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Universal machine learning for the response
of atomistic systems to external fields

Yaolong Zhang1,3 & Bin Jiang 1,2

Machine learned interatomic interaction potentials have enabled efficient and
accurate molecular simulations of closed systems. However, external fields,
which can greatly change the chemical structure and/or reactivity, have been
seldom included in current machine learning models. This work proposes a
universal field-induced recursively embedded atomneural network (FIREANN)
model, which integrates a pseudo field vector-dependent feature into atomic
descriptors to represent system-field interactions with rigorous rotational
equivariance. This “all-in-one” approach correlates various response proper-
ties like dipole moment and polarizability with the field-dependent potential
energy in a single model, very suitable for spectroscopic and dynamics
simulations in molecular and periodic systems in the presence of electric
fields. Especially for periodic systems, we find that FIREANN can overcome the
intrinsicmultiple-value issue of the polarization by training atomic forces only.
These results validate the universality and capability of the FIREANN method
for efficient first-principles modeling of complicated systems in strong
external fields.

The interplay between external fields and chemical systems is of fun-
damental importance in a range of physical, chemical, and biological
processes1,2. By interacting with atoms, molecules, or condensed
matter, external (mainly electric) fields can induce electronic/spin
polarization and spatial orientation of the system,whichhave offered a
particular means to alter chemical structures3, promote electron
transfer4, control phase transitions of materials5 or conformational
transformations of biomolecules6, subtly manipulate chemical reac-
tivity and selectivity in catalysis7–10 and quantum dynamics in cold
chemical reactions11–13.

Exact field-dependent quantum scattering calculations were fea-
sible only for very small systems14. Density functional theory (DFT) and
ab initiomolecular dynamics (AIMD) simulations based on themodern
theory of polarization15 have been more commonly applied to study
more complex aperiodic and periodic systems in the presence of
external electric fields16–20. However, the AIMD approach remains very
demanding, especially when nuclear quantum effects (NQEs) are

important19. Although empirical force fields can be instead highly
efficient21,22, their accuracy is limited by empirical functions and
approximate expressions for the interaction Hamiltonian. For exam-
ple, the commonly used dipole-field approximation truncates the
perturbation of the system by an electric field to the first order (i.e.
only the interaction with the permanent dipole is included) and omits
higher-order interactions associated with polarizability, hyperpolariz-
ability, and so on. Moreover, except these reactive force fields23–25,
most of them fall short of describing bond breakage/formation.

Recent years have witnessed revolutionary successes of machine
learning (ML) methods in solving high-dimensional problems in
chemistry26–32. Various ML models for accurately representing poten-
tial energy surfaces (PESs) have been developed33–48. Some of them
have been extended to learn tensorial properties such as the dipole
moment and polarizability tensor with correct rotational
equivariance48–60, enabling efficient field-free simulations of electronic
and vibrational spectra. However, most ML models treat the potential
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energy and its response properties to electricfields separately, without
capturing thefielddependence. The influenceof electricfieldswasfirst
taken into account by Christensen et al. in a kernel-based regression
method by constructing a fictitious dipole arising from fictitious par-
tial charges and coupling itwith the field vector to yield a scalar dipole-
field interaction analog61. Müller and coworkers incorporated the
dipole-field interaction similarly in their FieldSchNet neural network
(NN) model to describe the solvent effect in the form of an effective
field62. Gao and Remsing separated the long- and short-range interac-
tions by introducing self-consistent effective electric fields, which are
used as input for subsequent NNs along with local atomic coordinates
to describe perturbations to the short-range system from the effective
electric field. This strategy however does not rigorously fulfill the
rotational equivariance with respect to the field direction63.

In this work, by introducing a simple field-dependent feature into
the description of the atomic environment, we develop a field-induced
recursively embedded atom neural network (FIREANN) model with
correct rotational equivariance of a system interactingwith anexternal
field. Without any truncation of field-induced interactions, FIREANN
describes not only the energy variation with applied field strength and
direction, but also the associated response properties simultaneously
up to (in principle) any order. Path-integral-basedmolecular dynamics
(MD) simulations with well-trained FIREANN models yield reliable ab
initio spectroscopy of representative molecular and condensed phase
systems in the presence of electric fields. A remarkable characteristic
of this model is that it can detour themultivalued issue of polarization
in periodic systems, a well-known but largely neglected fact in existing
ML models, by learning atomic forces only.

Results
FIREANN framework
The FIREANN model is built on top of a physics-inspired recursively
embedded atom neural network (REANN) framework64 that uses
embedded atom densities (EADs) as descriptors to atomic environ-
ment (Detailed in the Methods section). In the absence of electric
fields, EADs are constructed in a quantum chemical spirit by the linear
combination of Gaussian-type orbitals (GTOs) of surrounding atoms,
preserving the overall rotational, translational, and permutational

invariance of the system. However, an applied field can certainly
redistribute the electron density and break down the rotational
invariance of the system. The corresponding field-system interaction
depends on the direction and strength of the electric field. To char-
acterize this influence in a physically meaningful way, for an applied
field ( ε!), we include a virtual field vector-dependent function, namely,
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Following the procedure of feature construction in Methods, the
field-dependent orbital was combined into the GTO to form a field-
induced EAD (FI-EAD) vector that comprises various density values
determined by different sets of contracted coefficients,
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Here, the applied field felt by each atom is represented by a
position vector of a pseudo-atom relative to that atom ( ε!i, as illu-
strated in Fig. 1). The FI-EAD feature can be rewritten in terms of
interatomic distances and enclosed angles39,
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where we have combined the radial Gaussian and switching functions
in fm for simplicity. From Eq. (3), one immediately realizes that the FI-
EAD feature depends not only on atomic coordinates, but also on the
field strength ðj ε!ijÞ and the closed angle θijε between ε

!
i and each r!ij

vector. In practice, rotating the field or the system separately will lead
to different FI-EAD values, while the synchronous rotation of the field
and the system without altering the relative direction of ε

! with
respect to each coordinate r̂ij will not. This FI-EAD feature captures the

E1

E2

EN

E

Fig. 1 | Schematic of FIREANN framework. The field-induced recursively
embedded atom neural network (FIREANN) framework introduces a pseudo
atomic field vector ( ε!) relative to each atom (represented by the green trans-
parent atom). These pseudo atomic field vectorsmimic the behavior of real atoms
and are combined with actual atoms to produce a field-dependent embedded

atomic density (ρ), which is used as the input of the neural network and yield the
field-dependent energy (E). Physical quantities like atomic forces (F), dipole
moment (μ) and polarizability (α), correspond to the energy derivatives with
respect to coordinates (r) or electric field ( ε!). Note that the shaded region
represents the local environment of each central atom, defined by a cutoff radius.
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nature of the interaction between the system and the applied electric
field without changing the physical form of the EAD feature. The
resulting rotational equivariance is conserved in any subsequent
message passing of the environment- and field-dependent orbital
coefficients (cj and cε) and thus in the final potential energy. When
ε
!=0, this model naturally reduces to the original REANN model. The
only extra cost for evaluating FIREANN compared to the standard
REANN is that of a field-induced orbital, which is almost negligible as
evident from Eqs. (1) and (2).

As anextra benefit, the FIREANN framework intrinsically describes
the response of the potential energy to an external field up to an
arbitrary order by taking the analytical gradients of the potential
energywith respect to the field vector. For example, the electric dipole
moment ( μ!) is the first and the polarizability tensor (α) the second-
order response to electric fields,
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These properties can be simultaneously learned in a FIREANN
model by adopting the following loss function,
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where Nb is the size of the batch dataset, the superscripts NN and Ref
refer to theNN-predicted and referencequantities, and λV, λF, λμ, and λα
represent the weights of the energy, force, dipole moment, and
polarizability, respectively, in the loss function. Note that these
response properties by construction offer correlated information on
the field-dependence of the PES rather than being simply accumulated
in the loss function40. As a result, they have a similar effect as that of
forces andhessians,which can help improve thefitting quality.We also
note that FIREANN not only applies to electric fields as demonstrated
bynumerical examples below, but also equally tomagneticfields in the
same spirit, by which the magnetic dipole and/or magnetic polariz-
ability can be obtained.

A toy system
We first take the H2O molecule as a toy system to verify the symmetry
adaption of the FIREANNmethod subject to an external electric field. A
FIREANN model was constructed with just a single equilibrium

geometry lying in the yz plane and the electric field being 0.1 V Å−1

along the xdirection. As displayed inFig. 2a,when themolecule rotates
about the x axis, its potential energy does not change at all as the field
is always orthogonal to themolecular plane. This is exactly encoded in
FIREANN. On the other hand, the potential energy varies with the
molecular rotation about the y axis, as shown in Fig. 2b. The energy
variation representing the interaction between the molecular dipole
and the electric field is again well predicted by the FIREANN model.
Importantly, FIREANN further exhibits excellent extrapolatability in
Fig. 2c, where the field intensity along the x axis varies from −0.2 to
0.2 V Å−1, resulting in a symmetrical energy dependence on the field
direction. The FIREANN model trained with a single data successfully
reproduces the energy profile generated by DFT. In comparison,
FieldSchNet fails to predict the correct field-induced energy depen-
dence in the same condition and give a constant energy as shown in
Fig. 2c.More detailed comparisons between FIREANN and FieldSchNet
will be discussed below.

Molecular spectroscopy
A distinct feature of the proposed FIREANN model is its all-in-one
predictions for energies (atomic forces) and response properties with
and without an electric field. We first demonstrate this feature for the
N-methylacetamide (NMA) molecule, which has been widely used as a
model system of the amide group to construct spectroscopic maps
and simulate the spectra of the peptide backbone52,65–68. Specifically,
we constructed an FIREANN model by learning a mix set of ab initio
energies, forces, dipole moments, and polarizabilities for the NMA
molecule in an electric field varying from 0.0 to 0.4 VÅ−1 along x
direction. Figure 3 clearly shows that the universal FIREANN model
achieves an excellent accuracy for energy, dipole moment, and
polarizability, with corresponding rootmean square errors (RMSEs) of
0.0053 eV, 0.028 Debye, and 0.51 a.u., respectively. Given the syn-
chronous prediction of these quantities, the FIREANN model enables
efficient MD simulations of IR and Raman spectra in comparison with
experimental data.

Figure 4a compares the calculated and experimental field-free
infrared (IR) spectra69 for NMA at 300K. In general, the classical MD-
based result agrees reasonably well with the experimental spectrum,
even reproducing double peaks for the C-O stretching vibration
(~1710 cm−1) corresponding to the well-known P/R rotational structure-
induced splitting69. However, the calculated bands of Amide II, Amide
III, Amide A (the N-H stretch band, ~3507 cm−1), and the band including
C-H stretchingmode andother bending overtones of themethyl group
(~2950 cm−1) are apparently blue-shifted compared to experiment. This
discrepancy is likely due to the neglect of NQEs in the classical treat-
ment of these vibrational bands relevant to hydrogen atoms. To solve
this problem, path-integral based thermostated ring polymer

Fig. 2 | Rotational and field intensity dependence of the FIREANN model.
Comparison of energy curves of a water molecule lying on the yz plane rotating
about the a x axis and b y axis calculated by density functional theory (DFT) and
field-induced recursively embedded atom neural network (FIREANN), where an

electric field ( ε!) with the intensity of 0.1 V Å−1 is applied along the x axis; cDFTand
FIREANN energy curves varying with the electric field intensity (εx), compared with
FieldSchNet62. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-42148-y

Nature Communications |         (2023) 14:6424 3



molecular dynamics (TRPMD)70 simulations were performed. The
TRPMD result significantly improves the agreement with the experi-
ment and reproduces most bands in not only their positions but also
their shapes and intensities. Figure 4b compares the calculated and
experimental resonance Raman spectra of NMA for zero field. Due to
the lack of the experimental spectrum for a single NMAmolecule, the
measured liquid spectrum71 is taken form qualitative comparison.
Encouragingly, while there is apparentmismatch regarding the relative
peak intensities of low-frequency modes, the TRPMD spectrum
reproduces most of the observed bands reasonably well.

FIREANN also predicts the in-field molecular spectra, as shown in
Fig. 5, where the field strength increases from 0 to 0.4 VÅ−1 every
0.1 V Å−1 along x direction. In these in-field IR spectra, the C-O
stretching band seems most influenced by the applied field. As men-
tioned in the field-free spectrum, this band has an intrinsic P/R rota-
tional double-peak structure. Interestingly, with increasing field
strength, this P/R branch splitting gradually vanishes and the absorp-
tion peak gets narrower and higher. This phenomenon implies the
interplay between the electric field and themolecular rotation. Indeed,

the dipole moment of NMA, which is almost parallel to the C-O
bond69,72, tends to reorient to the opposite direction of the electric
field tominimize the energy. Increasing thefield intensity increases the
dipole-field interaction andmore strongly confines the NMAmolecule
in the preferable orientation. In addition, a significant red shift of the
CO stretching vibration is found roughly proportional to the field
intensity. This redshift is likely a natural consequence of theweakening
of the chemical bond by the applied electric field. A similar but smaller
redshift is also found for the N-H stretching, consistent with the fact
that the electron cloud of the C-O group is more polarizable than the
N-H group, due apparently to the higher electron density there. Fur-
thermore, we decompose the molecular polarizability into isotropic
(αiso = trðαÞ=3) and anisotropic (αaniso =α � αisoI) terms and exhibit
corresponding Raman spectra in Fig. 5, respectively. The anisotropic
Raman spectra show a similar field-dependence of the C-O stretching
band for the same reason. However, the rotational splitting is absent in
isotropic Raman spectra as the isotropic polarizability is rotation
invariant. As a result, the increasing field results in only a pure red shift
of the C-O stretching vibration.

Liquid water
The FIREANNmodel is by its atom-wise form capable of describing the
response of periodic systems to external electric fields. We test this
capability in liquid water. However, unlike molecular systems, the
polarization (dipolemoment per unit volume) of a periodic system is a
multivalued quantity according to themodern theory of polarization15,
resulting in multiple parallel branches that differ by a polarization
quantum represented by the product of any lattice vector and the
electronic charge and divided by the volume of the lattice15. This ill-
defined multiplicity may lead to sudden jumps in the dipole moment.
Figure 6a shows clearly the abrupt discontinuities in the evolution of
the x component of DFT calculated dipole moment along an AIMD
trajectorywithout anelectricfield. This accidental change in the dipole
moment poses challenges for conventional atomistic ML models that
learn field-free dipoles, which typically decompose the global dipole
moment vector into local atomic dipoles and represent atomic dipoles
by the product of atomic charges and position vectors49,50,52. Impor-
tantly, this discontinuity issue occurs more frequently under a high
field strength, as seen in Fig. 6b. Likewise, the in-field total energy is
supposed to be discontinuous at these configurations as the dipole-
field interaction jumps. Schienbein also recognized the multiple-
valued problem of the dipole moment and proposed to learn the
atomic polar tensor which is the spatial derivative of dipole instead of
learning the dipole itself. These smooth spatial derivatives can be
transformed into time derivatives of dipole in MD to calculate auto-
correlation functions, ultimately yielding the IR spectrum60. Similarly,

Fig. 3 | Performance of the FIREANN model for NMA. Correlation plots of
a potential energies, b dipole moments, and c polarizabilities based on field-
induced recursively embedded atom (FIREANN) predictions (EFIREANN, μFIREANN and
αFIREANN, respectively) and Density functional theory (DFT) data (EDFT, μDFT, and

αDFT, respectively) in the test set of N-methylacetamide (NMA). The root mean
square error (RMSE) and Pearson Correlation Coefficient (r) are shown in the cor-
responding panel. Source data are provided as a Source Data file.

Fig. 4 | Field-free vibrational spectra ofNMA.Comparisonof experimental (Expt),
molecular dynamics (MD), and thermostated ring polymer molecular dynamics
(TRPMD) based a infrared (IR) spectra and b Raman spectra of the
N-methylacetamide (NMA) molecule at 300K. a The inset zooms in the C-O
stretching vibration peak ~1700cm−1 to show the P/R rotation branches more
clearly. In panel (b) the intensity of the calculated Raman spectra in the low-
frequency region is amplified by a factor of 6 for qualitative comparison with the
measured liquid spectrum71 due to the lack of the experimental spectrum for a
single NMA molecule. Source data are provided as a Source Data file.
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learning the offsets of the Wannier centers relative to the corre-
sponding O atoms can overcome this problem73, however, localizing
Wannier centers themselves in more complex systems with strong
non-local features, is not a trial task, which easily gets stuck in local
minima and has severe convergence difficulties74. Furthermore, unlike
FIREANN, these previous ML models are designed for field-free sys-
temsonly, which does not describe the general response of a system to
external fields and the field-dependent potential energy surface.

In the FIREANN framework, alternatively, this issue can be easily
bypassed by training atomic forces only in the presence of electric
field, because the gradient of the energy is actually unaffected.
Although the dipole moment and polarizability are not explicitly
involved, the interaction between the electric field and the system can
be learned implicitly in the force-only training. The dipolemoment can
then be retrieved by the first-order gradient of the energy output with
respect to the field vector. It should be noted that training atomic
forces only will introduce an undetermined field-dependent constant
to the total energy in ourmodel. This will lead to certain undetermined
constants to absolute thermodynamic properties. However, atomic
forces (or any properties’ gradients with respect to atomic coordi-
nates) are well represented by our model so that the changes of

thermodynamic properties under a given electric field can still be
correctly described, which are physically moremeaningful in practical
calculations. In addition, by including the polarizability in the loss
function during the training process, one can eliminate the field
dependence of the undetermined constant on the total energy. This
allows us to compare energies and the changes in thermodynamic
properties under different field strengths, as will be discussed later in
the comparison with FieldSchNet.

To validate this strategy, we have constructed a FIREANN model
of bulkwater including64watermolecules under anelectricfield up to
0.6 VÅ−1 along x direction, using atomic forces as targets only (named
FIREANN-wF hereafter). Our model yields accurate predictions for
atomic forces, with an overall RMSE of 39.4meVÅ−1. In addition, the
TRPMD-calculated field-free radial distribution functions (RDFs) of
liquidwater agree verywell with previous on-the-fly results at the same
DFT level75 and experimental data76, as shown in Fig. 7, further vali-
dating the accuracy of the FIREANN-wF potential. It is also beneficial to
compare thedipolemoments predictedbyFIREANN-wFwithDFTdata.
Since dipole moments should smoothly change as the configuration
evolves, it is reasonable to correct any abrupt changes in the dipole
moment calculated by DFT along an AIMD trajectory. This correction

Fig. 5 | In-field vibrational spectra of NMA predicted by FIREANN. Comparison
of thermostated ring polymer molecular dynamics based a infrared (IR) spectra,
b Raman anisotropic (Raman-aniso), and c Raman isotropic (Raman-iso) spectra of
N-methylacetamide at 300K varying with the external electric field intensity. The

inset in each panel zooms in the corresponding C-O stretching vibration peaks.
Note that the high-frequency bands above 2800cm−1 a–c are multiplied by a factor
of 10, 0.1, and 0.05 to show the peaks in a similar scale. Source data are provided as
a Source Data file.

Fig. 6 | Multi-valued dipole moments in liquid water. Comparison of x compo-
nent of dipole moments (μx) calculated with force-only training (FIREANN-wF) and
brute-force dipole moment training (FIREANN-wD) based on the field-induced
recursively embedded atom neural network (FIREANN) with density functional
theory (DFT) and corrected DFT data (AIMD-correction) along the ab initio

molecular dynamics (AIMD) trajectory and as a functionof time, for a zerofield and
b an electric field along x axis (εx) with the intensity of 0.6 V Å−1. Note that the
FIREANN-wF predicted dipolemoment, which is deduced by the energy gradient to
the electric field vector introduces an undetermined constant factor, is shifted by a
constant to match the DFT value. Source data are provided as a Source Data file.
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involves shifting the dipole moment by an integer multiplied by the
product of the corresponding lattice vector and electronic charge. By
applying this correction, one ensures that the adjusted dipolemoment
remains closest to its value in the previous step, allowing for a con-
tinuous variation of dipole moments along the trajectory. Impress-
ively, as shown in Fig. 6, the corrected DFT dipole moments perfectly
match the FIREANN-wF predictions, without any prior knowledge of
these positions of sudden jumps. Interestingly, the FIREANN-wFmodel
captures the drastic increase in the total polarization of the system
under an intensive electric field, as shown in Fig. 6b. This is because of
additivity of the molecular dipole moment as each water molecule
tends to align its dipolemoment to thefield vector. Figure 6 also shows
the poor performance of a flawed model training with multi-branched
dipole moments in a brute-force way (named FIREANN-wD hereafter),
which obviously fails to follow the correct evolution of the dipole
moment. Note that dipole moments in both two models are obtained
by calculating the energy gradient with respect to the electric field. It is
worth stating that although it is viable to correct the dipole moment
along a single AIMD trajectory because the configuration change is
minor in adjacent steps, it is difficult to do so in practice for uncor-
related trajectories or for independent single-point calculations. In
latter cases, the training dataset will likely include dipole moments of
unpredictable branches and give large noises to conventional ML
dipole models relying on the multiplication of atomic charges and
position vectors.

Misrepresenting the dipole moment surface could have a sig-
nificant influenceon the resultant IR spectrum. Figure 8a compares the

calculated and experimental IR spectra of liquid water at room tem-
perature without an electric field. Thanks to the inclusion of NQEs by
TRPMD, the FIREANN-wF model that offers both the correct PES and
dipole moment surface, does capture well all experimental vibrational
features77 including the O-H stretching (~3600 cm−1), H-O-H bending
(~1690 cm−1), librational (~700 cm−1)78 and H-bonding stretching bands
(~170 cm−1)78. Our results also agree well with previous theoretical ones
obtained by on-the-fly TRPMD at the same DFT level75, likely with their
DFT dipole moments corrected. By contrast, the IR spectrum pre-
dicted by the FIREANN-wF model using the same trajectories deviates
significantly from the experimental counterpart. This comparison
clearly highlights the necessity of using an ML model fulfilling the
physical requirement of the dipole moment in predicting IR spectra.
Finally, we show in Fig. 8b the predictions of the FIREANN-wF model
for the IR spectrum with an electric field up to 0.4 VÅ−1 along x
direction. Interestingly, the electric field influences mostly the O-H
stretching band, resulting in a progressive red shift upon with the
increasing field intensity. Unlike the NMA molecule, the red shift here
is not solely because of the softening of the O-H bond by the electric
field, but also the more ordered structure as a result of the field-
induced reorientation of water molecules to be parallel to the field
vector20. This effect will render the liquid water structure more ice-
like20, in which the O-H vibrational band is lower in frequency. In
contrast, this ordering effect hinders the librational rotation of water
molecules and naturally results in an increased frequency of the
librational mode. In comparison, the H-O-H bending mode is barely
affected by the electric field, since the bending motion leads to little
change in the direction of the dipole moment.

Comparison with previous models
Although similar force-only training can be done using previous
models proposed in refs. 61,62, their ways of incorporating the
external field are completely different from the present FIREANN
model, rendering the absence of important high-order field-system
interactions. Specifically, these models consider the response of the
system to the external field by adding the dot product of a virtual

Fig. 7 | Radial distribution functions of liquid water. Comparison of the
experimental76 (Expt) and theoretical a O-O, b O-H and c H-H radial distribution
functions (RDFs) for liquid water at 300K. Theoretical results are based on ther-
mostated ring polymer molecular dynamics simulations with the force-only train-
ing field-induced recursively embedded atom neural network (FIREANN-wF)
models or with on-the-fly force calculations at the same computational level
extracted from ref. 75 (On-the-fly). Source data are provided as a Source Data file.

Fig. 8 | Field-free and in-field IR spectra of liquid water. a Comparison of
experimental77 (Expt) and three thermostated ring polymer molecular dynamics
(TRPMD) based infrared (IR) spectra of liquid water in the absence of electric field
at 300K, computed with force-only training (FIREANN-wF) and brute-force dipole
training (FIREANN-wD) based on the field-induced recursively embedded atom
neural network model, and on-the-fly calculations at the same computational level
extracted from ref. 75 (On-the-fly). b Comparison of TRPMD-based IR spectra of
liquid water obtained from the FIREANN-wF model with electric fields of 0.0 VÅ−1,
0.2 V Å−1, and 0.4 VÅ−1 along the x direction. Source data are provided as a Source
Data file.
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atomic dipole and the electric field vector (namely μ
!� ε

!, a scalar
value) to the standard atomic descriptor. By construction, high-order
field-system interactions are missing in their descriptors. In contrast,
by introducing a virtual field-dependent atomic orbital in our field-
induced EAD descriptor, we capture the response of the electron
density to the external field through orbital-orbital interactions (Eq. (2)
in this work). In such a way, all interactions between the field and the
atomic environment are included in our FIREANN model. This is a
fundamental improvement over all previous models, which can be
easily adapted to other equivariant features based ML models44,48,53

without altering their fundamental architectures. Indeed, Christensen
et al.61 have clearly admitted that their kernel-based model cannot
predict polarizability and other high-order response properties. Simi-
lar deficiencies arise in the FieldSchNet model as well. Although the
nonlinear message passing NNs imposed in that model may learn part
of high-order interactions, this incompleteness will cause qualitative
failures of FieldSchNet in some cases.

To show this explicitly, we have applied the FieldSchNet package
and compared its predictionswith present ones using exactly the same
dataset. As already presented in Fig. 2c, the FIREANN model perfectly
captures the nonlinear energy variation of a water molecule as a
function of the field strength. In contrast, the FieldSchNet model
predicts no dependence of the energy on the field strength at all. This
is because the water molecule lies in the yz plane so all atomic dipoles
derived fromFieldSchNet always lie in plane, resulting in zero coupling
with the electric field applied along the x direction and a constant
energy. In practice, all x relevant components in any response quan-
tities (dipole moment, polarizability, etc.) predicted by FieldSchNet
are zero.

This phenomenon is not limited to molecules but also applies to
periodic systems. To show this, we construct an exemplary dataset
consisting of 200 liquid water configurations exposed to an electric
field along the x direction ranging from0 to 0.6VÅ−1. Watermolecules
in these configurations are aligned in four evenly spaced layers (16
molecules in each) perpendicular to the x axis with the first and third
layer equal to the second and fourth layers respectively, as shown in

the inset of Fig. 9. To enable the comparison of field-dependent
energies, we trained a FIREANN model and a FieldSchNet model
respectivelywith both forces and polarizabilities (to eliminate the field
dependence of the undetermined constant of the total energy), and
aligned their field-free energies to the same zero point. The difference
between FIREANN and FieldSchNet models is amplified in this system,
where the RMSEs predicted on the test set by FIREANN and FieldSch-
Net are 54.5meVÅ−1 (2.1 a.u.) and 245.4meVÅ−1 (165.1 a.u.) for forces
(polarizability), respectively. Again, the FIREANN model precisely
captures the large energy variance up to an applied electric field of
±2 VÅ−1, while the FieldSchNet energy remains constant and deviates
from the correct DFT result by several eV, as displayed in Fig. 9. This
result also validates the generalizability of the FIREANNmodel towards
representing high-intensity external fields.

We note that this deficiency will generally appear in any config-
uration if all atomic dipoles along the applied field direction are zero,
which would lead to an unphysical behavior near the corresponding
configuration space and inevitable large fitting errors. For example,
using the same full dataset of liquidwater in thiswork and trainingwith
atomic forces and polarizabilities, the FIREANN and FieldSchNet
models yield test RMSEs of 45.5meVÅ−1 (2.5 a.u.) and 184.7meVÅ−1

(12.9 a.u.), respectively. The much worse performance of FieldSchNet
represents an indicator of its incomplete description of the field-
system interaction. It is worth noting that our FIREANN implementa-
tion is more efficient than FieldSchNet, with a training time of 2.4
versus 7.6minutes per epoch,when running on a singleA100GPUwith
a memory capacity of 80GB.

Discussion
In this work, we have proposed a simple, accurate, and universal
FIREANN model to learn the external field-dependent PES and
response properties with the proper rotational equivariance. This
model allows us to obtain all ingredients from one single training for
modeling spectroscopy and dynamics of chemical systems with and
without external electric fields. The validity of this model is supported
by the good agreement between the predicted vibrational spectra of
the NMA molecule and liquid water and field-free experimental data.
Moreover, the field-induced alignment of the dipole moment and the
softening of the covalent bond are clearly predicted in the in-field IR or
Raman spectra. For periodic systems like liquidwater, in particular, the
intrinsic multi-valued polarization of the system results in the dis-
continuous dipole moments in the training data and makes it difficult
to being represented by conventional machine learning models based
on atomic charges. This issue is nicely bypassed in the FIREANNmodel
by learning atomic forces only, which can yield both field-dependent
potentials and dipole moments, and thus IR spectra of liquid water.
Our results not only clearly validate the high accuracy of the all-in-one
FIREANN model, but also elucidate the interplay between chemical
systems and electric fields.

In the current implementation built on the original PyTorch79

framework, training a FIREANN model in the most complete scenario
(including energy, forces, dipole, and polarizability tensor) will take 4
times longer than force-only training, as the former process requires
sample-to-sample (high-order) gradients. This issue can be largely
alleviated by an improved implementation based on themore recently
released functorch80module in a new version of PyTorch, which allows
efficient computation of sample-to-sample (high-order) gradients.
Although all results presented in this work are relevant to the system
exposed to an electric field, the FIREANN framework can be extended
to describe the responseof the system to amagneticfield or even to an
electromagnetic field by introducing another field vector-dependent
virtual function in Eq. (2). This will allow a more complete description
of magnetic fields interacting with the system than in ref. 62. Note that
the current version of the FIREANN model is limited to describing the
influenceof a homogeneous externalfield. In the caseof a non-uniform

x
y z

Fig. 9 | Field-dependent energy curves of FIREANN and FieldSchNet. Density
function theory (DFT) and field-induced recursively embedded atom neural net-
work (FIREANN) energy curves varying with the electric field intensity along x axis
(εx), compared with FieldSchNet62 for liquid water. The inset is the employed
structure of liquid water. Note that in order to compare the energy curves gener-
ated by the different methods, the energy curves are shifted separately so that the
field-free energy becomes the zero point of the energy. Source data are provided as
a Source Data file.

Article https://doi.org/10.1038/s41467-023-42148-y

Nature Communications |         (2023) 14:6424 7



external field, the response of the electron density to the field is spa-
tially dependent andmust be explicitly considered. A feasible way is to
discretize the non-uniform field to each atomic center and introduce a
nonequivalent field-dependent function to each FI-EAD feature (as
implicitly implied in Fig. 1) to approximate the responseof each atomic
density to the local field experienced by the central atom. Note that
this adjustment is intended to introduce an external inhomogeneous
field interacting with the entire system. This differs from an inhomo-
geneous electric field approximately generated by solvent environ-
ments, which acts only onto the embedding molecular center as
described in ref. 62. These desirable features make the FIREANN
approach very promising to efficiently modeling strong field-induced
phenomena such as electrochemistry81,82, plasmonic chemistry83, and
tip-induced catalytic reactions8.

Methods
REANN
The regular REANN model was proposed for representing field-free
PESs64. Like all atomistic NN models, the total potential energy (E) is
expressed in the sum of atom-wise contributions, and each atomic
energy (Ei) is learned by feeding a vector of atomic features for
describing the atom-centered environment to an atom-wise NN. In the
REANN model, EAD atomic features are specified to include many-
body correlations between the central and neighbor atoms, which are
simply evaluated by the square of the linear combination of a set of
contracted GTOs located at neighbor atoms,
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where the primitive GTO takes the following form,
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and the contraction combines different shapes of primitive GTOs
together,
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In practical implementation, we reorder the summation over cj
and dn

m in Eq. (6) to obtain better efficiency. It should be noted that an
EAD feature vector (ρi) consists of a number of density values gener-
ated from different sets of contracted GTOs. Although GTOs in our
model are expanded in Cartesian coordinates, they can also be
expressed in terms of spherical harmonics, resembling in spirit those
equivariant features based on spherical harmonics44,48,53. Specifically,
r!ij = r!i � r!j is the position vector (three components) of the central
atom i relative to the jth neighbor atomwith rij (xij,yij,zij) being its norm
(Cartesian component), l = lx+ ly + lz specifies the orbital angular
momentum (e.g., l =0 for the s orbital, l = 1 for the p orbital, etc.), αm
and rm arehyperparameters thatdetermine the center and thewidthof
the radial Gaussian function. In the combination to form an EAD fea-
ture, L is the maximum orbital angular momentum of GTOs, Nφ is the
number of primitive GTOs for each l and dn

m is the contraction coef-
ficient of the mth primitive GTO for the nth component of the EAD
vector, Nc is the number of neighbor atoms and cj is the jth atomic
orbital coefficient within a cutoff radius (rc), f cðrijÞ is a cosine-type
switching function continuously decaying interatomic interactions to
zero at rc up to second-order derivatives. In particular, realizing that cj
itself necessarily depends on its atomic environment, we express it as
the output of an atomic NN based on EAD features centered at atom j.

Apparently, REANN is essentially a message-passing NN by recursively
expanding the environment-dependent orbital coefficients like this,
which has proven an efficient way to incorporate high-order many-
body correlations in the local environment64.

Training details
All FIREANN models in this study utilize NN with two hidden layers,
each containing 64 neurons in each iteration ofmessage-passing. Eight
radial functions and L up to 2were used to construct EAD featureswith
sufficient representability. The initial learning rate was set to 0.002
and decays by a factor of 0.5 whenever the validation loss does not
decrease for 100 consecutive epochs. Training stopswhen the learning
rate drops below 1 × 10−5. The number of message-passing iterations
forH2O,NMA, and liquidwaterwere set to0, 4, and3, respectively. The
cutoff distances for the three systems were 3.0Å, 6.0 Å, and 5.0 Å.
Other parameters were automatically optimized during the training
process. These weights for individual properties in the loss function
were dynamically adjusted during the training process. For the NMA
molecule, λV, λF, λμ, and λαdecay linearly from0.1, 50, 10, and 10 to 0.1,
0.5, 0.5, and 0.5 as the learning rate decays. The same set of weights
were used for the H2O molecule, except that there is no force weight
included. As for the liquid water, only atomic forces were trained and
weighting was unnecessary.

Computational details and datasets
Three systems are used to validate the FIREANNmodel, including a toy
system (H2O monomer), NMA, and liquid water.

A toy system
The training set of the H2O molecule contains merely a single equili-
brium geometry lying in the yz plane with an electric field of 0.1 V Å−1

along the x direction. The potential energy, dipole moment, and
polarizability of H2Owere calculated by Gaussian0984 at the B3LYP/cc-
pVDZ level85 and used as targets in the loss function defined in Eq. (7).

NMA
Over 13000 configurations were sampled from canonical ensemble
(NVT) classical &path-integralMDsimulations at 300K in thepresence
of an electric field ranging from 0.0 to 0.4 VÅ−1 along the x direction
and calculated using Gaussian 0984 at the B3LYP/aug-cc-pVDZ level85

with D3 correction of disperson86. The dataset was divided into train-
ing set, validation set, and test set with a ratio of 8:1:1. Again, the
potential energy, atomic force, dipolemoment, andpolarizabilitywere
trained simultaneously.

Liquid water
A cubic box of 64 water molecules was used in the data sampling. The
dataset consists of ~33000 configurations sampled from NVT classical
and path-integral AIMD simulations at 300K with the external electric
field ranging from 0.0 to 0.6 VÅ−1 along x direction. Electronic struc-
tures and properties were calculated by CP2K87 with a hybrid density
functional revPBE088,89 including D3 correction of dispersion86.
Goedecker–Tetter–Hutter pseudopotentials90 with a cutoff of 1200Ry
and a TZV2P basis set were used. Only atomic forces were used to
construct the PES, and the dipole moment was excluded due to its
discontinuity caused by the multiple-value nature of the periodic sys-
tems. To illustrate the deficiency of FieldSchNet, a special dataset was
collected consisting of 200 liquid water configurations exposed to an
electric field along the x direction ranging from 0 to 0.6VÅ−1. Water
molecules in these configurations were averagely placed in four evenly
spaced layers perpendicular to the x axis (16 molecules in each). In
addition, the first (second) layer was made identical to the third
(fourth) layer. In this way, the sumof dipolemoments in each layerwas
kept in plane and any interlayer dipolemoment canceled out, leaving a
zero x component of the total dipole moment. In the data sampling,
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watermolecules were centered evenly spaced grids (4 × 4) in the plane
with some random shifts within 0.3 Å and random in-plane orientation.
The intramolecular O-H bond lengths and H-O-H angle of each mole-
cule are randomly displaced from their equilibrium values within
~0.1 Å and ~2°.

MD simulations with FIREANN models
NMA. To compare the calculated IR and Raman spectra of NMA with
experimental data, classical MD simulations were performed at 300K
in the absence of an electric field. The NMA molecule was first equili-
brated with 20ps using the Andersen thermostat91, after which two-
hundred snapshots with corresponding momentum were randomly
chosen for initializing subsequent NVE MD simulations of 25 ps. The
time correlation functions (TCFs) were computed by the average of
200 such trajectories. IR and Raman spectra were obtained by the
Fourier transform of the TCFs of the time derivatives of dipole and
polarizability, respectively92. In addition, to include NQEs, path-
integral based TRPMD simulations70,93 were performed with Langevin
thermostats attached to all non-centroid normal modes, with and
without adding an electric field. Other computational details are
similar to those in the classical MD simulations. The resulting field-
dependent IR and Raman spectra were obtained by the Fourier trans-
form of the centroid-based TCFs on an average of 200 TRPMD tra-
jectories. In all simulations, the time step was kept at 0.1 fs.

Liquid water. The system consists of 64 H2O molecules with a side
length 12.4185 Å. TheNVTclassicalMDsimulations of liquidwaterwere
performed at 300K, using Andersen thermostat91. To obtain con-
vergent IR spectra,we extracted 128 positions andmomentum froman
equilibrium NVT trajectory as initial states for NVE MD simulations,
with a total time of 20 ps per NVE simulation and a time step of 0.1 fs.
The same setup was used for a 24-bead TRPMD simulations to include
NQEs, which was found to converge the spectroscopic results.

Data availability
The dataset of NMA molecules and the exemplary dataset of liquid
water (200 structures) generated in this study have been deposited in
the github [https://github.com/zhangylch/FIREANN/tree/main/data].
The initial and final structures ofMD/TRPMD simulations generated in
this study have been deposited in the github [https://github.com/
zhangylch/FIREANN/tree/main/data/md_stru]. The complete liquid
water data are available upon reasonable request from the corre-
sponding author. The data generated in this study are provided in the
Source Data file. Source data are provided with this paper.

Code availability
The FIREANN package are available from https://github.com/
zhangylch/FIREANN94.
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