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ABSTRACT. Purpose: The inherent characteristics of transthoracic echocardiography (TTE)
images such as low signal-to-noise ratio and acquisition variations can limit the
direct use of TTE images in the development and generalization of deep learning
models. As such, we propose an innovative automated framework to address
the common challenges in the process of echocardiography deep learning model
generalization on the challenging task of constrictive pericarditis (CP) and cardiac
amyloidosis (CA) differentiation.

Approach: Patients with a confirmed diagnosis of CP or CA and normal cases from
Mayo Clinic Rochester and Arizona were identified to extract baseline demographics
and the apical 4 chamber view from TTE studies. We proposed an innovative pre-
processing and image generalization framework to process the images for training
the ResNet50, ResNeXt101, and EfficientNetB2 models. Ablation studies were con-
ducted to justify the effect of each proposed processing step in the final classification
performance.

Results: The models were initially trained and validated on 720 unique TTE studies
from Mayo Rochester and further validated on 225 studies from Mayo Arizona. With
our proposed generalization framework, EfficientNetB2 generalized the best with
an average area under the curve (AUC) of 0.96 (�0.01) and 0.83 (�0.03) on the
Rochester and Arizona test sets, respectively.

Conclusions: Leveraging the proposed generalization techniques, we successfully
developed an echocardiography-based deep learning model that can accurately
differentiate CP from CA and normal cases and applied the model to images from
two sites. The proposed framework can be further extended for the development of
echocardiography-based deep learning models.
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1 Introduction
Transthoracic echocardiography (TTE) is one of the most widely available imaging modalities in
clinical cardiology, and it has been used as the first-line screening tool in various cardiac
conditions.1–5 In addition to its availability, TTE has the advantages of having a high temporal
resolution and being radiation free. Despite its importance in TTE echo studies for clinical phe-
notyping, there is also significant variance in the human interpretation of echocardiogram images
that could impact diagnosis and clinical care. Formalized training guidelines for cardiologists
recognize the value of experience in interpreting echocardiogram images, and basic cardiology
training might be insufficient for interpreting echocardiograms at the highest level. The reading
of the studies is difficult based on not only the reader variations but also the positioning of
the probe, length of the acquisition, breathing cycle, and variation in image reconstructions by
different devices.

As an ultrasound-based technology, echocardiography images come with intrinsic limita-
tions such as a smaller field of view and low signal-to-noise ratio.6 Furthermore, the background
noise and intensity distribution can vary between studies, which can be changed with the ultra-
sound machine vendors as well as the settings at the time of scanning. The above conditions can
also significantly limit the generalization of echocardiography-based artificial intelligence (AI)
models, especially when using cross-institution data for external validation. However, most of
the recent echocardiography-based AI studies emphasized model performance,7–9 and detailed
step-by-step preprocessing or generalization instructions for addressing the common obstacles
were not available.

Previous works10 on developing more generalizable deep learning models on echocardio-
grams have used traditional data augmentation techniques, which include geometric transforma-
tions such as flipping and rotation as well as adjusting the contrast and saturation of the image.
For example, Madani et al.11 applied standard data augmentation during training with up to
10 deg rotation and 10% height and weight shifts and obtained 91.2% accuracy for binary left
ventricular hypertrophy classification on the on hold-out internal dataset. Yu et al.12 also applied
traditional image augmentation to the echocardiograms, including random shifts of contrast,
brightness, or saturation, with or without horizontal flips, for classifying left ventricular hyper-
trophy. But even though these models showed encouraging performance on the internal datasets,
the generalization capability was never validated on an external dataset from another center. Silva
et al.13 developed a 3D convolutional neural network (CNN) model for classification of ejection
fraction, but no particular data augmentation scheme was mentioned in the study, and no gen-
eralization was shown for other center data. Østvik et al.14 applied more realistic augmentation
designed for ultrasound (US), e.g., Gaussian shadowing, haze artifacts, depth attenuation and
speckle reduction, and demonstrated good motion estimation generalization for different echo
vendors.

In this study, we choose the challenging constrictive pericarditis (CP) patients as the study
population because these echocardiography studies contain most of the common issues that one
could encounter in echocardiography-based AI studies. A dilemma in training models for CP is
how to preserve the characteristic septal bounce feature, an abnormal motion of the interven-
tricular septum termed interventricular septal shift that is suggested to be one the three most
useful clinical criteria for diagnosis of CP,15 in spatio-temporal relationships and avoid overfitting
to small training samples due to the rarity of the disease. In addition, these studies usually include
burned-in respirometers to investigate the characteristic septal bounce, which can be a potential
target leak of CP cases.

2 Materials and Methods

2.1 Population Selection
The study was approved by the Mayo Clinic Institutional Review Board (protocol #19-
009303). Patients who underwent a TTE study at Mayo Clinic from January 01, 2003, to
December 31, 2021, were reviewed to identify the cases of CP and cardiac amyloidosis
(CA) [as the representative of restrictive cardiomyopathy (RCM)]. Specifically, the diagnosis
of CP was confirmed by surgery, and the diagnosis of CAwas established by endomyocardial
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biopsy or advanced imaging modalities.14 Cases with normal echocardiography were used as
the control group.

Patients were excluded if any of the following conditions were present in the echocardio-
graphic study: (1) inadequate echocardiographic images; (2) greater than or equal to moderate
aortic/mitral regurgitation or aortic/mitral stenosis; (3) significant pericardial effusion; (4) pros-
thetic valve; (5) mitral/tricuspid valve annuloplasty; (6) conduction delay [greater than or equal to
first degree atrioventricular (AV) block, left bundle branch block, or AV dissociation]; (7) intra-
cardiac device such as a pacemaker; (8) cardiac resynchronization therapy device or implanted
cardioverter device; and (9) increased respiratory effort (i.e., chronic obstructive lung disease,
severe obesity), patients with significant pericardial effusion, patients with atrial fibrillation/
flutter, and patients with severe right ventricular (RV) dysfunction. If any of the three parameters
(hepatic vein, mitral inflow, medial e′) was not available, patients were excluded. We primarily
selected Mayo Clinic Arizona data as our internal training and test set and Mayo Clinic Rochester
data as the external test set. Even though both centers are within the Mayo enterprise, the practice
pattern and acquisition devices are different between the two centers. We summarize the cohorts
in Table 1, and Sec. 2.2 describes the performance of the models only on the hold-out internal and
external test data.

2.2 Challenges Faced During the Model Design and Implementation
Our primary objective is to devise an efficient and generalizable model for differentiating CP,
CA, and normal cases based on the standard apical 4 chamber (A4C) view from TTE studies.
However in Secs. 2.2.1–2.2.3, we list interesting challenges that we observed while implement-
ing a deep learning approach for TTE studies.

2.2.1 Burned-in information about respiratory line entanglement

Additional objects in the echo images can bias the model prediction—especially when subsam-
ples from a particular class contain the prominent object. The CNN model learns to recognize
those prominent objects as the discriminative marker of the class rather than anatomical features,
e.g., burned-in text information in the chest x-ray images.16 We observed that many CP images
(not all) in our training dataset contain respiratory lines, highlighted in Fig. 1, which were spe-
cifically used to record variations over the respiratory cycle in the workup of CP cases.15 These
inconsistent respiratory lines are placed across the AP4 view images with high contrast against
the background heart. Early in our experimentations, the existence of these respiratory lines
became heavily correlated with the CNN discrimination of CP versus normal cases as seen by
the gradient-weighted class activation mapping (GRADCAM) activation heatmaps focusing on
the bottom right corners in Fig. 1. During experimentation, even if we removed the bottom ⅓ of
the images (to remove most of the lines without removing too much of the image that held the
pertinent information), the model still focused on the bottom corners of the images as the CP and
normal cases still focused mostly on the bottom right corner where some of the respiratory lines
were still present.

2.2.2 Lack of available data for the rare diagnosis

Ideally, the deep learning-based CNN model requires a significantly large amount of data to train
the model. As a general rule of thumb, the size of a dataset should be at least about 10× trainable
parameters of the model. Echo studies generate a sequence of frames as video and need sequen-
tial processing of frames for capturing the heart motion, which requires either a sequential model
[e.g., recurrent neural network (RNN)] or a 3D CNN model for video processing. Given the
limitation of data availability for the rare clinical cases, it is impractical to design a 3D
CNN model targeted for video processing (trainable parameters >10M) with such a limited
amount of data for clinical cases. In particular, in our targeted task, CP studies from tertiary referral
centers are extremely rare.15,17–19 The collection of an unbalanced dataset with mostly normal TTE
cases may not provide enough power to the model for training the discriminative task of determin-
ing the subtle differences of the anatomy.
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2.2.3 Issue with model generalization: image intensity differences between
the internal and external data

Generalization refers to the AI model’s ability to adapt to new, previously unseen data.
Traditionally, internal validation or holdout tests were performed to observe the generalizability
of deep learning models. However, unique characteristics of medical datasets is the variety of
manufacturers and the difference in acquisition protocols across institutions. For example,
in echo devices alone, there are many manufacturers such as general electric (GE), Philips,
Samsung, and Toshiba to name a few, with each manufacturer having many different machines,
various probes, and acquisition parameters available. In addition, there are acquisition
differences across institutions such as the A4C views being left-right flipped at Mayo Clinic

Table 1 Cohort characteristics: demographics and comorbidities. Statistics are shown for both
internal and external datasets.

Characteristics Internal train and test External test

No. of patients (studies) 720 225

No. of frames Total: 65,031 Total: 14,502

Train: 38,202

Validation: 13,637

Test: 13,192

Age (mean ± std) 54.9 ± 17.4 62.6 ± 17.5

Gender Male: 53% Male: 23%

Female: 47% Female: 77%

Race White: 85% White: 91.7%

Asian: 13.7% Asian: 4.3%

Black: 1.3% Black: 4.0%

Ethnicity Hispanic or Latino: 12% Hispanic or Latino: 8%

Not Hispanic or Latino: 88% Not Hispanic or Latino: 92%

Comorbidities at
the time of TTE

Afib: 69 (10%) Afib: 23 (10%)

Cancer: 13 (2%) Cancer: 11 (5%)

Hypertension: 152 (21%) Hypertension: 91 (40%)

Chronic kidney disease: 83 (12%) Chronic kidney disease: 9 (4%)

Coronary artery disease: 76 (11%) Coronary artery disease: 12 (5%)

Diabetics (Type I and Type II):
47 (7%)

Diabetics (Type I and Type II):
24 (11%)

Diagnosis

CA CA: 197 (27.4%) CA: 165 (73.3%)

CP CP: 184 (25.6%) CP: 16 (7.1%)

Normal Normal: 339 (47.1%) Normal: 44 (19.6%)

Device GE (92.5%) GE (100%)

Philips (5.4%)

ACUSON (2.1%)
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(known as “Mayo format”) versus other institutions. With these factors in mind, we cannot reli-
ably conclude that models are generalizable just by looking at their performance within only a
holdout test set that is selected from the internal dataset and has homogeneous acquisition param-
eters. External data, e.g., data collected from different institutions, are necessary to judge the
generalizability of the models across different manufacturers and acquisition protocols. We sim-
ply plot the differences between our internal and external datasets by comparing the differences
of the intensity histogram between internal train, validation, test, and external test sets. Figure 2
shows that, although the internal sets are very similar to each other, to the point that they overlap,
the intensity distribution of the external set was significantly different, making the generalization
of our models difficult.

3 Methodology
Figure 3 shows a diagrammatic representation of the proposed framework that highlights the core
processing blocks, namely the preprocessing block, shown in more detail in the Supplementary

Fig. 2 Randomly sampled images of the internal and external sets and a graph of the intensity
histogram distribution. (a) Random samples of the internal set, (b) random samples of the external
set, and (c) internal (train, validation, test) and external set’s normalized intensity histogram.

Fig. 1 Randomly sampled GRADCAM activation heatmaps overlaid on single frames of three
different exams: (a) full input images and (b) bottom third removed input images. The red arrows
highlight the burned-in respiratory line present in CP TTEs.
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Material, generalization block, framewise classification block, and examwise diagnosis block.
The trained framework is designed to directly read the video clips and produce a probabilistic
diagnosis at the exam level. The preprocessing block is similar to the preprocessing done in our
previous paper20 in which the raw digital imaging and communications in medicine format
(DICOM) file of the A4C TTE video clips is loaded and individual frames are separated and
saved as.png files for further processing. The classification block tested several different families
of model architectures (ResNet, ResNeXt, and EfficientNet) that were deemed to be relevant to
the task at hand. Finally, a meta-learner block consolidates the framewise predictions into one
examwise prediction.

3.1 Innovative Solutions for the Challenges
As mentioned in the introduction and literature review, there were no echocardiogram specific
augmentations, only general computer vision augmentations such as geometric transformations
and contrast adjustments. However, as mentioned in Sec. 2.2, common augmentation techniques
could not resolve the problems of the model not generalizing well on the external datasets that
have different intensity distributions and those with respiratory lines absent. As such, in our
proposed framework, we integrate the following innovative solutions for the TTE study chal-
lenges mentioned above. The code used to preprocess and train the images with the solutions
is available in a Github repository.

3.1.1 Augmentation of artificial respiratory line templates

To disentangle the burned-in respiratory lines from the model’s decision-making criteria, we
introduced a random augmentation of artificial respiratory lines in model training. We generated
10 artificial templates of the respiratory lines observed in our training data (see Fig. 4). From the
set of 10 templates, the model randomly selects 1 artificial respiratory line and replaces the origi-
nal pixel value in the image with the line template value. We coded a 50% chance of augmen-
tation during model training. With the random addition of these artificial respiratory lines during
model training, the model does not focus on the lines and extrapolates information much better
from the heart image itself for its decision making as seen in the bottom row of Fig. 8.

3.1.2 Assimilating heart motion

As the echocardiograms are diagnosed by viewing them in motion, a 3D-video classifier (two
dimensions of the echocardiogram image and one dimension of time) would be an ideal model
architecture for this task. Given the rarity of the condition, we obtained a total of 720 patients,
and only 184 of them were CP cases. Although this is a decent number compared with the pre-
vious literature,13 the dataset is relatively small for 3D convolutional neural network model train-
ing. To train a deep learning algorithm to classify these videos, we increased the number of
samples available by extracting the individual frames of the echocardiogram video. By training

Fig. 3 Architecture of the proposed model. Blocks represent the different modules.
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a 2D deep learning model on individual frames, we increased the sample size from 720 to 65,031.
However, CP is a disease in which the pericardium becomes stiff and interferes with the heart’s
pumping ability and motion information is very valuable and unfortunately removed from indi-
vidual frame information. As mentioned above, individual frames do not have any motion infor-
mation that is important for this task. To embed motion information into the model training,
we combined 3 consecutive frames into a single RGB image as ImageRGB ¼ P

3
n¼1 frametn−1 ,

where ti is the index of the individual frame with the non-grayscale color representing the motion
information, as seen in Fig. 5. The comparisons of a single frame versus motion-embedded RGB
image are given in Sec. 4 (Table 4).

Fig. 4 Ten hand-drawn respiratory lines that were randomly sampled to augment the dataset.
The last row contains the original frame without respiratory lines (far left) and three randomly
drawn respiratory lines applied on the original image.

Fig. 5 Motion embedding.
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3.1.3 Generalization techniques

As shown in Fig. 2, generalizability of our models on external data was a concern due to the
difference in basic image characteristics, e.g., the intensity differences between the internal and
external data and the possibility of overfitting with deep learning models. To mitigate such issues,
we preprocessed the images by intensity histogram matching to normalize the intensity of the
training and testing set and augment the training dataset with Gaussian noise and color jitter, as
seen in Fig. 6. Matching the average intensity during preprocessing allows the model to see
consistent images that are within the intensity distribution that the model expects, whereas the
Gaussian noise mimics the specular nature of the ultrasound and allows the model to be more
robust to ultrasound noise. Finally, the color jittering allows for the model to be robust to the
different exposure of the ultrasound that may differ across institutions and technicians. In addi-
tion, to select the most generalizable model that does not overfit, we tested three families of deep
model architectures focusing on the generalization aspect, ResNet, ResNeXt, and EfficientNet,
which are discussed in Sec. 3.1.4.

3.1.4 Model selection

During the selection of an optimal deep learning architecture for an image classification task, one
needs to take into consideration the heterogeneity of the input data, the complexity of the task,
and the level of precision desired for the task. In general, these considerations become trade-offs
between simple, lightweight models that are fast, moderately precise, and easily generalizable
versus complex, deep models that are slow, very precise, and prone to overfitting. However, in
medical imaging tasks, models must be sufficiently complex and deep to extract the underlying
imaging marker from both high and low levels, and it is a matter of selecting a specific family of
models with attributes that are appropriate for the target task. As such, we selected three different
families of models: ResNet (residual block), ResNeXt (residual block with a split-transform-
merge function), and EfficientNet (inverting residual blocks and scaling the resolution of the
network), to test and determine which model performs the best and test their generalization
on external data. ResNet21 is a family of architectures that provides the advantages of a residual
block: allowing networks to be deeper (more complex relations are extracted) while retaining
pertinent image information. The key idea of the residual block is that, through skip connections
and identity mapping, it allows the model/block to reference its original input rather than the
encoded function. In simpler terms, it allows the model to refer to the original image when
it makes its decision rather than some abstraction of the original image. This in turn allows deeper
models to perform better than shallow ones (solving the degradation problem) and avoids the
vanishing gradient problem in which redundant information confounds the model. ResNeXt22

Fig. 6 Preprocessing and augmentations: (a) image histogram matched to the training data and
(b) several examples of an image with color jitter.
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architecture expands on ResNet’s residual blocks by introducing a split-transform-merge strategy
defined as the model’s cardinality. The cardinality of the model determines the number of trans-
formations applied to a lower-dimensional embedding, which are then summed. Each transfor-
mation extracts different features from the image and allows the model to get a comprehensive
picture by viewing the problem from many different angles. EfficientNet23 builds on the ResNet
backbone in two different ways: inverting residual blocks and effectively scaling the depth,
width, and resolution of the model. The inverted residual blocks from MobileNetV212 architec-
ture “invert” the basic residual block by making skip connections between narrow-wide-narrow
layers instead of the classic wide-narrow-wide layers, which is considerably more memory effi-
cient. The depth, width, and resolution of the network are widely known parameters that con-
tribute to the extraction of more rich and complex features, fine grain features along with easier
training, and fine-grained patterns, respectively. However, each parameter comes at the cost of
the difficulty of training due to vanishing gradients for depth, inability to capture higher level
features for width, and diminishing returns for resolution. As such, EfficientNet systematically
and uniformly scales each parameter with a compound coefficient, which achieves much better
accuracy and efficiency and allows for fast and efficient models to be deployed in clinical
practice.

3.1.5 Model training and hyperparameter tuning

We applied a 60:20:20 (train:validation:test) split on the internal dataset to train and internally
test the model. The external dataset is only used for model testing. The validation split is used to
tune the optimal hyperparameters using a grid search method among the following parameters:
learning rate from [0.0002 to 0.000001] and weight decay from [0.0 to 0.5]. These hyperpara-
meter ranges were determined from our previous paper that dealt with echocardiograms.20

The hyperparameters used for the consecutive frame classification method were a batch size
of 32, a learning rate of 0.000001, and a weight decay of 0.3 with cross-entropy loss for
200 epochs. The models were trained on an Nvidia RTX A5000 GPU. To prevent data leakage,
we generated the split at the study level, so no images from the same study are mixed between the
train and test.

4 Results

4.1 Comparative Analysis of Various Augmentation Methods
We evaluated the effect of the various augmentations in a stepwise manner to compare using the
same training and test set: (1) state-of-the-art models with no augmentation, (2) state-of-the-art
models with common augmentation strategies such as geometric augmentations, and (3) state-of-
the-art models with our proposed method in Table 2. The table shows notable improvements in

Table 2 Tabular data showing the overall performance of the various model architectures and
augmentation methods on the internal test set in terms of precision, recall, and F1-score.
Optimal performance is highlighted in bold. 95% confidence interval added for framewise results.

Average internal test performance

ResNet50 ResNeXt101 EfficientNetB2

Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

No augmentation 0.843 ±
0.008

0.836 ±
0.012

0.836 ±
0.012

0.876 ±
0.008

0.873 ±
0.010

0.873 ±
0.010

0.856 ±
0.009

0.851 ±
0.013

0.851 ±
0.013

Traditional
augmentation

0.879 ±
0.007

0.874 ±
0.011

0.874 ±
0.010

0.873 ±
0.007

0.869 ±
0.010

0.869 ±
0.009

0.862 ±
0.010

0.855 ±
0.015

0.855 ±
0.014

Proposed method 0.906 ±
0.007

0.903 ±
0.008

0.904 ±
0.008

0.892 ±
0.006

0.890 ±
0.006

0.890 ±
0.006

0.868 ±
0.010

0.864 ±
0.013

0.864 ±
0.013
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performance from no augmentation, common augmentations, and our proposed method. The
table shows the best performance with a ResNet50 architecture with our proposed method.
However, as shown later in the analysis, ResNet50 and ResNeXt101 seem to overfit with the
performance improvements, whereas EfficientNetB2 has modest improvements and generalizes
better.

4.2 Comparative Analysis of Various Model Architectures
We evaluated the quantitative performance of the model architectures on the same internal and
external test sets in terms of area under the receiver-operating characteristic curve (AUROC) (see
Fig. 7) and standard statistical metrics—precision, recall, and F1-score (internal test: Table 3 and
external test: Table 4). Our models compute a framewise prediction, and finally, we aggregate
the framewise prediction results to a studywise performance by averaging the prediction prob-
abilities across all frames.

In Fig. 7 and Table 3, we do not observe any significant performance difference between
ResNet50, ResNeXt101, and EfficientNetB2 on the internal test set. However, on the external
dataset, EfficientNetB2 achieved the highest generalization performance (AUROC for CA 0.88,
CP 0.82, and normal 0.79), which could be due to effectively scaling the depth, width, and res-
olution of the model on the validation data. We observe a significant drop in studywise perfor-
mance for the CP class and normal on the external dataset (Table 4); we only obtained 16 CP
cases and among them 3 cases are misclassified as normal, and among 42 normal cases, 12 are
misclassified as CP, which were manually reviewed to be subtle or borderline cases as described
in more detail in Sec. 5. Of the misdiagnosed external cases, a manual review by (Chieh-Ju Chao
and Reza Arsanjani) showed that these cases were on subtle or borderline cases. Of the three
misdiagnosed CP cases, two were identified as borderline cases with very subtle septal shifts, and
the last one showed borderline constriction features that required catheters to confirm.

4.3 Comparison of Single Frame Versus Motion-Embedded RGB Image
We formed RGB images with three sequential gray-scale frames to capture the pericardium
motion (see Sec. 3.1.2). To evaluate the efficiency of the proposed formation, we compared the
performance of the optimal EfficientNetB2 model side-by-side using single-frame input, e.g.,

Fig. 7 Area under the receiver operating curve (AUCROC) curves for all three models were tested
framewise. Each column denotes the different models, and each row denotes the internal and
external test sets training and testing AUCs as well as the confusion matrix for each model is given
in the Supplementary Material.
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Table 4 Tabular data showing the quantitative performance of the various model architectures on
the external test set in terms of precision, recall, and F1-score. Optimal performance is highlighted
in bold. 95% confidence interval added for both framewise and studywise results.

ResNet50 ResNeXt101 EfficientNetB2

Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Framewise external test

CA 0.829 ±
0.002

0.764 ±
0.003

0.770 ±
0.003

0.842 ±
0.002

0.798 ±
0.003

0.803 ±
0.003

0.850 ±
0.002

0.808 ±
0.003

0.813 ±
0.003

CP 0.851 ±
0.003

0.686 ±
0.004

0.739 ±
0.003

0.884 ±
0.002

0.785 ±
0.003

0.817 ±
0.003

0.859 ±
0.003

0.787 ±
0.003

0.814 ±
0.003

Normal 0.787 ±
0.004

0.800 ±
0.003

0.791 ±
0.004

0.787 ±
0.004

0.798 ±
0.003

0.791 ±
0.003

0.769 ±
0.004

0.718 ±
0.004

0.735 ±
0.003

Studywise external test

CA 0.983 ±
0.012

0.824 ±
0.027

0.896 ±
0.017

0.971 ±
0.020

0.708 ±
0.031

0.819 ±
0.022

0.982 ±
0.014

0.728 ±
0.033

0.836 ±
0.022

CP 0.207 ±
0.082

0.688 ±
0.106

0.311 ±
0.098

0.177 ±
0.075

0.752 ±
0.104

0.279 ±
0.097

0.312 ±
0.108

0.804 ±
0.097

0.440 ±
0.117

Normal 0.560 ±
0.133

0.429 ±
0.072

0.479 ±
0.078

0.580 ±
0.136

0.457 ±
0.073

0.504 ±
0.080

0.480 ±
0.132

0.682 ±
0.068

0.553 ±
0.099

Table 3 Tabular data showing the quantitative performance of the various model architectures on
the internal test set in terms of precision, recall, and F1-score. Optimal performance is highlighted
in bold. 95% confidence interval added for both framewise and studywise results.

ResNet50 ResNeXt101 EfficientNetB2

Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Framewise internal test

CA 0.933 ±
0.002

0.934 ±
0.002

0.934 ±
0.002

0.922 ±
0.002

0.922 ±
0.002

0.922 ±
0.002

0.933 ±
0.002

0.934 ±
0.002

0.933 ±
0.002

CP 0.916 ±
0.002

0.916 ±
0.002

0.916 ±
0.002

0.951 ±
0.002

0.951 ±
0.002

0.951 ±
0.002

0.912 ±
0.002

0.912 ±
0.002

0.912 ±
0.002

Normal 0.931 ±
0.002

0.931 ±
0.002

0.931 ±
0.002

0.929 ±
0.002

0.927 ±
0.002

0.927 ±
0.002

0.879 ±
0.002

0.874 ±
0.003

0.875 ±
0.003

Studywise internal test

CA 0.914 ±
0.054

0.898 ±
0.046

0.905 ±
0.038

0.918 ±
0.051

0.902 ±
0.043

0.909 ±
0.034

0.911 ±
0.055

0.850 ±
0.053

0.878 ±
0.040

CP 0.969 ±
0.030

0.922 ±
0.041

0.944 ±
0.027

0.940 ±
0.042

0.921 ±
0.042

0.930 ±
0.031

0.911 ±
0.056

0.894 ±
0.048

0.901 ±
0.040

Normal 0.938 ±
0.035

0.987 ±
0.013

0.961 ±
0.020

0.920 ±
0.043

0.957 ±
0.026

0.938 ±
0.026

0.906 ±
0.049

0.971 ±
0.020

0.937 ±
0.029
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using one frame for all RGB channels, and multi-frame input, e.g., using consecutive frames for
each RGB channels (Table 5). Although the model was able to extract information about the
pericardium from single frame images and perform well on the test set, our experiments showed
that adding the motion information significantly improved the performance of the model for CA
and normal cases with a small reduction in CP cases on the internal test set, but the performance
difference is minimal.

4.4 GRADCAM and Ablation Studies
GRADCAMs are often used to interpret the performance of the model by localizing the acti-
vations of the final convolution layer of the model during the investigation.24 In Fig. 8, we show
the activations of the model overlaid on top of the input image to show where the model was
focusing when it made its classification on correctly and incorrectly classified images. In Fig. 8,
the top row shows the correctly classified studies in which the model correctly focuses on the
region of septal thickness and large atrium for classifying CP [Fig. 8(a)] and wall thickening for
classifying CA [Fig. 8(b)]. Among the three wrongly classified CP cases on the external dataset,
we visualized two representative samples. Figure 8(c) is particularly an RV focused view; it loses
the left ventricle, the lateral annular motion seems okay, and atrium is not enlarged as much.
Given these qualities and anatomical specification, we believe that the model predicted this case
as normal instead of CP. Figure 8(d) is another external CP case that was classified as CA. From

Table 5 Comparisona between single frame and multi-frame input for the EfficientNetB2 models
using the internal test set. Optimal performance is highlighted in boldb.

Single-frame test Multi-frame test

Precision Recall F1-score Precision Recall F1-score

CA 0.904 ± 0.002 0.906 ± 0.002 0.904 ± 0.002 0.933 ± 0.002 0.934 ± 0.002 0.933 ± 0.002

CP 0.923 ± 0.002 0.921 ± 0.002 0.919 ± 0.002 0.912 ± 0.002 0.912 ± 0.002 0.912 ± 0.002

Normal 0.863 ± 0.003 0.851 ± 0.003 0.851 ± 0.003 0.879 ± 0.003 0.874 ± 0.003 0.875 ± 0.003

aPerformance metrics reported are bootstrap confidence intervals with 1000 iterations and a minimum sample
size of 25% of the data.

bBolded results are significantly different than their counterparts with at least one standard deviation of
difference.

Fig. 8 GRADCAM images overlaid on the original echo frames: (a) correctly classified CP case;
(b) correctly classified CA case; and (c), (d) wrongly classified CP cases.
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the GRADCAM, it seems that the model is looking at the right area, but the septal bounce for this
case is not pronounced, which is one of the common characteristics for CP; thus it could be easily
mistaken.

In the ablation study design, we focus on two parallel strategies: (1) time ablation and
(2) frame portion ablation as shown in Fig. 9. We designed time ablation to understand the

Fig. 9 Different types of ablations: (top row) time ablation, (bottom row) frame portion ablation,
and image flip ablation. (a) Past removed, (b) future removed, (c) bottom removed, and (d) hori-
zontal flip.

Table 6 Side-by-side framewise and examwise performance for all ablation settings.

Framewise performance Examwise performance

Class Precision Recall F1-score Precision Recall F1-score

Ablate past frame

CA 0.929 ± 0.002 0.929 ± 0.002 0.929 ± 0.002 0.913 ± 0.055 0.874 ± 0.050 0.892 ± 0.040

CP 0.898 ± 0.002 0.899 ± 0.002 0.897 ± 0.002 0.962 ± 0.035 0.788 ± 0.064 0.865 ± 0.042

Normal 0.873 ± 0.003 0.866 ± 0.003 0.866 ± 0.003 0.863 ± 0.061 0.986 ± 0.013 0.919 ± 0.036

Ablate future frame

CA 0.928 ± 0.002 0.928 ± 0.002 0.928 ± 0.002 0.911 ± 0.056 0.848 ± 0.054 0.877 ± 0.042

CP 0.905 ± 0.002 0.905 ± 0.002 0.903 ± 0.002 0.930 ± 0.053 0.814 ± 0.057 0.867 ± 0.042

Normal 0.880 ± 0.003 0.871 ± 0.003 0.872 ± 0.003 0.872 ± 0.060 0.986 ± 0.013 0.924 ± 0.035

Ablate bottom third frame

CA 0.932 ± 0.002 0.933 ± 0.002 0.932 ± 0.002 0.939 ± 0.044 0.876 ± 0.046 0.905 ± 0.033

CP 0.917 ± 0.002 0.918 ± 0.002 0.917 ± 0.002 0.934 ± 0.049 0.869 ± 0.055 0.899 ± 0.040

Normal 0.891 ± 0.002 0.882 ± 0.003 0.883 ± 0.003 0.910 ± 0.049 1.000 ± 0.000 0.952 ± 0.027

Horizontal flip

CA 0.927 ± 0.002 0.928 ± 0.002 0.926 ± 0.002 0.933 ± 0.047 0.775 ± 0.065 0.845 ± 0.047

CP 0.912 ± 0.002 0.913 ± 0.002 0.912 ± 0.002 0.935 ± 0.048 0.894 ± 0.046 0.913 ± 0.034

Normal 0.880 ± 0.002 0.865 ± 0.003 0.866 ± 0.003 0.856 ± 0.069 0.986 ± 0.014 0.915 ± 0.042
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importance of the past and future frame reference. In time ablations, we replace the past frame or
future frame using the current frame, which may cause some information removal of the cardiac
motion. In the frame ablation, we removed the bottom part of the image that the model was
focusing on for respiratory lines (see Fig. 1). To ensure generalizability to other institutions that
may have reverse side acquisition, we also applied horizontal flipping to the test images and
computed the results.

As can be observed from Table 6, the model performance reduces after dropping only the
past and future frame for all of the targeted classes—(ablation of the past frame) CA F1-score:
−0.004, CP F1-score: −0.015, normal: −0.009; (ablation of the future frame) CA F1-score:
−0.005, CP F1-score: −0.009, normal: −0.003. This observation shows that the strategy of add-
ing multiple frames helps the model’s discrimination ability. Given our innovative augmentation
of artificial respiratory lines, ablating the bottom third of the frame does not have any drop on the
performance and even improved the performance for the CP and normal classes—CA F1-score:
−0.001, CP F1-score: þ0.005, normal: þ0.008. Horizontal flipping was applied to see how the
model would perform on a non-Mayo standard format, with the Mayo format being a horizon-
tally flipped TTE. It also minimally affects the performance and thus shows generalization to our
modeling strategy for other institutions.

5 Discussion
Echocardiography has been considered the first line diagnostic tool for CP.15,25 However, the
accuracy of an echo-based diagnosis largely depends on the quality of the echocardiography
study, which requires skilled sonographers and experienced interpretation physicians.25

Moreover, it is known that medical image analysis is impeded by a lack of machine learning
and deep learning model generalizability and the ability of a model to predict accurately on varied
data sources not included in the model’s training dataset. In this retrospective study, we proposed
some innovative and simplistic image preprocessing and augmentation techniques for increasing
the generalization of the machine learning (ML) and deep learning (DL) models for echo images
on external datasets. Leveraging the generalization techniques, we successfully developed an
echocardiography-based deep learning model that can accurately differentiate CP from CA
(as a representative of RCM) and normal cases and applied the model on both internal and exter-
nal datasets even though the quality of the external dataset was significantly different from the
internal ones. Our proposed techniques can be easily applied to other TTE image case studies.

CP is an uncommon but reversible cause of heart failure with preserved ejection fraction if
identified correctly and sufficiently early. Common causes of CP included viral-induced, post
cardiac surgery, or secondary to prior chest radiation; however, many cases are idiopathic.15,18,26

The clinical presentation of CP can be similar to that of other myocardial diseases and may easily
be confused with other causes of heart failure with preserved ejection fraction, or what is gen-
erally termed RCM. CA is another uncommon condition that involves protein infiltration of
the myocardium, causing thickening of the cardiac walls and heart failure, and it may be used
as a prototype for RCM. As such, it would be clinically useful to develop a model that identifies
and differentiates CP from CA, two conditions that are challenging to diagnose clinically but
with courses that may be positively altered with early diagnosis and therapy. Importantly, with
the emergence of point-of-care ultrasound (POCUS) applications, the proposed framework can
become a primer to facilitate the generalization between datasets obtained from traditional echo-
cardiography and POCUS devices.26 Furthermore, we hope our approach can facilitate future
echo-based studies for other uncommon conditions with a limited training dataset.

The major strengths of this work include—(1) assimilating cardiac motion in a 2D image-
based model using a sequential frame-based approach, which provides a computationally effi-
cient option, avoids overfitting, and preserves the spatial-temporal relationship in the meantime.
Our multiframe approach outperformed the single frame image models (Table 5). (2) Innovative
augmentation techniques to deal with burned-in respiratory line entanglement strategy provide
an efficient template-based way to confuse the model against learning the burned-in image
information. In our external cohort, many of the CP images were obtained with a respirometer
reflecting septal bouncing over the respiratory cycle as part of the diagnosis criteria.17 The
template-based augmentation strategy significantly reduces the cautionary image preprocessing
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steps to deal with the burned-in information and help to preserve the original image quality. The
GRADCAM and ablation analysis (Table 6) also demonstrated that the model was not relying on
the respirometer curves for decision making. (3) The generalization technique for the external
dataset with histogram normalization and color jitter helps to minimize the image variations
for the external dataset. The proposed techniques can be easily extendable for other echo image
case studies.

5.1 Limitations
The study is limited by its retrospective nature. Although the overall training sample size is
relatively small from a machine learning perspective, our cohort contains one of the largest
CP series available. The frame-based approach also provides a reasonable method of data
augmentation and counters the issue of overfitting. Compared with a video-based approach,
our frame-based approach may lose certain information about spatio-temporal relationships,
but our model achieves an overall superior performance compared with the single frame perfor-
mance. An online calculator of this model is currently under work, and we plan to release models
and trained weights with the Massachusetts Institute of Technology open-source license to
benchmark the performance.

6 Conclusions
In differentiating CP, CA, and normal cases using only the standard A4C view, the overall model
performance using the generalization techniques on the internal dataset is AUC > 0.95 and on
the external dataset is 0.83. We foresee the potential of this pipeline to enable an automated
clinical workflow to improve the quality of interpretation and facilitate the diagnosis of CP.
We foresee this model being used in daily echocardiography lab practice to improve the initial
triage of CP and CA cases. This model will be especially useful for labs at institutions with
limited diagnostic and/or therapeutic resources for the above conditions. Specifically, with the
high accuracy in identifying CA and CP cases, this model will largely facilitate the early rec-
ognition of these patients and potentially improve prognosis. Furthermore, we hope our approach
can facilitate future echo-based studies for other uncommon conditions such as CP with limited
training datasets.
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