Skip to main content
. 2023 Oct 7;100:106633. doi: 10.1016/j.ultsonch.2023.106633

Table 1.

The predicted values, constants and statistical analysis of the models fitted to the drying data for thin-layer guar gum-coated sour cherry.

Model name Model equation Model constants SSE r RMSE Predicted moisture ratio
Midilli MR = aexp(-ktn) + bt a = 0.9999
k = 0.0944
n = 0.5083
b = -0.0023
0.0002 0.9998 0.0082 1.000 0.653 0.518 0.417 0.331 0.256 0.188
Page MR = exp(-ktn) k = 0.0504
n = 0.761
0.0015 0.9983 0.0177 1.000 0.673 0.511 0.401 0.321 0.260 0.213
Wang and Singh MR = 1 + at + bt2 a = -0.0184
b = 0.0001
0.0141 0.9846 0.0531 1.000 0.747 0.538 0.375 0.256 0.183 0.154
Newton MR = exp(-kt) k = 0.0198 0.0114 0.9876 0.0435 1.000 0.743 0.552 0.410 0.305 0.227 0.168
Henderson and Pabis MR = aexp(-kt) a = 0.9533
k = 0.0187
0.0085 0.9908 0.0412 0.953 0.720 0.544 0.411 0.310 0.234 0.177
Logarithmic MR = aexp(-kt) + c a = 0.8362
k = 0.0269
c = 0.1435
0.0048 0.9948 0.0346 0.980 0.702 0.517 0.393 0.310 0.255 0.218
Experimental moisture ratio 1.000 0.646 0.525 0.408 0.329 0.258 0.192

* where, SSE is sum of squared errors; r is correlation coefficient; RMSE is root mean squared error; MR is moisture ratio (dimensionless); t is time (min); a, k, n, b, and c are coefficients of the models (dimensionless).