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ABSTRACT 

The protein structure prediction problem has been
solved for many types of proteins by AlphaFold. Re-
cently, there has been considerable excitement to
build off the success of AlphaFold and predict the
3D structures of RNAs. RNA prediction methods use
a variety of techniques, from physics-based to ma-
chine learning approaches. We believe that there are
challenges preventing the successful development
of deep learning-based methods like AlphaFold for
RNA in the short term. Broadly speaking, the chal-
lenges are the limited number of structures and align-
ments making data-hungry deep learning methods
unlikel y to succeed. Additionall y, there are se veral is-
sues with the existing structure and sequence data,
as they are often of insufficient quality, highly bi-
ased and missing key information. Here, we discuss
these challenges in detail and suggest some steps
to remedy the situation. We believe that it is pos-
sible to create an accurate RNA structure prediction
method, but it will require solving several data quality
and volume issues, usage of data beyond simple se-
quence alignments, or the development of new less
data-hungry machine learning methods. 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

RNA molecules pla y man y key functions within cells. Per-
haps the most striking example is in translation, where it has
been shown that the ability to build proteins is orchestrated
by ribosomal particles, with the crucial catalytic step being
performed by the ribosomal RNA itself, with amino acid
residues deli v ered specifically by tr ansfer RNAs. Untr ans-
lated regions of mRNAs and viruses harbor numerous reg-
ulatory elements. There are also a large number of noncod-
ing RN As (ncRN A) for w hich, despite decades of r esear ch,
we have only a scant understanding of their functions. An
example is the large class of long noncoding RNAs in ani-
mal genomes. These RNA genes are numerous, perhaps ex-
ceeding the number of protein-coding genes and seem to
play a range of subtle regulatory roles ( 1 ). Many ncRNA
functions depend on the stable (ribosome, tRNA) or
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Figure 1. Examples of interactions in an RNA molecule. Some of the most 
important interactions are highlighted in dashed lines: base pairing hydro- 
gen bonds in dark red, sugar-base stacking in dark violet, phosphate-base 
hydrogen bond in yellow, water-formed hydrogen bonds in cyan (waters 
are depicted as cyan balls). The bottom pair is canonical Watson–Crick, 
the pair above is a G–U pair ‘locked’ by interaction with bridging water 
molecule. G2147 is in syn orientation and dinucleotide C2146–G2147 is in 
the left-handed Z-form conformation (note the inverted direction of the ri- 
bose of C2146 further stabilized by stacking its O4’ to the guanine aromatic 
ring). Displayed is a six nucleotide loop from 80 nucleotide long fragment 
of 23S RNA from Thermus thermophilus complexed with ribosomal pro- 
tein L1 (PDB ID: 4qvi) ( 5 ). 
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ransient (spliceosome) structure of RNA. Knowledge of 
NA structures can answer basic scientific questions and 

an be of great help in design of new types of drugs and ther-
pies. Structures can help answering the fundamental ques- 
ion of evolution whether life started with RNA as ‘RNA 

orld’ ( 2 ) or other, perhaps peptide-type molecules. Ratio- 
al drug design would without a doubt benefit from reliable 
redictions of RN A structures. Increasingl y, the growing is- 
ue of bacterial drug resistance is appr oached fr om different 
erspecti v es but specific inhibition of ribosome particles of- 
ers a promising route to effecti v e treatment ( 3 ). RNA ther-
pies are attracting more attention from large pharmaceu- 
ical companies ( 4 ). 

RNA building blocks , nucleotides , are chemically com- 
lex with aromatic nitrogenous bases, chiral ribose sugar 
ings and phosphate groups. The bases are able to stack on 

ach other by van der Waals interactions, but they also carry 

arge electrical moments and can form strong hydrogen 

onds. Ribose rings strongly constrain backbone geome- 
ries by their puckers; the C3’-endo pucker prevails in RNA, 
ut a ribose can also locally adopt the C2’-endo pucker, 
hus radically changing the backbone geometry. The phos- 
hate groups are perhaps structurally the most complex 

arts of the RNA molecules due to d-orbitals in phospho- 
ous atoms. Both torsion angles describing the conforma- 
ions around the phosphodiester bonds O3’-P and P-O5’ 
alled � and � prefer -gauche orientations, but the torsions 
an adopt any other combinations of gauche, trans and - 
auche (+60 

◦, 180 

◦ and –60 

◦) conforma tions. Phospha tes in 

ucleic acids under normal conditions are charged and ren- 
er whole RNA or DNA molecules strongly negati v e, which 

eeds to be neutralized by interacting positi v e ions. The sin- 
le negati v e charge of each phosphate is distributed between 

ts unbound oxygen atoms that are highly polarizable and 

apable of forming hydrogen bonds to other RNA atoms, 
roteins and water, but also of forming char ge-char ge in- 
eractions to amino acids, other cellular components such 

s amines and prominently also to metals. All intra- and 

nter-molecular interactions in which RNA molecules are 
nvolved determine their structur es. Figur e 1 illustrates at 
east some of these physically complex interactions as they 

ere observed in a small six-nucleotide loop from an 80-nt 
ragment of rRNA from a crystal structure 4qvi ( 5 ). 

NA 3D STRUCTURE PREDICTION: ST A TE OF THE 

RT 

n the 1960s, first attempts began to reconstruct in silico the 
D structures of RNA molecules based on sequence homol- 
gy ( 6 ). These efforts became more frequent with a growing 

umber of experimentally determined 3D RNA structures. 
uilding in silico models relied largely on manual manipula- 

ion of structure templates in a computational environment. 
he first interacti v e tool targeting RNA tertiary structure 
odeling was published in 1998 ( 7 ). Se v er al y ears later, sys-

ems that could fully or semi-automatically process from 

NA sequence to a 3D model began to appear, using ab 

nitio folding such as F ARF AR ( 8 ), iFoldRNA ( 9 ), NAST
 10 ), SimRNA ( 11 ) and Vfold ( 12 ); or homology model-
ng such as RNABuilder ( 13 ) and ModeRNA ( 14 ), or a
ragment-based assembly approach used in MC-Fold / MC- 
ym ( 15 ), Assemble ( 16 ), RNAComposer ( 17 ) and 3dRNA
 18 ). In the past two years, deep learning (DL)-based pre- 
icti v e models hav e begun to emer ge. The paper by To wn-
hend et al. ( 19 ) presented a DL model that predicted the 
uality (RMSD) of a new computer-generated 3D RNA 

tructure. Meanwhile, other works ( 20–22 ) described meth- 
ds that used deep learning for the end-to-end 3D predic- 
ion of the RNA structure. 

With the increasing availability of computer-based meth- 
ds for predicting 3D RNA structures, the question of 
he reliability and quality of the generated models became 
ore important. In response , RNA-Puzzles , a collecti v e 
 lind e xperiment to critically e valuate the prediction of 3D 

NA structures, was started in 2010 ( 23 ). During the past 
2 years, RNA-Puzzles organized 38 competiti v e challenges 
 24 ) and two dedicated projects –– modeling structures from 

nknown Rfam families and untranslated region of SARS- 
oV-2 ( 25 ). Within each, participants predicted the tertiary 

tructure of a single RNA target. The predictions were eval- 
ated mainly by comparing them with a r efer ence struc- 
ure, once the latter was published in the Protein Data 

ank and the assessments for 34 challenges are currently 

nown (data as of February 2023). Se v eral similarity and 

istance measur es wer e used for evaluation, some of which 

ere specifically de v eloped for RNA ( 26–30 ). For example, 
nteraction Network Fidelity (INF), a similarity measure, 
cor es the pr ediction of base pairs, Watson–Crick (INF- 

C), non-Watson–Crick (INF-NWC) and stacking (INF- 
tacking). As shown in Figure 2 , during the 12 years of chal- 
enges in RN A-Puzzles, INF-WC generall y ranged between 

.75 and 1.0, demonstrating that most models had accu- 
ately predicted double helical stem motifs (INF = 1 means 
deal prediction and 0 is failure). Howe v er, INF-NWC 

cored close to 0 for most predictions, which is of concern 

ince non-Watson–Crick base pairs play a crucial role in 



9524 Nucleic Acids Research, 2023, Vol. 51, No. 18 

Figure 2. Distribution of values of selected evaluation measures for the predictions submitted to RNA-Puzzles from inception to 2022. Numbers in paren- 
theses next to each puzzle indicate the total number of nucleotides for all structures in each puzzle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

determining the overall fold of the RNA, influencing stem
packing and junction topologies. RMSD indicates how
the predicted 3D coordinates diverge from those of the
r efer ence structur e and shows only a few models with
RMSD < 5 ̊A . For most RNA-Puzzles, the distribution of
RMSD values is multimodal and spreads over a wide range.
Ther efor e, despite significant advances in modeling ap-
proaches, predicting RNA coordinates with nati v e-like fea-
tur es r emains challenging and r equir es improvements in
both accuracy and quality ( 31 ). 

The RNA-Puzzles initiati v e has adopted many mecha-
nisms that were de v eloped in CASP, the biennial experiment
for the critical assessment of protein structure prediction.
The first CASP competition was launched in 1994 ( 32 ), a
quarter of a century after pioneering r esear ch into 3D com-
puter modeling of protein structure began ( 33 ). Twenty-
se v en participating groups were challenged to predict the
a tomic coordina tes of 33 amino acid sequences. In subse-
quent editions of CASP, the number of targets and partici-
pants incr eased (Figur e 3 ), and new competition categories
emerged. This included a fully automatic prediction by w e b
servers, a category that started in 2000 (CASP4). Eighteen
years later, AlphaFold ( 34 ) entered the game in CASP13
( 35 ) to make a breakthrough in protein structur e pr ediction
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Figure 3. Numbers of RNA and protein structure predictions made in 
RNA-Puzzles and CASP competitions. The solid lines r epr esent the num- 
bers of groups competing in CASP and RNA-Puzzles; the dashed lines are 
for the number of pr otein / RNA targets. Fr om 2010 to 2021, RNAs were 
predicted only in RNA-Puzzles and in 2022, CASP included also RNA tar- 
gets, which is responsible for the recent spike in targets and groups involved 
in 3D RNA structure prediction. 

i
s
fi
s
c
c
t
f
c
R
s
i
F
R
n
t
a

T

A
4
t
h
m
s
s
w
i
d

R

S
1  

k
t
t
e
s
n
b
a
s
v
a
b
t
b  

P
t
t
t
1
i
c
a
e
e
i
m
t
b
s
s
t

R

T
l
6
e
t
t
v
w
q
l
c
o
i
b
t
o
t  

e
t
o
C
t
s

n 2020 (CASP14) ( 36 ). RNA-Puzzles opened its own w e b 

erver category in 2015. In 2022, this competition saw the 
rst teams using deep learning models to predict 3D RNA 

tructures. In the same year, CASP-RNA was launched, a 

ontest co-organized by CASP and RNA-Puzzles ( 37 ). It 
oincided with an explosion of interest in the prediction of 
he 3D RNA structure ( 38 ) resulting, among other things, 
rom the success of AlphaFold and the Covid-19 pandemic 
aused by an RNA virus. 42 groups participating in CASP- 
NA tried their hand at modeling three-dimensional 

tructures for 12 RNA sequences. Eighteen contribut- 
ng teams used deep learning models (including Deep- 
 oldRNA, RhoF old, trRosettaRNA and OpenComplex- 
NA) at various stages of prediction ( 20–22 ). The fi- 
al CASP-RNA ranking gave the top 4 places to teams 
hat combined expert modeling with non-machine learning 

lgorithms. 

HE CHALLENGES 

lphaFold and other highly accurate methods ( 34 , 39– 

8 ) applied deep learning to predict the protein struc- 
ure based on the sequence. Training these tools required 

uge amounts of data. For example, AlphaFold imple- 
ented a bootstrap technique in which its final ver- 

ion used both experimentally determined and predicted 

tructures of high accuracy. A fundamental question is 
hether we have enough RNA structure data for train- 

ng and whether they are of sufficiently high quality and 

i v ersity. 
NA content in the Protein Data Bank 

ince the first tRNA structures were solved in the mid- 
970s ( 49 ) and published about ten years later ( 50 , 51 ) it was
nown that RNA molecules could adopt complex 3D archi- 
ectures. Howe v er, it was not until the late 1990s that struc- 
ures of functionally new types of RNA emerged: first sev- 
ral types of ribozymes ( 52–54 ), and then impressi v e ribo- 
ome particles ( 55–57 ). These re v ealed the structural rich- 
ess of the RNA ar chitectur es, which was later confirmed 

y more structures solved mostly by X-ray crystallography 

nd recently by cryo-electron microscopy (cryo-EM). De- 
pite all the discoveries about RNA structures, the sheer 
olume of experimental structural data available for RNA 

nd proteins remains strongly in favor of the latter (Ta- 
le 1 ). There are about 25 times more protein depositions 
han RNA. The ratio is slightly more favorable for DNA, 
ut e v en so, both nucleic acids account for < 10% of the
DB archi v e, and this ratio has remained fairly stable over 

ime. The situation is e v en more dramatic when restricted 

o high-resolution data: among X-ray and cryo-EM struc- 
ures with a resolution better than 2.0 Å , proteins are about 
00 times more abundant than RNA (Table 1 ). Consider- 
ng all structures with resolution < 3.0 Å , RNA nucleotides 
onstitute only 2% of all residues (nucleotides and amino 

cids) ( 58 , 59 ). Unfortunately, these proportions cannot be 
xpected to change quickl y. Newl y solved crystal and cryo- 
m structures tend to have a limited resolution. The reason 

s the inherent flexibility of RNA molecules that can be esti- 
ated, for instance, by factors B and R in the crystal phase; 

hey are higher for RNAs than for proteins with compara- 
le resolution. A limited number of high-resolution RNA 

tructures is a se v ere constraint, as these structures are the 
ource of the most reliable experimental information about 
he 3D structures, and some belie v e the only. 

NA ar chitectur es crucial f or the global f old 

he main architectural element of RNA is an antiparal- 
el double helix of form A that constitutes a pproximatel y 

0% of RNA in ribosome particles. The structure of this 
lement is the easiest to identify and predict. The overall 
hree-dimensional arrangement of a molecule results from 

he assembly of these helical regions. It is orchestrated by 

arious types of 3D motifs such as sharp turns , loops , n- 
ay junctions, coaxial stacking of duplexes and triple and 

uadruple helical regions ( 56 , 60 ). A junction consists of at 
east three helical regions arranged in a way that signifi- 
antly influences the overall fold. There are three families 
f three-way junctions, which differ by the coaxial stack- 

ng pattern ( 60 ). For junctions with higher multiplicity, it 
ecomes more complicated ( 61 ). The correct prediction of 
he junction topology and the resulting stem orientation is 
f utmost importance, but poses a significant challenge, as 
her e ar e usuall y onl y single or no homolo gous junctions in
xperimental structures of RNA ( 62 ). All of the aforemen- 
ioned regions often form between sequentially distant parts 
f the RNA molecule and are stabilized by non-Watson– 

rick base pairs (NWC). Reliable information on struc- 
urally critical NWCs is necessary for the correct 2D / 3D 

tructural predictions. Howe v er, the collection of NWCs 
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Table 1. Numbers of all PDB-released structures (*) and residues in X-ray and cryo-EM structures (**) with high resolution ( ≤2.0 Å ) over decades. In 
the first column, amino acids are abbreviated as AAs, and nucleotides as nts 

≤1980 1981–1990 1991–2000 2001–2010 2011–2022 Total % of the total 

Proteins (*) 78 634 12 121 43 205 108 677 164 715 91 .57 
AAs ≤2.0 Å (**) 5050 45 236 1 609 401 11 390 238 28 513 777 41 563 702 99 .78 
RNA (*) 2 23 306 1392 4488 6211 3 .45 
RNA nts ≤2.0 Å (**) 0 0 1270 5974 26 921 34 165 0 .08 
DNA (*) 1 91 1061 2009 5800 8962 4 .98 
DNA nts ≤2.0 Å 0 238 5430 15 730 38 107 59 505 0 .14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of predicted and experimentally determined struc- 
tures. Displayed is hammerhead ribozyme RNA: the structure determined 
experimentally by X-ray dif fraction a t the 2.9 Å resolution (PDB ID 5di4) 
( 65 ) is shown in light blue, the model PZ15 Adamiak 15 is in red. Car- 
toon r epr esentation of the r esidues A9-U33 in panel ( A ) suggests that the 
prediction follows the overall topology of the ribozyme correctly but with 
local deviations. Panel ( B ) shows segments between residues G11 and G18. 
The overall backbone direction is predicted correctly but local deviations 
are large. They include differences in base orientations and subsequently in 
base pairing and also the distances between the corresponding phospho- 
rous atoms are quite large; one such distance between Ps of adenosines 15 
of the target and model is highlighted by the green rod. Segments in panel 
B on the left and right show the same atoms, the view is rotated by ∼90 ◦. 
in high-resolution PDB structures is not sufficient to in-
fer their sequence and structural features ( 63 ). There are
∼34 thousand RNA nucleotides in high resolution ( ≤2.0
Å ) crystal and cryo-EM structur es, compar ed to ∼42 mil-
lion amino acids; it is < 0.1% of all PDB-deposited residues
(Table 1 ). 

3D modules are another group of crucial yet hard to pre-
dict motifs ( 64 ) (Figure 4 ). They are primarily defined by
NWCs that form an intricate network of interactions. These
networks r emain coher ent e v en in RNAs from different
phylogenetic groups. 3D modules serve as loops, turns and
f oundations f or protein-RN A or RN A–RN A interactions.
Their accurate modeling is essential to catch the global
RNA fold, but it is har dly possib le due to the low amount
of data available. 

RNA ar chitectur es ar e also stabilized by interactions
such as base-ribose hydrogen bonding, intramolecular in-
teractions with charged phosphates, and coordination with
metal ions. The roles of these interactions are e v en less un-
derstood than those of non-Watson–Crick base pairs. 

Quality of experimental RNA data 

Not only does the shortage of high-resolution structures
complica tes the accura te annota tion of RNAs. Ther e ar e
problems with the quality of deposited RNA (and DNA)
da ta tha t arise from the lack of community-accepted quality
standards. They ar e r elated to base pairing, valence geome-
try and backbone geometry; their combination can lead to
a flood of imprecisely and unreliably refined structures. 

A formal description of base pairing is essential to
build reliable 3D models. However, base pairing in pub-
lic archi v es is not described reliab ly; it is often incom-
plete or incorrect. The programs used to assign base pair
topology to 3D structures, such as MC-Annotate ( 66 ),
RN Aview ( 67 ), FR3D ( 68 ), ClaRN A ( 69 ), CompAnnotate
( 69 ), RN A pdbee ( 70 ), bpRN A ( 71 ), baRN Aba ( 72 ), BP-
NET ( 73 ) and DSSR ( 74 ), often provide incomplete or con-
flicting information (manuscript in pr eparation). Ther efor e,
comprehensi v e benchmar king must be performed along
with a consistent update of public archives with topology
data from the consensus algorithm(s). 

Perhaps of lesser but existing importance for the predic-
tion of large RNA structures is the inconsistency of targets
used in the refinement of bond distances and angles. These
valence geometry targets differ in various refinement pro-
grams, validation packages and the PDB, leading to con-
fusion in the community. Ther efor e, an ELIXIR-led effort
was undertaken by the Nucleic Acid Valence Geometry
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Figure 5. Rfam versus Pfam alignments compared based on ( A ) a number 
of sequences, ( B ) a number of columns and ( C ) the average pairwise percent 
identity for each family. The points on the plots indicate the mean, and the 
vertical bars indicate the standard deviation. 
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orking Group ( 75 ) to formulate community-agreed val- 
dation targets ( 76–78 ). 

A significant source of errors in the structural description 

f RNA (and DNA) is the misconception about the geome- 
ry of the nucleic acid backbone. The structural complexity 

f the backbone was understood early on ( 79 ), but the topic
ttracted much less attention until the end of the 1990s. 
t that time, large RNA ribozyme and ribosome struc- 

ures started to emerge and it became possible to analyze 
heir structural variability based on experimental data. The 
mallest unit that makes sense to categorize structurally is 
 dinucleotide, which includes two riboses and captures the 
omplexity of the phosphodiester linkage C3’–O3’–P–O5’– 

5’. Howe v er, e v en this relati v ely small fragment has nine
orsional degrees of freedom. The first conformer defini- 
ions of dinucleotide fragments were published at the begin- 
ing of 2000, first for RNA ( 80–82 ), later for DNA ( 83 ) and
ecently for both RNA and DNA as a structural alphabet 
ANA built from dinucleotide conformational classes NtC 

 84 ). Perhaps the relati v e nov elty of the concept of confor-
ational classes and technical difficulties with their imple- 
entation into routine refinement and validation protocols 

s the reason why the classes are not widely used. We see 
his fact as one of the reasons why the quality of newly de-
ermined structures does not improve. 

equences and sequence alignments 

he efficiency of 3D RNA structur e pr ediction is likely 

o be improved using information from multiple sequence 
lignments (MSA). MSA has already been incorporated 

nto se v eral e xpert-based modeling methods in the human 

ategories of RNA-Puzzles and CASP-RNA ( 24 ). Such a 

trategy is also applied in AlphaFold and other recent pro- 
ein prediction methods. In these methods, correlated mu- 
ations are used to detect residues that are in close contact 
n 3D space, despite the distance in sequence. This princi- 
le has been understood for a long time in RNA ( 63 ). Un-

ortuna tely, crea ting high-quality RNA alignments is diffi- 
ult and often r equir es the manual work of an expert. This 
ifficulty has led to there being far fewer RNA vs. protein 

lignments. 
To illustrate the difference in quantity, we can compare 

wo r esour ces, Pfam and Rfam. Pfam and Rfam ar e col-
ections of protein / RNA alignments and models annotate 
hem in genomes. Rfam is the oldest and largest source of 
lignments for ncRNAs. Although ther e ar e other r esour ces 
hat collect similar data, for example, miRBase ( 85 ) or Mir- 
eneDB ( 86 ) for RNA, they are smaller and focus on one 

articular type of molecule. Pfam was founded in 1997 ( 87 ), 
hile Rfam in 2003 ( 88 ). Each member of Rfam / Pfam is
ade up of a curated seed alignment which is used to build 

he model that allows finding more examples of the family 

nd produces what is known as a full alignment. The mod- 
ls in Pfam are based on hidden Markov models, while in 

fam they are covariance models and also include a con- 
ensus secondary structur e. Her e, we will discuss some of 
he issues facing machine learning practitioners that want 
o use RNA alignments by comparing these r esour ces. 

First, while Rfam is similar to Pfam in spirit and goals, 
t contains far less data than Pfam. At the time of writing 
his paper, the current version of Rfam, 14.9, contains 4108 

lignments, while the current release of Pfam, 35.0, con- 
ains 19 632. The difference in resource size is due to his- 
orical bias towards RNA gene discovery, the difficulty in 

dentifying homology between related RNAs, and the dif- 
culty in building new alignments for Rfam. Constructing 

fam alignments r equir es using covariance models, which 

r e much mor e computationally e xpensi v e compared to the 
idden Markov models applied to build Pfam alignments. 
Second, RNA alignments are on average smaller than 

rotein alignments. This relationship relates to the number 
f sequences, with seed alignments containing an average 
f 5 sequences in Rfam versus 23 in Pfam (Figure 5 A), as 
ell as the number of columns, 95 columns in Rfam ver- 

us 163 in Pfam (Figure 5 B). There is also a significant dif- 
erence in the degree of conservation, with the Rfam align- 
ents 83% conserved versus 26% in Pfam (Figure 5 C). To- 

ether, it means that ther e ar e few RNA alignments com- 
ared to proteins, and the existing alignments are smaller 
nd lack variation. Ther efor e, it is likely that there is not 
nough RNA data yet to effecti v ely train machine learning 

ethods. This is also supported by the fact that the cur- 
entl y best-performing RN A-dedicated methods in CASP 

re not machine learning based. 
Third, Rfam alignments have several global biases that 
ak e w orking with them difficult. One is that the most com- 
on alignments are for simple molecules. Taking into ac- 

ount the type of RNA, most alignments concern miRNA 

recursors (35%) followed by snoRNA (19%) (Figure 6 ). 
iRNA pr ecursors ar e simple molecules, essentially a he- 

ix with a few small loops and mismatches; in proteins, this 
s most similar to a single alpha helix. Such simple struc- 
ures do not represent the complexity of RNA f olds; f or 
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Figure 6. Counts of Rfam families, seed sequences, full sequences and structures for all Rfam families organized by Rfam RNA type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

example, they do not contain any junctions, while –– as dis-
cussed above –– the junction topology is essential to deter-
mine the overall structure of more complex RNAs. 

Another global bias is observed in the number of seed or
full sequences, Rfam has the most data for bacterial small
RN A (sRN A) sequences. Howe v er, ther e ar e few structur es
of these molecules with < 50 in PDB at the time of writing.
In terms of full alignments, tRNAs constitute the largest
group (45%), and rRNA subunits are the third largest, ac-
counting for another 8% (Figure 6 ). These families are the
most commonly solved structur es, r epr esenting 26% and
61% of all known 3D structures of RNA, respecti v ely (Fig-
ure 6 ). Although a large collection of these sequences and
structures is valuable, we recommend caution. Creating ML
models that generalize to other structures is unlikely if
their training is based only on ribosomes. Se v eral predic-
tion methods that train off currently existing datasets have
not yet produced high-quality models. 

In addition to the global bias in the RNA data, there are
specific issues with Rfam alignments that must be consid-
ered in machine learning. For example, not all non-Watson–
Crick base pairs are aligned in Rfam, and the aligned ones
have not been handled in a consistent manner. Moreover,
Rfam consensus secondary structures can represent parts
of the structure as unfolded. Howe v er, looking at the 3D
structure , when available , in that region often shows a clear
secondary structur e. These r egions include places known to
have species-specific structure or their unstructured form
results from Rfam limitations. Rfam families are intended
to cover a wide phylogenetic range. For example, the eu-
karyotic large subunit ribosomal RN A famil y (RF02543)
r epr esents all large rRNA subunits in all eukaryotes.
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owe v er, rRNA is well known to vary considerably within 

he kingdom, or e v en within a species, with important func- 
ional consequences ( 89 ). Since the 2D structures in Rfam 

ust r epr esent what is common to all members of the 
amily, they are often underfolded in many regions. This 
hould be dealt with when building a useful ML train- 
ng set. Finally, pseudoknots –– a key factor in 3D RNA 

tructures –– have been shown to help organize the global 
tructur e, but ar e not consistently annotated in Rfam align- 
ents. Unfortunately, current 2D and 3D prediction meth- 

ds struggle to predict them. Rfam is working to anno- 
ate more observed pseudoknots but many families lack 

hem. 
In summary, there are se v eral issues with the RNA align- 
ent da taset tha t will pose problems for deep learning. The 

ata set is small compared to proteins, is highly biased in 

e v eral ways, and the existing alignments have some short- 
omings. While work is ongoing to fix all these issues, it 
ill be challenging to use these data to successfully predict 
D structures. One key issue will be creating a test / train 

a taset tha t r epr esents the observ ed comple xity, while not
eing overly biased. 

ONCLUSIONS 

i v en the history of protein fold prediction, can we an- 
icipate when the RNA realm will see similar results? Al- 
haFold’s success came 50 years after the first work on 

omputer-based protein structure prediction. This period 

f time was necessary to accumulate a sufficient volume of 
igh-quality, reliable data on protein sequences and struc- 
ures. At the same time, information and computer technol- 
gy were de v eloped, enab ling efficient applications of arti- 
cial intelligence models to solve problems that traditional 
omputational methods could not deal with. Artificial neu- 
al networks as an idea are already 80 years old ( 90 ), but
t was only in the second decade of the 21st century that 
hey came into widespread use. In 2012, the power of deep 

earning was demonstrated ( 91 , 92 ). It has triggered a flood 

f projects that have applied DL models to various areas 
f life. Among other things, this wave has brought about 
e w predicti v e methods dedicated to molecular structures. 
ll of them are data-hungry; AlphaFold has been trained 

n structures of more than 170,000 proteins combined with 

ery large sequence alignments. We expect to have similar 
 equir ements to successfully use neural networks for RNA 

D structure prediction. 
A simple way to estimate when AlphaFold for RNA 

ill be created is to consider when the number of RNA 

tructures or sequence alignments are comparable to the 
urrently available protein data. As mentioned above Pfam 

ontains 19 632 protein sequence alignments. Historically, 
he growth of Rfam has been linear due to the r equir ement
or manual work to build each alignment and we observe 
hat on average Rfam adds a pproximatel y 205 alignments 
er year. Thus, we estimate Rfam will contain 19 000 align- 
ents in a pproximatel y 70 years. This is undoubtedly a vast 

verestimate as we expect the RNA 3D structure prediction 

roblem to be solved by then. One technique which may 

elp is automatic family building. While this is still unsolved 

or RNA, there has been recent work on this issue which 
ay be promising ( 93 ). Automatically built families were 
sed in training AlphaFold and may prove useful for RNA 

s well ( 34 ). 
We belie v e that ther e ar e se v eral viab le approaches to en-

ble the prediction of the 3D RNA structure in the near fu- 
ure. First, the RN A comm unity can improve knowledge of 
NA structur e through mor e data, second, we can di v ersify 

he data used in prediction, and finally, we can improve the 
achine learning methods used. 
W ha t da ta is missing that would improve predictions? We 

o not seem to know enough about RNA motifs to predict 
heir global structures. We may provide an educated guess, 
t least for the small structural motifs, of which the most im- 
ortant are base-pair topologies. Concerning the latter, it is 
ery likely that they exist in known structures of reasonably 

igh resolution and can provide reliable geometries. There 
re also strong reasons to belie v e that the CANA alphabet 
escribes more than 90% of the existing dinucleotide con- 

ormers; only a few of them may be missing ( 84 ). In our
pinion, mor e r esear ch is needed on intramolecular inter- 
ctions other than base pairs, namely hydrogen bonding 

ridges of the O2’ group to bases , ribose , phosphates and 

nteractions between phosphate oxygens (mostly charged) 
nd other RNA constituents. Benchmarking the quality of 
D structures, as well as streamlined and consistent prin- 
iples of their validation, is r equir ed to ensur e r eliability in
ata repositories. 
Another approach is to improve the size and scope of 
ultiple sequence alignments of RNA. Alignments of four- 

etter RNA sequences ar e mor e challenging than those of 
0-letter protein sequences. Some classes of RNA, such as 
ibosomes, have a large number of sequences and we know 

ow to align them. Howe v er, more well-aligned sequences 
f underr epr esented RNA classes are needed. Perhaps the 
ree-of-Life projects ( 94 , 95 ) will provide a sufficiently large 
umber of sequences. Currentl y, RN A gene prediction is 
nconsistent across known genomes, so we encourage the 
ommunity to annotate ncRNA genes in newly sequenced 

enomes. Annotated ncRNAs from Tree of Life projects 
an sho w lo w sequence di v ersity, and we recommend that 
cRNA gene annotation in metagenomes be used as a so- 

ution. We note that AlphaFold r equir ed metagenomic se- 
uences in order to reach its maximum performance, and we 
uspect that RNA will show a similar trend. Solving these 
hallenges involves finding all the ncRNA genes and mak- 
ng the data reusable. 

Consistentl y annotating RN A families across all 
enomes will be useful and may increase the di v ersity 

f RNA sequences availab le; howe v er, it seems that a 

rediction method would benefit from a wider range of 
NA families. As discussed above, many Rfam families 

re structurally similar. We belie v e that providing a more 
i v erse training set would be useful. While Rfam is the 
lobal repository of RNA families, not all known families 
an be found ther e. Corr ecting this and working to create 
ew families that are different from existing ones should 

e a focus of the RN A comm unity. Additionall y, creating 

igh-quality alignments remains a challenge ( 96 ). 
If the current amount and growth rate of currently avail- 

ble sequence and structure data are not sufficient, can they 

e supplemented with other sources of data? We think so. 
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In particular, RNA biochemistry has a rich history and
has de v eloped many methods to ra pidl y probe 3D struc-
tures ( 97 , 98 ). A subset of these data, SHAPE probing, has
proven useful to classical prediction methods, and we expect
it to be helpful to DL-based approaches. Although many
labs probe the structure of RNA, these data are not readily
availab le to ML practitioners. Wor king as a community to
standardize, collect and distribute such data seems valuable
for pr edictions. Additionally, ther e ar e other low r esolution
methods, such as SAXS and AFM, which may prove useful
in modelling structures ( 97 ). 

Finall y, the ra pid and hard-to-predict development of
ML methods may potentially change our pessimistic pre-
dictions about the ability to accurately predict 3D RNA
structures. De v elopment of methods that are less data hun-
gry, e.g. transfer learning, may allow successful prediction
sooner. We belie v e that RNA structure prediction is an ex-
cellent test case for r esear chers inter ested in machine learn-
ing in the face of limited data. At the moment, we do not be-
lie v e that reliab le 3D RNA prediction will be availab le in the
2020s, but we challenge the community to prove us wrong. 
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