Skip to main content
. 2023 Oct 12;10(5):054502. doi: 10.1117/1.JMI.10.5.054502

Table 4.

Tabular data showing the quantitative performance of the various model architectures on the external test set in terms of precision, recall, and F1-score. Optimal performance is highlighted in bold. 95% confidence interval added for both framewise and studywise results.

  ResNet50 ResNeXt101 EfficientNetB2
Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Framewise external test
CA 0.829 ± 0.002 0.764 ± 0.003 0.770 ± 0.003 0.842 ± 0.002 0.798 ± 0.003 0.803 ± 0.003 0.850 ± 0.002 0.808 ± 0.003 0.813 ± 0.003
CP 0.851 ± 0.003 0.686 ± 0.004 0.739 ± 0.003 0.884 ± 0.002 0.785 ± 0.003 0.817 ± 0.003 0.859 ± 0.003 0.787 ± 0.003 0.814 ± 0.003
Normal
0.787 ± 0.004
0.800 ± 0.003
0.791 ± 0.004
0.787 ± 0.004
0.798 ± 0.003
0.791 ± 0.003
0.769 ± 0.004
0.718 ± 0.004
0.735 ± 0.003
Studywise external test
CA 0.983 ± 0.012 0.824 ± 0.027 0.896 ± 0.017 0.971 ± 0.020 0.708 ± 0.031 0.819 ± 0.022 0.982 ± 0.014 0.728 ± 0.033 0.836 ± 0.022
CP 0.207 ± 0.082 0.688 ± 0.106 0.311 ± 0.098 0.177 ± 0.075 0.752 ± 0.104 0.279 ± 0.097 0.312 ± 0.108 0.804 ± 0.097 0.440 ± 0.117
Normal 0.560 ± 0.133 0.429 ± 0.072 0.479 ± 0.078 0.580 ± 0.136 0.457 ± 0.073 0.504 ± 0.080 0.480 ± 0.132 0.682 ± 0.068 0.553 ± 0.099