Skip to main content
. 2023 Oct 12;10(5):054502. doi: 10.1117/1.JMI.10.5.054502

Table 3.

Tabular data showing the quantitative performance of the various model architectures on the internal test set in terms of precision, recall, and F1-score. Optimal performance is highlighted in bold. 95% confidence interval added for both framewise and studywise results.

  ResNet50 ResNeXt101 EfficientNetB2
Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Framewise internal test
CA 0.933 ± 0.002 0.934 ± 0.002 0.934 ± 0.002 0.922 ± 0.002 0.922 ± 0.002 0.922 ± 0.002 0.933 ± 0.002 0.934 ± 0.002 0.933 ± 0.002
CP 0.916 ± 0.002 0.916 ± 0.002 0.916 ± 0.002 0.951 ± 0.002 0.951 ± 0.002 0.951 ± 0.002 0.912 ± 0.002 0.912 ± 0.002 0.912 ± 0.002
Normal
0.931 ± 0.002
0.931 ± 0.002
0.931 ± 0.002
0.929 ± 0.002
0.927 ± 0.002
0.927 ± 0.002
0.879 ± 0.002
0.874 ± 0.003
0.875 ± 0.003
Studywise internal test
CA 0.914 ± 0.054 0.898 ± 0.046 0.905 ± 0.038 0.918 ± 0.051 0.902 ± 0.043 0.909 ± 0.034 0.911 ± 0.055 0.850 ± 0.053 0.878 ± 0.040
CP 0.969 ± 0.030 0.922 ± 0.041 0.944 ± 0.027 0.940 ± 0.042 0.921 ± 0.042 0.930 ± 0.031 0.911 ± 0.056 0.894 ± 0.048 0.901 ± 0.040
Normal 0.938 ± 0.035 0.987 ± 0.013 0.961 ± 0.020 0.920 ± 0.043 0.957 ± 0.026 0.938 ± 0.026 0.906 ± 0.049 0.971 ± 0.020 0.937 ± 0.029