation and progression
contribute to cancer mutagenesis or affect cancer outcomes,
several will affect clinical outcomes. It has been estimated
that clonal evolutionary processes after tumorigenesis occur
on an average of 1-10 mutations per cell division2 and many
of these can affect disease outcomes after cancer initiation,

including the natural history of progression, response to
treatments, and resistance to interventions. To identify key
biological drivers of cancer outcomes, bioinformatic
methods have largely focused on single omic platform (ei-
ther DNA or RNA) biomarker probing. Amore comprehensive
approach to biomarkers that integrate gene, transcriptome,
and protein/lipid products in the context of a stage of
progression and with treatment interactions is typically
lacking for several reasons. Limited availability of clinically
annotated data sets and databases that can provide such
multi-omic sequencing/profiles in patients with cancer with
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longitudinal outcomes and a paucity of robust computational
neural networkmethodologic approaches remain challenges
to achieve the desired outcome.

Prostate cancer is a leading cause of cancer death in males in
the Western world.3 Metastatic prostate cancer (mPC) is
subdivided into an earlier metastatic hormone-sensitive
prostate cancer (mHSPC) state and then a more pro-
gressed metastatic castrate-resistant prostate cancer
(mCRPC) state after failure of androgen-deprivation therapy
(ADT), which is the prime way to treat mHSPC. Both mHSPC
and mCRPC are heterogeneous in clinical behavior, and
patients in these states can either quickly progress or have
slowly progressing disease. Response to treatments given in
these states can similarly be short- or long-lasting re-
sponses. An increasing number of treatment options for
managing mHSPC4 and mCRPC5 states are now available,
while there are no specific molecular multi-omic alterations
identified in these states predictive for response to ADT or
prognostic for survival. We have previously reported
plasma-based cell-free DNA (cfDNA) genomic alterations
using next-generation sequencing (NGS)6-8 and liquid
chromatography-mass spectrometry (LC-MS)–based lipid
profiles9 in a mPC cohort.

In this study, we hypothesized that a multi-omic molecular
classifier on the basis of stage-specific genetic and lip-
idomic alterations detected in plasma can predict treatment
and survival outcomes in mPC. We combined blood-based
profiling of genomic alterations in cfDNA for detecting
somatic alterations and mass spectrometry–generated
lipidomic features in plasma in a cohort of patients with
mPC and then applied a machine learning (ML) multi-omic
platform approach to build multi-omic classifiers of out-
comes. To achieve this, we applied a ML approach that
combined the two platforms for identifying a multi-omic

classifier that may predict clinical outcomes in mHSPC and
mCRPC states.

METHODS

Patient Cohort

A real-world prospectively collected and retrospectively
analyzed hospital-based cohort of patients with mPC, in
mHSPC and mCRPC states were considered for this study.
Previously, this cohort’s plasma cfDNA alterations using
NGS,6-8 plasma-based LC-MS–generated lipid species,9 and
a combined candidate gene with a candidate 3-lipid signa-
ture10 for predicting clinical outcomes have been reported.
The current study attempted to integrate beyond limited
number of candidates, all 722 lipid species, and genomic
alteration features for building multi-omic classifiers by
applying ML approaches.

The mPC cohort was enrolled between September 2009 and
January 2013 after obtaining a written consent and in-
stitutional review board approval (Mayo IRB 09-001889).
Details of NGS methods and LC-MS–generated lipid
profiles have been previously described.6,9 Clinical follow-
up for this cohort in the current study was extended from
October 20, 2018, in the cutoff date for analysis in previous
reports6,9,10 to March 1, 2022. Progression on ADT, labeled
as ADT failure for patients withmHSPC, was defined as the
time from initiating hormone therapy for metastatic state
to development of castrate resistance, and survival was
calculated as the time from diagnosis of mHSPC state to
death at the date of cutoff for analysis (March 1, 2022).
Patients withmHSPC who did not have a death event at the
time of data analysis were censored. In the mHSPC cohort,
we labeled patients who failed ADT within 6 months after
initiation as early failure. The survival time of patients

CONTEXT

Key Objective
To identify multi-omic, machine learning (ML) classifiers of clinical outcomes in metastatic prostate cancer (mPC), using
measurements of a variety of plasma lipid species combined with gene alterations detected in circulating tumor DNA.

Knowledge Generated
Logistic regression with elastic net regularization ML approach was observed to be the most optimal of all ML methods in
generating a lipid molecule combined with gene alteration–based predictive algorithm that identified short- and long-term
responses to androgen-deprivation therapy (ADT), and survival in metastatic hormone-sensitive prostate cancer and
metastatic castrate-resistant prostate cancer states. This ML classifier was observed to be superior to conventional
biostatistical approaches that use a limited number of biological candidates for identifying prognostic and predictive
outcomes in mPC.

Relevance
A blood-based multi-omic classifier in different states of mPC progression could potentially be used to define cohorts of
mPC patients destined to have different clinical outcomes.
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with mCRPC was determined from the date of castrate
resistance to the date of death at the time of analysis
(March 1, 2022). The range of survival time of the patients
with mCRPC was divided into tertiles with the top 33% and
bottom 33% being selected. Thus, patients in the bottom
33% of survival time who died within 20.6 months after
initial progression to mCRPC were classified as belonging
to the poor-prognosis group, while those who were still
alive in the top 33% of the survival range at or after
50 months of initial progression to mCRPC were grouped
as exceptional survivors.

Four multi-omic classifier-building tasks were pursued
using machine learning methods, two in mHSPC state and
two in mCRPC state. For patients with mHSPC, we included
ML classifier model that predicted mHSPC survival and a
machine learning–based classifier that predicted patients
who experienced early failure of ADT. In themCRPC state, we
developed a multi-omic classifier model that predicted
patientswith poor prognosis, as defined by deathwithin 20.6
months of turning castration-resistant. We also developed
ML classifiers that predict exceptional survival in mCRPC
state, as defined by long-term survival of 50month or more.
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FIG 1. Workflow of integrating genomic and lipidomic features and building machine learning
pipelines. Number of individual lipid species included in analyses for each lipid type indicated in
parentheses. Acy, acylcarnitine; Cer, ceramide; ctDNA, circulating tumor DNA; DG, diacylglycerol;
LCA, latent class analysis; LC-MS, liquid chromatography-mass spectrometry; ML, machine
learning; Sph, sphingolipid; TG, triacylglycerol.
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Feature Selection Process

The outline for our overall methodology workflow is illus-
trated in Figure 1. We used the human-in-the-loop principle
to identify the most informative features from previously
published results. To start, we considered 120 ctDNA-based
gene alterations and 722 plasma-measured lipidomic spe-
cies fromour published platforms.6,9 On the basis of previous
results that confirm specific cfDNA-based signatures in
these 120 genes to have predictive and prognostic value in
mPC,6,11,12 we adopted these alterations to proceed to the next
step. Previously, we have reported extensively6 on both, the
frequencies of alterations and the relevance of individual
alterations to state-specific clinical outcomes including
survival and ADT-related treatment outcomes. In patients
with untreated mHSPC at the individual-gene level, alter-
ations in TP53 and ATM were significantly associated with
shorter overall survival. Collectively, patients with untreated
mHSPC with somatic alterations detected in multiple DNA
repair genes (ATM, BRCA1, BRCA2, and CHEK2) were also
observed to have had significantly short overall survival and a
shorter time to failure with ADT even after adjusting for
clinical prognostic factors. For the mCRPC groups, RB1 de-
letions had the most significant prognostic value for poor
outcomes in multivariate analyses after adjusting for Gleason
score and alkaline phosphate levels. Somatic perturbations
detected in other genes in multivariable analyses that had
prognostic significance included AR, TP53, and BRCA2. Based
both on the survival impact and the state-specific frequency
of alterations, we selected mutations in ATM, BRCA1, BRCA2,
and CHEK2 for patients in the mHSPC state, and mutations in
TP53 and copy number alterations in RB1 loss, and AR ampli-
fication for patients in the mCRPC state, for integration with
lipidomic features as potential classifiers.

For the 772 lipidomic features,we applied Cox regression and
latent component analysis (LCA) as previously described9 to
identify candidate lipid species in themulti-omicmodel build.
This resulted in the selection of 61 ceramide (Cer) species, 25
diacylglycerol (DG) species, and 142 triacylglycerol (TG)
species for patients in themHSPC state and 61 ceramide (Cer)
species, 3 sphingosine (Sph) species, and 14 acylcarnitine
(Acy) species for patients in the mCRPC state.

For feature processing, genomic alterations were trans-
formed into binary variables (present/absent). Lipidomic
species’ measurements being continuous features were
binarized using a novel approach called bin-split binarization.
This is different from the traditional mean-split binarization
methods13-15 that categorize continuous features on the basis
of the mean/median levels. The bin-split binarization, in-
spired by the k-group split,14 maps each numerical lipid
feature to two separate binary features, high-level lipid and
low-level lipid, allowing for a finer-grained analysis of the
effects of different lipid levels. Use of this approach was
performed to improve robustness and interpretability of the
model. More details on bin-split binarization approach are
included in the Data Supplement ([SupplementaryMethods]).

Machine Learning Methods

To identify the most optimal data-driven algorithm that can
determinemHSPC andmCRPC clinical outcomes on the basis
of the selected features, we evaluated several traditional
machine learning techniques, including Logistic regression16

with and without elastic net regularization,17 kernel support
vector machines (kernel-SVM), and Gaussian process re-
gression (GPR) with multiple kernel configurations. After
identifying the optimalmodel and tomitigate overfitting, we
trained and evaluated the model using a standard five-fold
cross-validation approach.18 All patients with mHSPC and
mCRPC were divided into five equal groups, with one group
used to test themodel, while the other fourwere used to train
the model. This process was repeated five times to ensure
each group was included in the model evaluation. To create
multi-omics classifiers for each of the four clinical outcomes
of interest, we used different genomic and lipidomic features
feature sets, as well as combinations of both. The perfor-
mance of each classifier was evaluated using five metrics:
AUC, calculated as concordance index or C-index, accuracy,
precision, recall, and sensitivity. Using Monte-Carlo five-
fold cross-validation, we report the mean and a 0.95 CI for
each metric.18,19 The risk threshold was established on the
basis of established clinical and data-driven approaches.20,21

Further details for metrics’ definition and test-score com-
putation in themachine learning pipeline are included in the
Data Supplement ([Supplementary Methods]).

Methods for Determination of Feature Effects

We analyzed the top 20 features that were observed to have
high positive or negative weights for each clinical outcome
and then calculated their relative ratios on the basis of the
raw weight values over the feature groups yielding the most
optimal performance. This was performed to get an insight
into a feature’s predictive or protective contributory role for
each clinical outcome. Details on the approach used for
calculating the relative effect ratio computations in our
feature analysis are included in the Data Supplement
([Supplementary Methods]).

Next, we adopted the survival prediction task for patients
with mHSPC and mCRPC to compute the test accuracy of the
multi-omicmodel that included both genomic and lipidomic
features, and then compared ourmethod with the previously
published candidate-based, three-lipid-signature approach,9

whichwas used for predicting clinical outcomes. Computation
details for this comparative approach are detailed in the Data
Supplement ([Supplementary Methods]).

Using the Multi-Omic Model Predicting Outcomes in
Future Patients

Finally, we explored the construction of a predictive model
for future patients using the combined multi-omic features
identified in the current study. For this, we selected the top
number of multi-omic features with the most significant
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FIG 2. Results of feature effects analysis for association of multi-omic classifier with clinical outcomes.
(A-D) For each target task, the top 20 genomic and lipidomic features with most positive and negative
effects along with their relative effect ratios are shown respectively. Machine learning was used to
compute feature weights. The relative effect ratio computations are in the Data Supplement ([Supple-
mentary Methods]). (A) Top 20 multi-omic features with most positive and negative effects associated
with survival prediction in mHSPC state. (B) Top 20 multi-omic features with most positive and negative
effects on ADT-failure prediction in mHSPC state. (C) Top 20 multi-omics features with most positive and
negative effects associated with poor prognosis prediction in mCRPC state. (D) Top 20 multi-omics
features with most positive and negative effects on exceptional survival prediction in mCRPC state. Acy,
acylcarnitine; ADT, androgen-deprivation therapy; Cer, ceramide; DG, diacylglycerol; Gene, genomic feature
sets; mCRPC, metastatic castrate-resistant prostate cancer; mHSPC, metastatic hormone-sensitive
prostate cancer; Sph, sphingolipid; TG, triacylglycerol. (continued on following page)
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effects and evaluated the following equation to generate a
probability score:

Probablity score5
1

11 exp

0
@2�N

n5 1wnxn

1
A

where N is the number of used features, wn are the top n-th
feature’s weight from the trained models, and xn are eval-
uation values of the future patients. The number of features
used can be a relatively small number compared with the
total number of feature candidates and still yield accurate

predictions. Details for generating a predictive model
probability score are detailed in the Data Supplement
([Supplementary Methods]).

RESULTS

Briefly, for the patients with mHSPC, sample draw was
performed before any initiation of ADT treatments and for
patients with mCRPC, sample blood draw was performed
after ADT failure and before initiation of mCRPC therapies.6

Patient baseline and follow-up characteristics for both
mHSPC and mCRPC cohorts are available in the Data
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Supplement ([Patient Demographics Table P1]).We observed
the predictive performance of logistic regression with elastic
net regularization using various feature sets for four target
tasks to be superior than all otherML approaches. Results for
the classical machine learning techniques, including logistic
regression without elastic net regularization, kernel-SVM,
and GPR with multiple kernel configurations, are summa-
rized in the Data Supplement ([Tables S1-4]). The logistic

regression with elastic net regularization approach was
observed to enable examination of the impact of features
since the model weights reflect feature effects after training.

Tables 1-4 demonstrate the prediction results using logistic
regression with elastic net regularization. Names of the
specific genes and lipid species for each table/task have been
detailed in the Legends section. In addition, effect ratios of

TABLE 1. AUC, Accuracy, Precision, Recall, and Sensitivity of Different Gene Alteration-Lipid Feature Combinations’ Association With Survival in
Metastatic Hormone-Sensitive Prostate Cancer State

Included Features AUC Accuracy Precision Recall Specificity

Gene 0.569 6 0.004 0.463 6 0.018 0.69 6 0.032 0.591 6 0.043 0.704 6 0.033

TG 0.404 6 0.033 0.438 6 0.024 0.456 6 0.026 0.464 6 0.03 0.414 6 0.032

Cer 0.683 6 0.005 0.642 6 0.011 0.648 6 0.011 0.72 6 0.032 0.596 6 0.025

DG 0.563 6 0.015 0.536 6 0.013 0.546 6 0.031 0.553 6 0.038 0.537 6 0.02

Gene_TG 0.398 6 0.032 0.438 6 0.027 0.452 6 0.028 0.464 6 0.03 0.409 6 0.039

Gene_Cer 0.68 6 0.004 0.64 6 0.011 0.646 6 0.011 0.714 6 0.032 0.596 6 0.025

Gene_DG 0.589 6 0.009 0.555 6 0.017 0.568 6 0.032 0.579 6 0.049 0.548 6 0.013

TG_Cer 0.583 6 0.007 0.548 6 0.005 0.563 6 0.006 0.561 6 0.024 0.557 6 0.018

TG_DG 0.467 6 0.027 0.474 6 0.01 0.506 6 0.024 0.502 6 0.028 0.457 6 0.017

DG_Cer 0.744 6 0.01 0.678 6 0.01 0.667 6 0.005 0.731 6 0.023 0.642 6 0.02

Gene_TG_Cer 0.581 6 0.005 0.545 6 0.008 0.557 6 0.01 0.548 6 0.026 0.557 6 0.018

Gene_TG_DG 0.47 6 0.026 0.477 6 0.009 0.507 6 0.026 0.507 6 0.03 0.457 6 0.017

Gene_DG_Cer 0.754 6 0.012 0.715 6 0.018 0.672 6 0.006 0.737 6 0.016 0.682 6 0.02

TG_Cer_DG 0.631 6 0.014 0.562 6 0.015 0.598 6 0.019 0.556 6 0.016 0.582 6 0.03

Gene_TG_Cer_DG 0.632 6 0.013 0.56 6 0.012 0.592 6 0.013 0.556 6 0.016 0.576 6 0.027

NOTE. Genomic features include mutations in ATM, BRCA1, BRCA2, and CHEK2; 42 species of TG; 25 species of DG; 61 species of Cer. Bolded row
represents the combination of alterations observed to have the highest AUC, accuracy, and precision/specificity/recall for the clinical outcome.
Abbreviations: Cer, ceramides; DG, diacylglycerols; TG, triacylglycerols.

TABLE 2. AUC, Accuracy, Precision, Recall, and Sensitivity of Different Feature Combinations for Association With Androgen-Deprivation Therapy
Failure in Metastatic Hormone-Sensitive Prostate Cancer State

Included Features AUC Accuracy Precision Recall Specificity

Gene 0.576 6 0.005 0.61 6 0.038 0.583 6 0.042 0.82 6 0.042 0.244 6 0.041

TG 0.415 6 0.014 0.451 6 0.026 0.489 6 0.028 0.478 6 0.032 0.433 6 0.03

Cer 0.513 6 0.035 0.487 6 0.039 0.533 6 0.025 0.508 6 0.049 0.489 6 0.045

DG 0.599 6 0.036 0.589 6 0.01 0.578 6 0.005 0.566 6 0.01 0.572 6 0.029

Gene_TG 0.414 6 0.015 0.451 6 0.02 0.491 6 0.024 0.472 6 0.027 0.44 6 0.026

Gene_Cer 0.506 6 0.035 0.482 6 0.041 0.529 6 0.028 0.497 6 0.045 0.492 6 0.05

Gene_DG 0.638 6 0.028 0.641 6 0.02 0.622 6 0.01 0.613 6 0.026 0.612 6 0.021

TG_Cer 0.401 6 0.027 0.409 6 0.02 0.454 6 0.01 0.508 6 0.016 0.349 6 0.028

TG_DG 0.446 6 0.006 0.411 6 0.015 0.466 6 0.031 0.43 6 0.031 0.416 6 0.039

DG_Cer 0.548 6 0.023 0.526 6 0.011 0.578 6 0.007 0.545 6 0.006 0.511 6 0.019

Gene_TG_Cer 0.399 6 0.028 0.409 6 0.02 0.454 6 0.01 0.508 6 0.016 0.349 6 0.028

Gene_TG_DG 0.443 6 0.007 0.42 6 0.018 0.469 6 0.025 0.43 6 0.031 0.429 6 0.025

Gene_DG_Cer 0.554 6 0.025 0.531 6 0.015 0.58 6 0.011 0.56 6 0.008 0.504 6 0.02

TG_Cer_DG 0.429 6 0.023 0.424 6 0.019 0.479 6 0.006 0.454 6 0.011 0.44 6 0.021

Gene_TG_Cer_DG 0.488 6 0.006 0.475 6 0.019 0.487 6 0.005 0.463 6 0.021 0.481 6 0.029

NOTE. Genomic features include mutations in ATM, BRCA1, BRCA2, and CHEK2; 42 species of TG; 25 species of DG; 61 species of Cer. Bolded row
represents the combination of alterations observed to have the highest AUC, accuracy, and precision/specificity/recall for the clinical outcome.
Abbreviations: Cer, ceramides; DG, diacylglycerols; TG, triacylglycerols.
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the top 20 weighted features with an individual positive or
negative weight in predicting outcomes are presented in
Figure 2A-2D. The full list of all features analyzed with their
raw weights and effect ratio is listed in the Data Supplement
([Tables S6A-S6H]).

Table 1 shows that the best performance in predicting
mHSPC patient survival, which is achieved through the
combination of gene features (mutations in ATM, BRCA1,
BRCA2, and CHEK2) and diacylglycerol (DG) and tri-
acylglycerol (TG) lipids, with an AUC of 0.754. Figure 2A

TABLE 4. AUC, Accuracy, Precision, Recall, and Sensitivity of Different Feature Combinations Associated With Exceptional Survival in Metastatic
Castrate-Resistant Prostate Cancer State

Included Features AUC Accuracy Precision Recall Specificity

Gene 0.659 6 0.007 0.685 6 0.002 0.125 6 0.03 0.118 6 0.004 0.926 6 0.006

Cer 0.572 6 0.006 0.593 6 0.004 0.322 6 0.027 0.256 6 0.009 0.763 6 0.004

Acy 0.579 6 0.006 0.623 6 0.002 0.263 6 0.018 0.12 6 0.006 0.85 6 0.005

Sph 0.531 6 0.023 0.685 6 0.002 0.18 6 0.012 0.072 6 0.003 0.95 6 0.005

Gene_Cer 0.684 6 0.015 0.686 6 0.003 0.363 6 0.015 0.301 6 0.009 0.738 6 0.005

Gene_Acy 0.706 6 0.012 0.687 6 0.002 0.275 6 0.022 0.195 6 0.011 0.832 6 0.006

Gene_Sph 0.67 6 0.011 0.656 6 0.002 0.145 6 0.015 0.092 6 0.008 0.924 6 0.007

Acy_Cer 0.598 6 0.008 0.622 6 0.004 0.281 6 0.027 0.307 6 0.009 0.725 6 0.004

Sph_Cer 0.564 6 0.01 0.635 6 0.004 0.32 6 0.027 0.237 6 0.009 0.764 6 0.004

Sph_Acy 0.629 6 0.006 0.687 6 0.001 0.244 6 0.15 0.114 6 0.011 0.843 6 0.005

Gene_Acy_Cer 0.687 6 0.013 0.688 6 0.002 0.35 6 0.02 0.316 6 0.012 0.739 6 0.006

Gene_Sph_Cer 0.665 6 0.015 0.674 6 0.002 0.336 6 0.029 0.272 6 0.011 0.722 6 0.004

Gene_Sph_Acy 0.708 6 0.013 0.687 6 0.004 0.366 6 0.012 0.218 6 0.015 0.813 6 0.005

Cer_Acy_Sph 0.596 6 0.009 0.617 6 0.004 0.291 6 0.027 0.247 6 0.009 0.732 6 0.004

Gene_Cer__Sph 0.727 6 0.014 0.701 6 0.012 0.416 6 0.018 0.336 6 0.012 0.725 6 0.004

NOTE. Genomic features include mutations in TP53, RB1 loss, and AR amplification, and lipid profiles include 61 species of Cer, 14 species of Sph,
and 3 species of Acy. Bolded row represents the combination of alterations observed to have the highest AUC, accuracy, and precision/specificity/
recall for the clinical outcome.
Abbreviations: Acy, acylcarnitines; Cer, ceramides; Sph, sphingosine.

TABLE 3. AUC, Accuracy, Precision, Recall, and Sensitivity of Different Feature Combinations for Association With Early Death in Metastatic
Castrate-Resistant Prostate Cancer State

Included Features AUC Accuracy Precision Recall Specificity

Gene 0.574 6 0.031 0.725 6 0.005 0.773 6 0.071 0.247 6 0.013 0.968 6 0.011

Cer 0.572 6 0.008 0.61 6 0.017 0.406 6 0.029 0.34 6 0.03 0.748 6 0.03

Acy 0.549 6 0.006 0.631 6 0.007 0.359 6 0.022 0.136 6 0.017 0.881 6 0.013

Sph 0.606 6 0.008 0.629 6 0.006 0.155 6 0.019 0.068 6 0.012 0.917 6 0.013

Gene_Cer 0.647 6 0.015 0.639 6 0.009 0.46 6 0.014 0.355 6 0.023 0.78 6 0.016

Gene_Acy 0.6 6 0.025 0.677 6 0.013 0.578 6 0.037 0.269 6 0.012 0.886 6 0.014

Gene_Sph 0.674 6 0.011 0.722 6 0.008 0.769 6 0.025 0.315 6 0.01 0.952 6 0.008

Acy_Cer 0.569 6 0.007 0.601 6 0.004 0.386 6 0.007 0.316 6 0.023 0.748 6 0.006

Sph_Cer 0.605 6 0.011 0.619 6 0.012 0.427 6 0.021 0.39 6 0.024 0.74 6 0.017

Sph_Acy 0.592 6 0.008 0.617 6 0.009 0.34 6 0.03 0.209 6 0.021 0.819 6 0.012

Gene_Acy_Cer 0.619 6 0.013 0.732 6 0.007 0.458 6 0.028 0.334 6 0.018 0.768 6 0.003

Gene_Sph_Cer 0.687 6 0.016 0.732 6 0.007 0.514 6 0.012 0.434 6 0.023 0.788 6 0.003

Gene_Sph_Acy 0.642 6 0.017 0.653 6 0.013 0.459 6 0.037 0.277 6 0.014 0.843 6 0.009

Cer_Acy_Sph 0.612 6 0.011 0.644 6 0.01 0.439 6 0.042 0.392 6 0.026 0.771 6 0.005

Gene_Cer_Acy_Sph 0.656 6 0.016 0.664 6 0.003 0.624 6 0.014 0.421 6 0.026 0.805 6 0.005

NOTE. Genomic features includemutations in TP53, RB1 loss, and AR amplification; Lipid profiles include 61 species of Cer, 14 species of Sph, and 3
species of Acy. Bolded row represents the combination of alterations observed to have the highest AUC, accuracy, and precision/specificity/recall
for the clinical outcome.
Abbreviations: Acy, acylcarnitines; Cer, ceramides; Sph, sphingosines.

8 | © 2023 by American Society of Clinical Oncology

Fang et al



demonstrates that the lipid feature Cer (d18:1/14:0) at a
low level, with the largest effect ratios among all negative-
weights-value features, has the most significant predic-
tive effect for survival prediction. Conversely, at a high
level, this lipid feature has the most substantial protective
effect for the task, also with the largest effect ratios among
all negative-weights-value features. Table 2 shows the
highest AUC of 0.638 for predicting ADT failure in patients
with mHSPC achieved by combining gene features (mu-
tations in ATM, BRCA1, BRCA2, and CHEK2) and diac-
ylglycerol (DG) levels. Figure 2B shows the most positive
effect of low level of DG (16:0/22:6) and the negative effect
of CHEK2 alteration. Table 3 displays the highest AUC of
0.687 for predicting poor prognosis in mCRPC state
achieved by combining gene features (mutations in TP53
along with RB1 loss and AR amplification) and sphingosine
(Sph) levels. Figure 2C shows the significance predictive
effect of the RB1 gene deletion on poor prognosis, as it has
the largest effect ratios among all negative-weights-value
features.

Table 4 presents the optimal AUC of 0.727 for predicting
exceptional survivors in mCRPC, achieved through com-
bining gene features (mutations in TP53 along with RB1
loss and AR amplification) with Cer, Sph, and Acy levels.
Figure 2D highlights the negative effect of AR amplifica-
tion and RB1 gene deletion, and the positive effect of low
level of ceramide levels (19:1/26:1) in exceptional survival
prediction.

In comparing logistic regression with elastic net regulari-
zation to the previously published limited candidate three-
lipid signature-based derivatives,9,10 we observe greater test
performance for the current setting. Detailed results are
listed in the Data Supplement ([Table S5, Fig S1]).

Results for using the top number features to predict the
probability scores in future patients results in a more effi-
cient and rapid modeling process, with no significant re-
duction in performance. The number of features selected can
be substantially smaller than the total number of features,
for instance, only 50% of the features can be used. A detailed
analysis of the trade-off for using lesser number of features
for predicting outcomes is presented in the Data Supplement
([Fig S2-S5]).

DISCUSSION

We observed that the results of logistic regression with
elastic net regularization in this study obtained greater
performance metrics for identifying the performance of
multi-omic classifier models with different combinations of
lipid species and gene alterations in different stages of mPC
progression predictive of prespecified treatment outcomes.
For patients withmHSPC, we achieved optimal 0.751 AUC for
survival prediction and 0.638 for ADT failure prediction; and
in mCRPC state, we got 0.687 for prognostication and 0.727
for exceptional survival. It is not surprising that a set of

different species and combinations of genomic and lipid
molecules may affect clinical outcomes in different stages of
cancer progression. In fact, the phylogenetic evolutionary
tree of most cancers appears to be characterized by early
mutations in a constrained set of driver genes and then is
followed by the continuous diversification of the mutational
spectrum leading to increased genomic instability in later
cancer stages with clonal evolutionary complexities after
cancer treatments that result in treatment-induced lineage
plasticity (TILP). Evaluating the composite outcomes of
host-treatment interactions along with clonal diversifica-
tion is critical for enhancing precision clinical medicine
applications as the therapeutic landscapes for treating
metastatic stage disease across all tumor types have in-
creased considerably in recent years with the approval of
several novel drugs. The Pan Cancer Analysis of the Whole
Genome (PCAWG) Consortium and The Cancer Genome Atlas
(TCGA) reconstructed the life history and evolution of driver
mutational sequences in 2,778 cancers from 38 tumor types,22

but efforts in these large tissue-based data sets did not ac-
count for the impact of treatments and stage progression on
tumor biology after diagnosis. Additionally, it is also not
possible to obtain serial tissue biopsies inmetastatic stages to
identify multi-omic alterations, which potentially is possible
to characterize using blood of other easily obtained biofluid
specimens.

The limitation of using biofluid and blood samples, however,
is that creating robustmulti-omic clinicalmodels withmany
noisy features is challenging. Classic biostatistical methods
use manual variable selection and simple models, but
struggle with numerous multi-omics features. Data-driven
machine learning models possibly offer a more promised
solution by incorporating many features into a best-fit
classifier for clinical outcome prediction. In this study, we
evaluated this using multiple mainstream machine learning
models, and observed logistic regression with elastic net
regularization to be the most satisfactory approach with a
balance between model complexity and overfitting in this
data set, which had a limited number of patients and a large
number of features. During the feature processing andmodel
building stage, we combined all features for each patient into
a comprehensive vector, serving as the input for the models.
To address the challenge of relying solely on data-driven
machine learning models, which could result in overfitting
and unstable models, we leveraged human knowledge from
previous research findings to construct candidate feature
groups and enhance the stability of the models, while in-
creasing the total number of features than have been pre-
viously included. Merging domain knowledge at the feature
selection stage addresses some of the challenges posed by a
limited number of samples and a large number of features.
The issue of noisy data still persists and can negatively affect
the robustness of the model, especially when dealing with
continuous numerical lipidomic features. To address this, we
used further binarization techniques to enhance the ro-
bustness of the model and observed acceptable test accu-
racies for prediction of all outcomes.
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Our results also compared the study methods with
the limited candidate three species-level lipid features
(ceramide [d18:1/24:1], sphingosine [d18:2/16:0], phos-
phatidylcholine [16:0/16:0]) previously reported on the basis
of a linear logistic model for reaching significant associa-
tions with outcomes. Our data-driven machine learning
approach incorporating a greater number of genomic and
lipidomic features and guided by elastic net regularization
showed better test accuracies (Data Supplement [Supple-
mentary Results]). Finally, we were able to construct a
probability model that can accommodate multiple features
and using a specific feature to predict the outcome in future
patients.

One limitation of our study is that the final model with op-
timal performances is a linear machine learningmethod with
limited capacity, and we believe that if we had access to a
larger patient data set, we can train a more powerful and
robust nonlinear model, leading to better performance.
Nevertheless, encompassing tumor heterogeneity into a
classifier model that is based on measuring biomarkers from
different pathways for prediction of clinical outcomes is likely
more robust than a single-molecule, single-pathway–based
classifier. In this study, our attempt was to perform this
deterministic evaluation of multi-omic classifiers. Indepen-
dent validation of this preliminarymodel approach, however,
will need to be tested in future patients and larger cohorts.
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