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Abstract

Heterozygous germline pathogenic variants (GPVs) in SMARCA4, the gene encoding the ATP-

dependent chromatin remodeling protein SMARCA4 (previously known as BRG1), predispose 

to several rare tumour types, including small cell carcinoma of the ovary, hypercalcemic type, 

atypical teratoid and malignant rhabdoid tumor, and uterine sarcoma. The increase in germline 

testing of SMARCA4 in recent years has revealed putative GPVs affecting SMARCA4 in 

patients with other cancer types. Here we describe 11 patients with neuroblastoma, including 

four previously unreported cases, all of whom were found to harbour heterozygous germline 

variants in SMARCA4. Median age at diagnosis was 5 years (range 2 months to 26 years), 

nine were males and eight of nine cases with tumour location information were in an adrenal 

gland. Eight of the germline variants were expected to result in loss of function of SMARCA4 
(large deletion, truncating, canonical splice variants), while the remaining four were missense 

variants. Loss of heterozygosity of the wild-type SMARCA4 allele was found in all eight cases 

where somatic testing was performed, supporting the notion that SMARCA4 functions as a classic 

tumour suppressor. Altogether, these findings strongly suggest that neuroblastoma be included in 

the spectrum of SMARCA4-associated tumours.
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INTRODUCTION

Germline pathogenic variants (GPVs) in SMARCA4, which encodes the ATP-dependent 

chromatin remodeling protein SMARCA4 (previously known as BRG1), are associated 

with rhabdoid tumor predisposition syndrome type 2 (RTPS2), a rare cancer predisposition 

associated with development of small cell carcinoma of the ovary, hypercalcemic 

type (SCCOHT), atypical teratoid/rhabdoid tumour (ATRT), malignant rhabdoid tumor 

(MRT), and uterine sarcoma.1–3 The increasing application of genomic testing in the 

context of research and clinical settings has revealed variants in SMARCA4 in patients 

with other cancer phenotypes. Interestingly, several of these have involved cases of 

neuroblastoma (NBL), the most common extracranial pediatric tumour.4–6 Of relevance 

to the data presented here, prior studies have shown somatic biallelic loss of SMARCA4 
in approximately 1% of NBL and that loss of chromosome 19p (the region where 

SMARCA4 is located) could confer a poorer prognosis.4 7 Among the published reports, 

most SMARCA4 variants were of somatic or undetermined origin, with only rare studies 

describing single cases in which SMARCA4 alterations were confirmed to be of germline 

origin. In one report, it was noted that SMARCA4 variants are enriched in patients with 

NBL versus controls; however, this report did not definitively determine that the variants 

originated in the germline.4 Thus, it remains to be determined how often NBL truly arises 

in association with a SMARCA4 GPVs. Here, we describe 11 patients with NBL who 

harboured putative GPVs in SMARCA4, including four novel cases, one case presented in 

abstract form and six that have been previously reported. We provide information on clinical 
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features and tumour genomic data, which taken together suggest that SMARCA4 represents 

a bona fide NBL predisposition gene.

METHODS

We performed a literature search with the goal of identifying all cases of NBL reported 

to arise in persons with GPVs in SMARCA4. Additionally, cases were gathered through 

internal data at participating institutions and via personal communications. Where available, 

we collected information on patient age, sex, tumour location, germline and somatic 

SMARCA4 variant details, SMARCA4 immunohistochemical (IHC) staining results, and 

tumour MYCN status (Table 1). SMARCA4 variants were classified per the Richards et al., 

2015 ACMG/AMP guidelines.8

RESULTS

Through literature review, internal case review, and personal communication, we collected 

11 cases of patients with NBL in whom a heterozygous germline SMARCA4 variant was 

found upon multi-gene panel testing, exome, or genome sequencing of patients diagnosed 

with NBL. The variants were scattered across the gene (Figure 1A). In eight cases (73%), 

germline variants (frameshift, nonsense, canonical splicing, large deletion) were predicted 

to cause loss-of-function (LoF), typical of those reported in RTPS2, while in three cases 

they were missense variants (Table 1, Figure 1A). We classified two of these LoF variants 

as Pathogenic: c.535C>T, p.(Gln179Ter) seen in Case 5 and c.493C>T; p.(Gln165Ter) seen 

in Case 6 (Table 1). The tumour in Case 5 showed loss of SMARCA4 expression by IHC 

and we therefore used PP4 as suggested by Walsh et al.13 The variant in Case 6 has been 

seen in an SCCOHT tumour (internal data), and we therefore used the code PS4 at a 

supporting level, as has been suggested by previous ClinGen Variant Curation Expert Panels 

for other genes specifications (www.clinicalgenome.org). Five additional LoF variants are 

predicted to undergo nonsense-mediated decay but have not been reported elsewhere, and 

therefore were classified as Likely Pathogenic (Table 1). One variant was a large deletion 

on chromosome 19 that included SMARCA4. This was classified as Pathogenic according 

to ClinGen’s CNV pathogenicity calculator (http://cnvcalc.clinicalgenome.org/cnvcalc/cnv-

loss) based on classification rules from Riggs et al., 2020.14

The remaining three variants were missense variants. Two (c.2372C>T, p.(Ala791Val) and 

c.4670T>C, p.(Leu1557Pro)) could not be definitively classified and therefore remained 

as variants of uncertain significance (VUSs), though both variants are predicted to be 

deleterious by REVEL. One of these three VUSs (c.4670T>C, p.Leu1557Pro) was seen in 

a case where SMARCA4 expression was lost in the tumour (Case 10). The third missense 

variant, c.2717G>A; p.(Arg906His) (Case 4), has been reported somatically in a case of 

NBL,15 as well as in two cases of gastric carcinoma (http://cancer.sanger.ac.uk)16 and 

one uterine endometrioid adenocarcinoma.17 18 Furthermore, three other variants at this 

position (p.Arg906Leu, p.Arg906Cys, p.Arg906Ser) have been seen in other tumour types 

in COSMIC (COSV60811731, COSV60801865, COSV100758492).16 The p.Arg906Cys 

variant has also been reported somatically in a NBL that harboured a second SMARCA4 
variant,4 as well as in at least two patients with neurological disorders in which it arose de 
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novo (ClinVar ID: 421281). Furthermore, all variants at the c.2717G position are predicted 

to be damaging by the REVEL meta-predictor.19 In case 4, despite evidence of LOH in 

the tumour (based on a VAF of 80%), there was retained SMARCA4 expression by IHC 

(Figure 1B, C). Although several pathogenic ACMG/AMP criteria can be applied, which 

suggests that the position is important for SMARCA4 protein function, the variant remains 

of uncertain significance in the context of cancer predisposition.

Tumour sequencing was performed in seven of 11 cases, all of which showed LOH that 

included at least SMARCA4 (Table 1). Three cases had SMARCA4 IHC results available, 

as discussed above (Cases 4, 5, 10) (Figure 1, Table 1). For the remaining cases, IHC results 

were unavailable, but for the three cases with LoF variants and LOH in the tumour (Cases 1, 

2, and 8), we expect that SMARCA4 protein expression would be lost.

The median age of onset for these cases was 5 years (range 2 months – 26 years), with all 

but one patient presenting in the pediatric setting, when NBL is most common. There was 

no obvious difference in age of onset between patients with missense versus LoF variants; 

however, this could not be statistically calculated due to the small sample size. Only one 

previously reported case presented with bilateral NBL, a 4-year-old child who also happened 

to harbour a PGV affecting the CHEK2 gene.5 MYCN status was available in four cases, 

all of which showed no amplification of the gene. These data are summarized in Table 1. 

Information on inheritance of the variants was only available in cases 2 and 10, both of 

which were inherited from the father. None of the individuals tested were known to have any 

family history of SMARCA4-related cancers.

DISCUSSION

Here we describe 11 patients with NBL who harboured heterozygous germline SMARCA4 
variants. Eight of the 11 cases had LoF variants, including one large deletion encompassing 

the entire SMARCA4 gene. In seven patients for whom the tumours were evaluated, there 

was loss of the wildtype allele (including the case with the p.Arg906His missense variant), 

supporting the involvement of these variants in tumour development. For the remaining 

four cases, tumour sequencing information was not available, but three of these patients 

harboured LoF variants (Cases 3, 6, 9), which were classified as Likely Pathogenic or 

Pathogenic. The remaining case (Case 7) harboured a missense variant classified as VUS 

that was predicted to be deleterious using the REVEL meta-predictor (score: 0.764)19 and is 

located in the helicase functional domain.

In all four cases where MYCN status was tested, none showed MYCN amplification, 

which is not surprising, as it has been shown in other cancers that MYC amplification and 

SMARCA4 inactivation are mutually exclusive.20 Although IHC was not available for eight 

of 11 cases, based on studies in SCCOHT and ATRT where LoF variants almost always lead 

to loss of SMARCA4 expression,3 we expect that the six cases with germline LoF variants 

would have loss of expression of SMARCA4 in the tumour, similar to the one case that had 

an LoF variant and IHC results available (Case 5, Figure 1D, E).
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Hereditary NBL is known to be due to ALK and PHOX2B germline variants in 1–2% of 

cases.21 Furthermore, NBL can rarely develop in patients with neurofibromatosis and other 

RASopathies, Beckwith-Wiedemann syndrome, Li-Fraumeni syndrome, Weaver syndrome, 

Fanconi anemia, and Familial paraganglioma/pheochromocytoma.21 However, the cases 

reported here suggest that heterozygous germline SMARCA4 variants may also contribute 

to NBL risk. Further supporting this possibility, LoF SMARCA4 variants are extremely rare 

in GnomAD (https://gnomad.broadinstitute.org; there are less than 10 such variants), giving 

the SMARCA4 gene a high pLI score (1.0), indicating extreme intolerance of the gene to 

LoF variants. In addition, the incidence of SMARCA4 variants in NBL has been reported to 

be higher than expected by chance, as noted by Bellini et al., where they calculated an odds 

ratio of 4.5 in their series of cases.4

Germline LoF SMARCA4 germline variants are known to predispose to SCCOHT, 

ATRT, and less commonly, uterine sarcoma. While SCCOHT, ATRT, and most SMARCA4-

deficient uterine sarcomas have similar rhabdoid cell morphology,3 22 the NBLs studied 

here did not have rhabdoid morphology, except for case 10, which was suspected to 

be a rhabdoid tumour on biopsy but was ultimately diagnosed as a NBL upon full 

tumour resection. Although PHOX2B staining was negative in this case, NB84, a known 

neuroblastoma marker, was positive; as well, there was strong chromogranin A IHC 

and diffuse synaptophysin staining. When combined with the observed ganglion cell 

differentiation in the resection specimen, this led to the final diagnosis of NBL. This 

highlights the importance of expert pathology review, as this is not the first case where a 

NBL was misdiagnosed as a rhabdoid tumour.23

Given that the LoF variants are similar in nature to those found in other SMARCA4-

deficient tumours, there does not appear to be a clear genotype-phenotype relationship to 

predict the specific tumour type that develops. Previous in vivo studies in mice have shown 

that the development of ATRTs, more commonly caused by variants in SMARCB1, is highly 

dependent on the time in which the second hit in SMARCB1 is acquired.24 It has been 

suggested that like NBLs, rhabdoid tumours arise from neural crest cells,25 26 and so perhaps 

the tumour type is dependent on the timing and cell type in which the second SMARCA4 hit 

occurs.

In addition to germline variants, somatic variants in SMARCA4 are commonly seen 

in multiple tumour types, including lung cancer, bladder carcinoma, and Burkitt’s 

lymphoma.17 18 More recently, somatic SMARCA4 variants have been associated with NBL 

and while one study found that an increase in SMARCA4 expression was necessary for NBL 

formation and associated with poorer survival,27 others have found loss of SMARCA4 to be 

associated with oncogenesis, an older age of onset, and poor prognosis.4 7 15 All the patients 

listed here were diagnosed in the pediatric age, typical of NBLs, aside from one patient who 

was diagnosed at age 26, the patient with the p.Arg906His variant.

To put these results in context, we have compiled the results of large sequencing studies 

that included SMARCA4 germline testing in a Supplementary Table (Table S1). These 

studies suggest that approximately 0.2% of patients with NBL harbour a likely pathogenic or 

pathogenic variant in SMARCA4. Based on these findings, we recommend that in patients 
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where a SMARCA4 pathogenic variant is found in a NBL (especially those with loss of 

SMARCA4 staining by IHC), or those with a positive family history of NBL, SCCOHT, 

ATRT, or SMARCA4-deficient uterine sarcomas, germline testing of the gene should be 

considered to exclude an underlying hereditary predisposition. It remains unclear whether 

such patients should undergo regular screening for NBL, as the lifetime penetrance of 

SMARCA4 variants for NBL development is unknown. Further research into the prevalence 

of SMARCA4 germline variants in patients with NBL and the impacts of these variants on 

protein function, clinical manifestations and overall outcomes are warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Depiction of the SMARCA4 gene with the variants found in the patients described 

in this manuscript. Variant colors refer to variant types: Orange = nonsense, Red = 

frameshift, Purple = splice, Blue = missense. Image created with https://pecan.stjude.cloud/

pie. B-E) SMARCA4 immunostaining of 2 representative neuroblastomas. B) Case 

4: Adrenal neuroblastoma, (differentiating stroma poor neuroblastoma), composed of 

nodules of neuroblasts and cells showing varying degrees of ganglion cell differentiation 

with intervening thin fibrovascular septa (H&E stain, 100X magnification). C) Case 4: 

Immunohistochemistry for SMARCA4 showing retained nuclear staining within the tumour 

(200X magnification). D) Case 5: H&E-stained image shows a poorly differentiated 

neuroblastoma (40X magnification). E) Case 5: SMARCA4 immunohistochemistry shows 

loss of nuclear staining in the neuroblastic cells (endothelial cells serving as an internal 

positive control; 40X magnification).
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