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Abstract

Introduced more than a half-century ago, Granger causality has become a popular tool for 

analyzing time series data in many application domains, from economics and finance to genomics 

and neuroscience. Despite this popularity, the validity of this framework for inferring causal 

relationships among time series has remained the topic of continuous debate. Moreover, while 

the original definition was general, limitations in computational tools have constrained the 

applications of Granger causality to primarily simple bivariate vector autoregressive processes. 

Starting with a review of early developments and debates, this article discusses recent advances 

that address various shortcomings of the earlier approaches, from models for high-dimensional 

time series to more recent developments that account for nonlinear and non-Gaussian observations 

and allow for subsampled and mixed-frequency time series.
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1. INTRODUCTION

There is a range of applications where the interest is in understanding interactions between 

a set of time series, including in neuroscience, genomics, econometrics, climate science, and 

social media analysis. For example, in neuroscience, one may seek to understand whether 

activity in one brain region correlates with later activity in another region, or to decipher 

instantaneous correlations between regions—both notions of functional connectivity. In 

genomics, there is an analogous study of gene regulatory networks. In econometrics, 

one may be interested in how various macroeconomic indicators predict one another. We 

also have unprecedented levels of data on people’s actions—including social media posts, 

purchase histories, and political voting records—and want to understand the dependencies 

between the actions of these individuals. Modern recording modalities and the ability to 

store and process large amounts of data have escalated the scale at which we seek to do such 

analyses.
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In many cases, one may seek notions of causal interactions among the time series 

but be limited to drawing inferences from observational data without opportunities for 

experimentation and without known mechanistic models for the observed phenomena. In 

such cases, Granger (1969) put forth a framework leveraging the temporal ordering inherent 

to time series in hopes of drawing causal statements restricted to the past causing the future. 

The framework, in reality, assesses whether one series is predictive of another: A series xi is 

deemed not to be “causal” of another series xj if leveraging the history of series xi does not 

reduce the variance of the prediction of series xj. In this review, we distinguish this definition 

from other standard definitions of causality by referring to it as Granger causality. Although 

there is a long history of debate about the validity of the Granger causality framework for 

causal analyses—and justly so—in this review we take the stance that analyzing interactions 

in time series defined by association has its utility.

Granger causality has traditionally relied on assuming a linear vector autoregressive (VAR) 

model (Lütkepohl 2005) and considering tests on the VAR coefficients in the bivariate 

setting. However, in real-world systems involving many time series, considering the 

relationship between just a pair of series can lead to confounded inferences (e.g., Lütkepohl 

1982). Network Granger causality aims to adjust for possible confounders or jointly consider 

multiple series (Eichler 2007, Basu et al. 2015). There are other important limitations of 

the linear VAR model underlying standard Granger causal analysis that have precluded its 

broad utility. Some limiting assumptions include assuming (a) real-valued time series with 

(b) linear dynamics dependent on (c) a known number of past lagged observations, with (d) 

observations available at a fixed, discrete sampling rate that matches the time scale of the 

causal structure of interest. In contrast, modern time series are often messy in ways that 

break a number of these assumptions, including through nonlinear dynamics and irregular 

sampling. Recent advances have pushed the envelope on where Granger causality can be 

applied by loosening these restrictions in a variety of ways. We review some of these 

advances and set the stage for further developments.

1.1. Outline of Review

In Section 2 we review the history of Granger causality, starting with the original definition 

and assumptions in Section 2.1 and early approaches for testing in Section 2.2. We then turn 

to network Granger causality and the issues of lag selection and nonstationary VAR models 

in Section 3. Finally, in Section 4 we review recent advances that move beyond the standard 

linear VAR model and consider discrete-valued series (Section 4.1), nonlinear dynamics and 

interactions (Section 4.2), and series observed at different sampling rates (Section 4.3).

2. THE HISTORY OF GRANGER CAUSALITY

2.1. Definition

In his seminal paper, Granger (1969) proposed a notion of causality based on how well past 

values of a time series yt could predict future values of another series xt. Let ℋ < t be the 

history of all relevant information up to time t − 1 and P xt ℋ < t  be the optimal prediction of 

xt given ℋ < t. Granger defined y to be causal for x if
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var xt − P xt ∣ ℋ < t < var xt − P xt ℋ < t\y < t , 1.

where ℋ < t\y < t indicates excluding the values of y < t from ℋ < t. That is, the variance of the 

optimal prediction error of x is reduced by including the history of y (informally, y is causal 

of x if past values of y improve the prediction of x). This characterization is clearly based 

on predictability and does not (directly) point to a causal effect of y on x:y improving the 

prediction of x does not mean y causes x. Nonetheless, assuming causal effects are ordered 

in time (i.e., cause before effect), Granger argued that, under some assumptions, if y can 

predict x, then there must be a mechanistic (i.e., causal) effect; that is, predictability implies 

causality. We explicitly refer to this definition as Granger causality throughout this review to 

distinguish it from other formal definitions of causality.

While the definition seems general and does not rely on specific modeling assumptions, 

Granger’s original argument was based on the identifiability of a unique linear model. 

Denoting the vector of variables at time t by xt = x1t, x2t, …, xpt
T, he considered the linear 

model

A0xt = ∑
k = 1

d
Akxt − k + et, 2.

where A0, A1, …, Ad are p × p lag matrices (coefficients) and d, the lag or order, may be finite 

or infinite. The p-dimensional white noise innovation, or error, term et can have a diagonal or 

nondiagonal covariance matrix Σ.

Granger (1969) pointed out that this model is generally not identifiable (the matrices Ak

are not uniquely defined) unless A0 is diagonal. Granger referred to this special case—

corresponding to the well-known VAR model (Lütkepohl 2005, p. 427)—as a “simple 

causal model,” distinguishing it from models with instantaneous causal effects when A0

has nonzero off-diagonal entries. This more general form of Equation 2 is known as a 

structural vector autoregressive (SVAR) model (Kilian 2013) and can be identified under 

certain parameter restrictions (Kilian & Lütkepohl 2017). Such SVAR models are further 

considered in Section 4.3.

The model in Equation 2 is clearly restrictive and does not prove or disprove the presence 

of causal effects. In particular, there are a number of implicit and explicit restrictive 

assumptions required for the (S)VAR model to be an appropriate framework for identifying 

Granger causal relationships:

• Continuous-valued series: All series are assumed to have continuous-valued 

observations. However, many interesting data sources—such as social media 

posts or health states of an individual—are discrete-valued.

• Linearity: The true data generating process, and correspondingly the causal 

effects of variables on each other, is assumed to be linear. In reality, many 

real-world processes are nonlinear.
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• Discrete time: The sampling frequency is assumed to be on a discrete, regular 

grid matching the true causal time lag. If the data acquisition rate is slower or 

otherwise irregular, causal effects may not be identifiable. Likewise, the analysis 

of point processes or other continuous-time processes is precluded.

• Known lag: The (linear) dependency on a history of lagged observations is 

assumed to have a known order. Classically, the order was not estimated and was 

taken to be uniform across all series.

• Stationarity: The statistics of the process are assumed time invariant, whereas 

many complex processes have evolving relationships (e.g., brain networks vary 

by stimuli and user activity varies over time and context).

• Perfectly observed: The variables need to be observed without measurement 

errors.

• Complete system: All relevant variables are assumed to be observed and 

included in the analysis—i.e., there are no unmeasured confounders. This is 

a stringent requirement, especially given that early approaches for Granger 

causality focused on the bivariate case—that is, they did not account for any 

potential confounders.

The above requirements were discussed in Granger’s original and follow-up papers (Granger 

1969, 1980, 2001) and extensively by other authors (Stokes & Purdon 2017, Maziarz 2015); 

readers are also directed to the recent review by Glymour et al. (2019). Unfortunately, 

each of the above requirements is unlikely to hold in practice. These assumptions are 

also not verifiable and are even more unlikely to hold simultaneously, which is what is 

required for the identifiability of causal effects. In fact, Granger admitted this limitation and 

gave examples of cases where causal effects could not be identified or wrong conclusions 

could be drawn. However, in each case, he presented an argument for why the example 

did not violate the basic principle, either by giving justifications through an alternative 

model (Granger 1988) or by adding disclaimers (e.g., the definition cannot be applied to 

deterministic or perfectly predictable processes).

The debate over the notion of causality introduced by Granger has continued since its 

introduction. An illustrative example is the commentary by Sheehan & Grieves (1982), 

who used Granger causality to show that the US gross national product causes sunspots; 

the rebuttal by Noble & Fields (1983) suggested an alternative model would have led 

to a different conclusion. Despite its limitations, Granger (1980) and a number of other 

researchers, including prominent econometricians (Sims 1972, Bernanke & Blinder 1992), 

have argued that the approach can be used to identify causal effects. Researchers in various 

applied domains, from neuroscience (Bergmann & Hartwigsen 2021, Reid et al.2019) 

to environmental sciences (Cox & Popken 2015), have used Granger’s framework to 

(informally) draw causal conclusions. Other researchers have emphasized the limitations 

of the approach and have tried to distinguish it as Granger causality or G-causality (Holland 

1986, Bressler & Seth 2011).
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While limited and not generally informative about causal effects, the notion of Granger 

causality can lead to useful insights about interactions among random variables observed 

over time. In the next section, we discuss early approaches for identifying Granger causality 

and its applications in various domains. In the remaining sections, we discuss approaches 

that aim to (partially) address some of the limitations of the original Granger causality 

framework and relax some of the requirements discussed above.

2.2. Early Approaches and Applications

The basic definition (Equation 1) requires that all relevant information is accounted for when 

testing whether series y Granger causes series x. However, early methods for identifying 

Granger causality were limited to bivariate models, ignoring the effect of other variables. In 

his original paper, Granger (1969) used an argument based on spectral representation, using 

coherence and phase, to motivate the original definition. Using a bivariate version of the 

SVAR model (Equation 2) (i.e., with p = 2), he then showed that when A0 is diagonal (i.e., 

a simple causal model/VAR model), Granger causality corresponds to nonzero entries in the 

autoregressive coefficients. In particular, for a bivariate model

ax
0xt = ∑

k = 1

d
axx

k xt − k + ∑
k = 1

d
axy

k yt − k + et, x,

ay
0yt = ∑

k = 1

d
ayy

k yt − k + ∑
k = 1

d
ayx

k xt − k + et, y,
3.

series y is Granger causal for series x if and only if axy
k ≠ 0 for some 1 ≤ k ≤ d.

Sims (1972) later gave an alternative definition of Granger causality based on coefficients in 

a moving average (MA) representation. The characterizations by Granger (1969) and Sims 

(1972), which have been shown to be equivalent (Chamberlain 1982), can be tested using an 

F-test comparing two models: the full model, including past values of both x and y, and the 

reduced model, including only past values of x. Formally,

F = RSSred − RSSfull /(r − s)
RSSfull/(T − r) , 4.

where RSSfull and RSSred are the residual sum of squares for the full and reduced models 

with r and s parameters, respectively. Using this test, y is declared Granger causal for 

x if the observed test statistic F  exceeds the 1 − α % quantile of an F-distribution with 

r − s and T − r degrees of freedom. Alternatively, one can also use a χ2 statistic based on 

likelihood ratio or Wald statistics (Cromwell & Terraza 1994). A key step in carrying out the 

testing is to identify the model’s order (or lag), d. We discuss the lag selection in Section 

3.2. Alternatively, one can also use tests in the spectral domain, using Fourier or wavelet 

representations (Geweke 1982, Dhamala et al. 2008).

Regardless of testing procedure, Granger causality based on only two variables severely 

limits the interpretation of the findings: Without adjusting for all relevant covariates, a 

key assumption of Granger causality is violated. This limitation, which has been well 

Shojaie and Fox Page 5

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



documented (see, e.g., Lütkepohl 1982), is illustrated in Figure 1. Here, data are generated 

according to the following simple VAR process with three variables and independent and 

identically distributed (i.i.d.) innovations et, i ∼ N 0, 0.12 :

xt, 1 = 0.5xt − 1, 1 − 0.8xt − 2, 1 + et, 1,
xt, 2 = 0.5xt − 1, 2 − 0.8xt − 2, 2 + Cxt − 1, 1 + 0.7 − C xt − 2, 1 + et, 2,
xt, 3 = 0.5xt − 1, 3 − 0.8xt − 2, 3 + 0.7 − C xt − 1, 1 + Cxt − 2, 1 + et, 3 .

5.

The two time series plots in Figure 1 correspond to two different VAR models: one with 

C = 0.7 and another with C = 0. In the first model, x2 and x3 are affected by values of x1 in 

lags 1 and 2, respectively. This relationship is reversed in the second model. The patterns 

of x2 and x3 in the time series plots in Figure 1 clearly suggest that, by ignoring x1, we may 

either conclude that x2 is Granger causal for x3 (when C = 0.7) or that x3 is Granger causal 

for x2 (when C = 0). This observation is indeed confirmed when we use a test of Granger 

causality in either case, highlighting the limitation of bivariate tests of Granger causality.

In spite of their limitations, bivariate tests of Granger causality have been widely used in 

many application areas, from economics (Chiou-Wei et al. 2008) and finance (Hong et al. 

2009) to neuroscience (Seth et al. 2015) and meteorology (Mosedale et al. 2006). Similar 

tests have also been developed for discrete-valued time series (Kontoyiannis & Skoularidou 

2016) and for general distributions based on the notion of directed information (Quinn et 

al. 2015). In the next section, we discuss recent developments that aim to mitigate this 

limitation by analyzing a potentially large set of variables.

3. NETWORK GRANGER CAUSALITY

The limitations of identifying Granger causality using bivariate models—illustrated in the 

three-variable example of Figure 1—have long been known and discussed in the literature 

(e.g., Sims 1980). Needing to account for many variables when identifying Granger 

causality arises in at least two settings. First, when the goal is to investigate Granger 

causality between two (or a handful of) endogenous variables x and y, we need to account 

for the remaining exogenous variables—targeting the notion of all other relevant information

—to prevent identifying incorrect Granger causal relations. This is the setting illustrated in 

Figure 1 and is common in macroeconomic and econometric studies (Bernanke & Kuttner 

2005). Methods based on summaries of exogenous variables, using, e.g., latent factors, have 

been commonly used to achieve this goal (Bernanke et al. 2005).

In the second setting, which arises naturally in the study of many physical, biological 

and social systems, the goal is to investigate the relationships among all the variables 

from a systems perspective. In this case, all variables are endogenous. For instance, when 

learning gene regulatory networks, all the genes in a given biological pathway are of interest. 

Similarly, when studying brain connectivity networks, the goal is to interrogate interactions 

among all regions of interests in the brain. These applications have led to the development of 

methods for identifying Granger causal relationships among a large set of variables, which 

can be compactly represented as a network or graph (Eichler 2012) (see Figure 2) and 

underlie the study of network Granger causality (Basu et al. 2015).
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3.1. Granger Causality Based on Vector Autoregressive Models

In this section we explicitly consider the popular VAR model for Granger causality analysis 

of multiple variables:

xt = ∑
k = 1

d
Akxt − k + et, 6.

where variables and parameters are defined as in Equation 2.

Proposition 1. Straightforwardly following from the bivariate case (Granger 1969), series xi

is Granger causal for series xj if and only if Aji
k ≠ 0 for some 1 ≤ k ≤ d.

Reading off statements of Granger noncausality from the zeros of the lag matrices is 

illustrated in Figure 2. The Granger causal relations can also be described via two different 

graphical models (Eichler 2012): The first is an expanded graph (Figure 2b) with p nodes 

for each time point t, t − 1, …, t − d and edges corresponding to nonzero entries in Ak. This 

representation is similar to that in dynamic Bayesian networks (Ghahramani 1997). The 

second graph is a compact representation (Figure 2c), combining edges from different lags 

of the expanded graph. This latter graph captures the Granger causal relations. In addition, 

undirected edges indicate instantaneous dependencies captured by nonzero entries in the 

inverse covariance matrix Σ−1 of the innovations, et.

Despite the direct connection between Granger causality and nonzero entries of Ak

(Proposition 1), earlier VAR-based approaches used tests of variance similar to those 

for bivariate models in Equation 4. Moreover, concerned with the increasing number of 

parameters in the model—O p2  parameters for a model with p variables—earlier approaches 

focused on few time series. Bernanke et al. (2005, p. 338) state that “to conserve degrees of 

freedom, standard VARs rarely employ more than six to eight variables.” While this is a step 

forward, it is difficult to argue that early moderate-dimensional approaches account for all 

the relevant information when determining Granger causal relations. Thus, these approaches 

still do not satisfy the requirements of the definition in Equation 1. This limitation was 

underscored by Bernanke et al. (2005, p. 338) when stating that “[the] small number of 

variables is unlikely to span the information sets used by actual central banks.”We consider 

the challenge of scaling to a large number of series under the two scenarios outlined above: 

assuming a large set of exogenous series, or that all series are endogenous.

To account for a (potentially large) number of exogenous variables when studying the 

relationships between a small number of endogenous variables, a well-known approach is 

the factor-augmented VAR model of Bernanke et al. (2005):

xt

f t
= ∑

k = 1

d
Ak xt − k

f t − k
+ et . 7.
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This model is seemingly similar to the VAR model in Equation 6. However, the m-

dimensional factors f t—representing exogenous variables—are unobserved. Bernanke et al. 

(2005) proposed two estimation procedures for Equation 7 with constraints on the factors: a 

two-step procedure based on principal components and a direct estimation procedure based 

on maximum likelihood. Factor models have been used extensively in econometrics (Stock 

& Watson 2011). Follow-up work has further investigated the estimability of the parameters 

(Belviso & Milani 2006) and the choice of number of unobserved factors (Ahn & Horenstein 

2013, Onatski 2010, Amengual & Watson 2007).

The second scenario involves fitting VAR models with a large number of endogenous 

variables. Earlier approaches primarily used shrinkage penalties to obtain reasonable 

estimates in moderate-dimensional VAR models, followed by classical test-based 

approaches (e.g., the F-test) to infer Granger causality. For instance, motivated by earlier 

work (Litterman 1986), Leeper et al. (1996) considered a Bayesian approach using a prior 

shrinking large coefficients or distant lags. Recent work has increasingly focused on directly 

selecting the nonzero entries of the Aks via sparsity-inducing penalties, often by augmenting 

the VAR loss function. For the commonly used least squares loss and a general penalty Ω( ⋅ )
on the coefficient matrices A1, …, Ad, the general problem can be written as

min
A1, …, Ad ∈ ℝp × p

∑
t = d + 1

T
xt − ∑

k = 1

d
Akxt − k

2

2

+ Ω A1, …, Ad , 8.

where ∥ ⋅ ∥2 denotes the ℓ2 norm and T  the length of the time series. Fujita et al. (2007) 

proposed to estimate high-dimensional VARs by using a lasso penalty (Tibshirani 1996):

Ω A1, …, Ad = λ ∑
k = 1

d
∑

i, j = 1

p
Aij

k ,

with λ ≥ 0 a tuning parameter controlling element-wise sparsity in Ak, encouraging many 

entries to be exactly zero. One can directly deduce from the lasso estimate that xi is Granger 

causal for xj if there exists 1 ≤ k ≤ d such that Aji
k ≠ 0 (see Figure 3a). The motivating 

application for Fujita et al. (2007) was the estimation of gene regulatory networks; based on 

the particulars of this application, they developed their method for panel data, which often 

contain observations over a small number of time points, but with repeated measures for 

multiple subjects. Chudik & Pesaran (2011) considered a very similar estimator (also using a 

lasso penalty) for economic time series data.

Lozano et al. (2009) used a group lasso penalty (Yuan & Lin 2006) for aided Granger 

causality interpretability:

Ω A1, …, Ad = λ ∑
i, j = 1

p
Aij

1 , …, Aij
d

2 .
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This penalty, which is depicted in Figure 3b, corresponds directly to Granger noncausality 

from xi to xj by enforcing Aji
k = 0 for all k. Basu et al. (2015) considered more general group 

lasso penalties, to group over not only lags but also sets of related variables and even entire 

matrices (see Figure 3c). The authors also showed that the sparsity pattern resulting from 

group lasso penalty is only consistent with the truth if the grouped coefficients have similar 

magnitudes, and that group lasso may only achieve directional consistency; they proposed a 

thresholded group lasso penalty to consistently learn the sparsity patterns. As illustrated in 

Figure 4, the resulting estimates can facilitate the interpretation of Granger causal effects in 

settings with many variables.

The general estimation framework in Equation 8 has been extended to account for 

dependencies in the inverse covariance of the innovations, Σ−1 (Davis et al. 2016), 

and to combine the ideas of sparsity and unobserved exogenous variables (Basu et al. 

2019). Asymptotic properties of the resulting estimators have also been investigated in 

high-dimensional settings, where p ≫ T  (Song & Bickel 2011, Basu & Michailidis 2015). 

In particular, Basu & Michailidis (2015) established a connection between the sample 

size (T ) needed for high-dimensional consistency of the lasso estimate of a VAR process 

and the eigen-structure of its spectral density matrix. More recent work has developed 

asymptotically valid inference for the estimated parameters of the VAR process (Neykov 

et al. 2018, Zheng & Raskutti 2019, Zhu & Liu 2020). Some of these developments have 

also been implemented in publicly available software packages, including mgm (Haslbeck & 

Waldorp 2020), bigvar (Nicholson et al. 2017a), and ngc (Etzel & Shojaie 2016).

Bayesian approaches have also been considered as alternatives to regularization methods 

for analyzing large VAR processes. For instance, George et al. (2008) proposed a Bayesian 

stochastic search algorithm to identify high-dimensional VAR processes, whereas Bańbura et 

al. (2010) showed that better performance can be achieved in large models if the tightness 

of the priors is increased as the model size increases. More recently, Ahelegbey et al. 

(2016) considered sparsity-inducing priors for high-dimensional VAR processes, Ghosh et 

al. (2019) established posterior consistency of the Bayesian estimates when using sparsity-

inducing priors, and Billio et al. (2019) proposed nonparametric Bayesian priors that cluster 

the VAR coefficients and induce group-level shrinkage.

3.2. Lag Selection and Nonstationary Vector Autoregressive Models

In classical linear VAR methods, one must explicitly specify the maximum time lag, d, 

when assessing Granger causality. Early approaches often set d based on prior knowledge 

or in ad hoc ways. VARs with different lags may result in different conclusions, further 

complicating the interpretation of Granger causality. If the specified lag is too short, Granger 

causal connections at longer lags will be missed, while overfitting may occur if the lag is too 

large, a problem exacerbated by high-dimensional VAR models.

Regularization-based approaches can be used to systematically estimate the optimal lag d
from data. To this end, Shojaie & Michailidis (2010) proposed a truncating lasso penalty that 

shrinks entire coefficient matrices Ak to zero and then sets all following Ak + 1 to zero (see 
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Figure 5a). The idea is to scale the penalty for each Ak using data-driven weights calculated 

based on coefficient matrices in previous lags Ak − 1. Formally, the penalty is given by

Ω A1, …, AT = λ ∑
k = 1

T
ωk ∑

i, j = 1

p
Aij

k ,

where ω1 = 1, and for k ≥ 2 the weights can be compactly written as

ωk = I Ak − 1; A: (T − k) A 0 ≥ p2β ,

with I(A; E) = 0 if A ∈ E and I(A; E) = ∞ if A ∉ E (the convex indicator function). Here, 

∥ A ∥0 gives the number of nonzero entries of A and β is a second tuning parameter. Shojaie 

& Michailidis (2010) show that a block-coordinate descent algorithm converges to a local 

minimum and establish consistency of this algorithm for selecting the correct Granger 

causality network in high-dimensional panel data settings. They also propose error-based 

choices for the two tuning parameters (λ and β) that control the type-I and type-II errors in 

selecting Granger causal effects.

While the decay assumption of Shojaie & Michailidis (2010) may be satisfied in some 

applications, it may fail in others. To overcome this limitation, Shojaie et al. (2012) 

proposed an adaptive thresholded lasso penalty that can data-adaptively set entire lag 

matrices to zero, while allowing others to be nonzero. The effect of this penalty, depicted 

in Figure 5b, is somewhat similar to the effect of the automatic relevance determination 

(ARD) priors proposed in the Bayesian nonparametric approach of Fox et al. (2011) for 

switching dynamic linear models. More specifically, the ARD prior turns off entire blocks 

of Ak based on the value of their corresponding precision parameters. Another approach for 

automatic lag selection using regularization, proposed by Nicholson et al. (2017b), is to use 

a hierarchical group lasso penalty, depicted in Figure 3d. The hierarchical penalty is based 

on a decay assumption, similar to that in Shojaie & Michailidis (2010), but is convex and 

can thus lead to more computationally efficient estimation.

The Bayesian nonparametric approach of Fox et al. (2011) addresses another limitation of 

classical Granger causality methods based on VARs: the assumption of stationarity. Fox et 

al. (2011) relaxed this assumption by considering a switching VAR model, with lag matrices 

Ak a function of a latent (switching) variable zt; in other words, At
k = Ak zt , where the 

distribution of zt depends on zt − 1. Fox et al. (2011) also consider a switching state-space 

model allowing the observed data to be a noisy version of the switching VAR process. 

Nakajima & West (2013) instead propose a method for inducing continuously varying 

(rather than switching) sparsity in a time-varying VAR model through the use of a latent 

threshold process. A vectorized form of the time-varying lag matrices is assumed to follow 

a VAR(1) process with elements thresholded to zero based on a set of latent threshold 

variables. Nakajima & West (2013) consider a Bayesian approach to inference in this model.
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An alternative approach for handling nonstationarity was recently proposed by Safikhani 

& Shojaie (2020) in the setting of high-dimensional piece-wise VAR processes with many 

structural break points. To consistently identify the break points and learn the coefficient 

parameters in each regime, the authors consider a reparameterization based on changes in 

lag matrices, Δt = At − At − 1, and use a combination of lasso penalized estimation and model 

selection based on the Bayesian information criterion to enforce piece-wise stationarity 

in estimated lag matrices. Bai et al. (2020) have recently used similar ideas in the case 

where the lag matrices are a combination of sparse and low-rank components, capturing 

nonstationary VAR models in the presence of (unobserved) exogenous variables.

4. MORE GENERAL NOTIONS OF GRANGER CAUSALITY

The notion of Granger causality explored so far is suitable for time series that follow 

linear dynamics. However, many interactions in real-world applications, like neuroscience 

and genomics, are inherently nonlinear. In these cases, using linear models may lead 

to inconsistent estimation of Granger causal interactions. Furthermore, classical Granger 

causality analyses assume real-valued Gaussian time series. This restriction has hindered 

Granger causality analysis of many important applications involving, for example, count or 

categorical time series.

To generalize the VAR model of Equation 6, consider a process that, component-wise, can 

be written as follows:

xti = gi x < t1, …, x < tp + eti . 9.

Here, gi is a function specifying how the past of all p series map to a particular series i. 
Assuming diagonal error covariance, Σ, the linear VAR model is a special case of Equation 

9, with gi a linear function with coefficients given by the ith row of coefficient matrices, 

Ak. In contrast to standard multivariate forecasting, where a function g would jointly model 

all outputs xt, this component-wise specification is more immediately amenable to Granger 

causal analysis. In particular, we can extend the definition of Granger causality to this more 

expressive class of dynamical models by noting that if the function gi does not depend on 

x < tj, then xj is irrelevant in the prediction of series xi.

Definition 1. Time series xj is Granger noncausal for time series xi if and only if for all 

(x < t1, …, x < tp) and all x < tj
′ ≠ x < tj,

gi x < t1, …, x < tj, …, x < tp = gi x < t1, …, x < tj
′ , …x < tp ;

that is, gi is invariant to x < tj.

Related definitions for specific classes of models have appeared in the literature (see, 

e.g., Eichler 2012). Note that Equation 9 still assumes additive noise. Definition 1 can be 

further generalized to statements of conditional independencies modeling arbitrary nonlinear 

relationships between time series, referred to as strong Granger causality (e.g., Florens & 

Shojaie and Fox Page 11

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mouchart 1982). Building on the component-wise process of Equation 9, we further define 

Granger causality in situations where the series at time t are conditionally independent of 

one another given the past realizations:

p xt ∣ x < t = ∏
i = 1

p
p xti ∣ x < t . 10.

Definition 2. Time series xj is Granger noncausal for time series xi if and only if ∀t,

p xit ∣ x < t1, …, x < tj, …, x < tp = p xit ∣ x < t1, …, x < t(j − 1), x < t(j + 1), …, x < tp . 11.

In the context of these more general notions of Granger causality, we review in Sections 4.1 

and 4.2 recent advances for analyzing multivariate discrete-valued and nonlinear time series, 

as well as multivariate point processes.

Another implicit assumption of classical Granger causality is that the time series of interest 

are observed at a regular sampling rate that matches the causal scale. However, due to 

data integration across heterogeneous sources, many data sets in econometrics, health care, 

environment monitoring, and neuroscience comprise multiple series sampled at different 

rates, referred to as mixed-frequency time series. Furthermore, due to the cost or data 

collection challenges, many series may be sampled at a rate lower than the true causal 

scale of the underlying process. For example, many econometric indicators, such as gross 

domestic product (GDP) and housing price data, are recorded at quarterly and monthly 

scales (Moauro & Savio 2005), but important interactions between these indicators may 

occur weekly or biweekly (Boot et al. 1967, Stram & Wei 1986, Moauro & Savio 2005). 

In neuroscience, imaging modalities with high spatial resolution, like functional magnetic 

resonance imaging, have relatively low temporal resolutions, but many important neuronal 

processes and interactions happen at finer time scales (Zhou et al. 2014). A causal analysis 

at a slower time scale than the true causal time scale may miss true interactions and add 

spurious ones (Boot et al. 1967, Breitung & Swanson 2002, Silvestrini & Veredas 2008, 

Zhou et al. 2014). In Section 4.3, we review recent approaches to identifying Granger 

causality in subsampled and mixed-frequency time series (Gong et al. 2015, Tank et al. 

2019).

4.1. Discrete-Valued Time Series

A variety of applications give rise to multivariate discrete-valued time series, including 

count, binary, and categorical data. Examples include voting records of politicians, discrete 

health states for a patient over time, and action labels for players on a team. Furthermore, 

even when the raw recording mechanism produces continuous-valued time series, to 

facilitate downstream analyses, the series may be quantized into a small set of discrete 

values; examples include weather data from multiple stations (Doshi-Velez et al.2011), wind 

data (Raftery 1985), stock returns (Nicolau 2014), and sales volume for a collection of 

products (Ching et al.2002). In these cases, the traditional VAR framework for Granger 

causal analysis, Equation 6, is inappropriate. In this section, we review recently proposed 
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models, based on the more general framework of Definitions 1 and 2, that infer Granger 

causality using multivariate, discrete-valued time series.

4.1.1. Categorical time series.—Consider a multivariate categorical time series xt, and 

let mi represent the number of categories that series i may take. An order k multivariate 

Markov chain models the transition probability between the categories at lagged times 

t − 1, …, t − k and those at time t using a transition probability distribution; under the 

simplifying assumption of Equation 10,

p xt ∣ x < t = ∏
i = 1

p
p xti ∣ xt − 1, …, xt − k . 12.

The component-wise structure of the assumed transition distribution enables estimation and 

inference to be divided into independent subproblems over each series, xi. Additionally, 

Granger noncausality follows Definition 2: Analyzing the transition probability tensor for 

p xti ∣ xt − 1, …, xt − k , xj does not Granger cause xi if all subtensors along the mode associated 

with xj are equal (see Figure 6).

Unfortunately, discovering such invariances (equivalence among subtensors) via, e.g., 

penalized likelihood proves computationally prohibitive in even moderate dimensions. 

Instead, Tank et al. (2021b) proposed a more tractable yet still flexible parameterization 

of the transition probabilities leveraging the mixture transition distribution (MTD) (Raftery 

1985, Berchtold & Raftery 2002):

p xti ∣ x(t − 1)1, …, x(t − 1)p = γ0p0 xti + ∑
j = 1

p
γjpj xti ∣ x(t − 1)j , 13.

where p0 is a probability vector, pj( ⋅ | ⋅ ) is a pairwise transition probability table between 

x(t − 1)j and xti, and γ = γ0, γ1, …, γp  is a (p + 1)-dimensional probability distribution such that 

1Tγ = 1 with γj ≥ 0, j = 0, …, p. Tank et al. (2021b) showed that the intercept term, p0, which 

is not traditionally included in MTD models, is critical for model identifiability and thus 

Granger causality. The framework of Tank et al. (2021b) is general for higher-order lags, 

and t − 1 is presented here for ease of exposition. Additionally, interaction terms can also be 

included in the MTD decomposition. Figure 6 shows a visualization of the MTD transition 

probability tensor decomposition.

The MTD model—originally proposed for parsimonious modeling of higher-order Markov 

chains—has been plagued by a nonconvex objective and unknown identifiability conditions 

that have limited its utility (Nicolau 2014, Zhu & Ching 2010, Berchtold 2001). Tank 

et al. (2021b) instead proposed a change-of-variables reparameterization of the MTD 

that straightforwardly addresses both issues, thus enabling practical application of the 

MTD model to Granger causality selection. Let p0 denote the vector of intercept 

probabilities, pxit
0 = p0 xit , and Pj ∈ ℝmi × mj the pairwise transition probability matrix 
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Pxti, x(t − 1)j
j = pj xti ∣ x(t − 1)j . Let Zj = γjPj and z0 = γ0p0. Then, the factorization of the conditional 

probability tensor for the MTD in Equation 13 can be rewritten as

p xti ∣ x(t − 1)1, …, x(t − 1)p = zxti
0 + ∑

j = 1

p
Zxtitx(t − 1j)

j . 14.

Proposition 2 (Tank et al. 2021b). In the MTD model of Equation 14, following Definition 

2, time series xj is Granger noncausal for time series xi if and only if the columns of Zj are 

all equal. Furthermore, all equivalent MTD model parameterizations give the same Granger 

causality conclusions.

Intuitively, if all columns of Zj are equal, the transition distribution for xti does not depend 

on x(t − 1)j. This result for MTD models is analogous to the general Granger noncausality 

result for the slices of the conditional probability tensor being constant along the x(t − 1)j mode 

being equal. The optimization problem for maximizing log-likelihood can be written as 

follows. Letting

LMTD(Z) = − ∑
t = 1

T
log zxit

0 + ∑
j = 1

p
Zxtix(t − 1)j

j , 15.

and including the necessary probability constraints (positivity and summing to one), we have

minimize 
Z, γ

LMTD(Z)

subject to 1TZj = γj1T , Zj ≥ 0, ∀j 1Tγ = 1, γ ≥ 0.
16.

The problem in Equation 16 is convex since the objective function is a linear function 

composed with a log function and only involves linear equality and inequality constraints 

(Boyd & Vandenberghe 2004).

The Zj reparameterization in Equation 14 provides clear intuition for why the MTD model 

may not be identifiable. Since the probability function is a linear sum of Zjs, one may take 

mass from some Zj and move it to some Zk, k ≠ j or z0, while keeping the conditional 

probability tensor constant. These sets of equivalent MTD parameterizations—that yield the 

same factorized conditional distributions p xti ∣ x(t − 1) —form a convex set (Tank et al. 2021b). 

Taken together, the convex reparameterization and this result imply that the convex function 

given in Equation 16 has no local optima and that the globally optimal solution is given 

by a convex set of equivalent MTD models. A unique solution can then be identified by 

constraining the minimal element in each row of Pj (and thus Zj) to be zero for all j (see 

Figure 7 for an illustration). The intuition for this result is simple: Any excess probability 

mass on a row of each Zj may be pushed onto the same row of the intercept term z0 without 

changing the full conditional probability.
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The above identifiability condition also provides interpretation for the parameters in the 

MTD model. Specifically, the element Zmn
j  denotes the additive increase in probability that xti

is in state m given that x(t − 1)j is in state n. Furthermore, the γj parameters now represent the 

total amount of probability mass in the full conditional distribution explained by categorical 

variable xj, providing an interpretable notion of dependence in categorical time series.

Unfortunately, the set of Zj that satisfy the MTD identifiability constraints is nonconvex 

since the locations of the zeros are unknown. Tank et al. (2021b) addressed this issue 

by adding a penalty Ω Z  that biases the solution toward the uniqueness constraints. This 

regularization also aids convergence of optimization since the maximum likelihood solution 

without identifiability constraints is not unique. The regularized estimation problem is given 

by

minimize 
Z, γ

LMTD(Z) + λΩ(Z)

subject to 1TZj = γj1T , Zj ≥ 0, ∀j, 1Tγ = 1, γ ≥ 0.
17.

As Tank et al. (2021b) show, for any λ > 0 and Ω Z  not dependent on z0 and increasing 

with respect to the absolute value of entries in Zj, the solution to the problem in Equation 17 

is contained in the set of identifiable MTD models. Intuitively, by penalizing the entries 

of the Zj matrices, but not the intercept term, solutions will be biased to having the 

intercept contain the excess probability mass, rather than the Zj matrices. An entire class 

of regularizers match the necessary conditions and can be considered.

Proposition 3 (Tank et al. 2021b). Based on the MTD identifiability constraint where each 

row must have at least one zero element, xj is Granger noncausal for xi if and only if Zj = 0
(a special case of all columns being equal).

To both enforce the identifiability constraints and select for Granger noncausality, Tank 

et al. (2021b) explored a set of penalties Ω Z  that encourage some Zj to be zero, while 

maintaining convexity of the overall objective. These penalties include an L1 penalty on the 

γj (with γj = 0 implying Zj = 0); a group lasso penalty on each Zj (Yuan & Lin 2006); and 

a group lasso–type penalty that scales with the number of categories per series, mj, to avoid 

differentially penalizing series based on their number of categories. To solve the penalized 

estimation problem, Tank et al. (2021b) developed both projected gradient and Frank–Wolfe 

algorithms for the MTD model that harness the convex formulation. For the projected 

gradient optimization, they further developed a Dykstra projection method to quickly project 

onto the MTD constraint set, allowing the MTD model to scale to much higher dimensions.

4.1.2. Alternative formulation for categorical time series.—Tank et al. (2021b) 

also proposed a multinomial logistic transition distribution (mLTD) model as an alternative 

to the MTD:
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p xti ∣ x(t − 1)1, …, x(t − 1)p = exp zxti
0 + ∑j = 1

p Zxti, x(t − 1)j
j

∑x′ ∈ Xi exp zx′
0 + ∑j = 1

p Zx′, x(t − 1)j
j , 18.

where Zj ∈ ℝmi × mj and z0 ∈ ℝmi. As with the MTD, interaction terms may be added. 

Granger causality follows identically to the MTD case in Proposition 2: xj is Granger 

noncausal for xi if and only if the columns of Zj are all equal.

The nonidentifiability of multinomial logistic models is well known, as is the 

nonidentifiability of generalized linear models with categorical covariates. Combining the 

standard identifiability restrictions for both settings clarifies that every mLTD has a unique 

parameterization such that first column and last row of Zj are zero for all j and the 

last element of z0 is zero (Agresti & Kateri 2011) (see Figure 7). Although the mLTD 

identifiability conditions differ from those of the MTD, Granger noncausality interpretation 

of the identifiable mLTD mirrors the identifiable MTD in Proposition 3: xj is Granger 

noncausal for xi if and only if Zj = 0 (a special case of all columns being equal).

To select for Granger causality in the mLTD model while enforcing identifiability, akin 

to the MTD case, Tank et al. (2021b) proposed a group lasso penalty on each of the Zj

matrices, leading to the following optimization problem:

minimize 
Z

∑
t = 1

T
zxti

0 + ∑
j = 1

d
Zxtix(t − 1)j

j + log ∑
x′ ∈ Xi

exp zx′
0 + ∑

j = 1

d
Zx′x(t − 1)j

j + λ ∑
j = 1

d
Zj

F

subjelct to  Z1:mi, 1
j = 0, Zmi, 1:mj

j = 0
∀j. 

19.

For two categories, mi = 2∀i, this problem reduces to sparse logistic regression for binary 

time series, which was studied by Hall et al. (2016). As in the MTD case, the group lasso 

penalty shrinks some Zj entirely to zero.

Although the MTD and mLTD are conceptually similar, the parameters of the mLTD are 

unfortunately harder to interpret. Another alternative formulation one might consider is 

based on the MTD-probit model of Nicolau (2014); however, this framework is not a natural 

fit for inferring Granger causality, due to both the nonconvexity of the probit model and the 

nonconvex constraints on Zj matrices.

4.1.3. Estimating networks of binary and count time series.—The MTD and 

mLTD models are specifically geared for Granger causal analysis of autoregressive 

categorical processes. Hall et al. (2016) instead studied a broad class of generalized linear 

autoregressive (GLAR) models, capturing Bernoulli and log-linear Poisson autoregressive 

(PAR) models, and focused on the high-dimensional multivariate setting. The GLAR model 

is specified as

xti ∣ x < t p vi + ai
Tx < t , 20.
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where p is an exponential family probability distribution. The formulation in Equation 20 

follows a component-wise structure, and from Definition 2 we can decipher that time series 

xj does not Granger cause series xi if and only if aij = 0.

Hall et al. (2016) considered L1 regularization of A constructed row-wise from ai. They 

derived statistical guarantees, such as sample complexity bounds and mean-squared error 

bounds for the sparsity-regularized maximum likelihood estimator, addressing the key 

challenge of correlations and potential heteroscedasticity in the GLAR observations.

Count data can also be analyzed using autoregressive models with thinning operators 

of previous counts—so-called integer-valued autoregressive (INAR) processes (McKenzie 

2003, Weiß 2018). One example is the Poisson INAR, which performs binomial thinning 

and adds Poisson innovations. In the univariate case, the process has Poisson margins; in the 

multivariate case, although a stationary distribution exists, the margins are no longer Poisson 

unless the thinning matrix is diagonal. Aldor-Noiman et al. (2016) captured dependence 

between the dimensions of a multivariate count process through the Poisson rate parameters 

of a multivariate Poisson INAR with diagonal thinning, using multiple shrinkage via a 

Dirichlet process prior on the rate parameters. The resulting clustering of count time series 

gives a (strict) notion of Granger noncausality for any pair of series appearing in disjoint 

clusters.

Another approach is the INGARCH (integer-valued generalized autoregressive conditional 

heteroskedasticity) model (Weiß 2018), which leverages an autoregressive-like model on 

the conditional mean Mt = E xt ∣ x < t = α1xt − 1 + β0 and is useful for modeling overdispersed 

counts. One example is modeling Poisson-distributed counts with a rate parameter defined 

via the conditional mean process Mt; other specifications consider binomial or negative 

binomial conditional distributions. The INGARCH model has connections to both the 

GLAR of Equation 20 and the popular GARCH model (see, e.g., Bauwens et al.2006). 

However, the INGARCH model has most commonly been used in low-dimensional settings, 

often univariate; scaling the model to higherdimensional settings and using it for Granger 

causality analysis is an open research area, as with the Poisson INAR.

4.1.4. Granger causal interactions in point processes.—A key assumption of the 

standard Granger causal framework is that observations are on a fixed, discrete-time grid. In 

Section 4.3, we consider cases where the sampling rate might not match the time scale of the 

true causal interactions. Here we focus on another important case emerging from irregularly 

and asynchronously observed time series better modeled via point processes in continuous 

time.

Inferring Granger causal interactions in the general class of multivariate point processes 

is often challenging due to the intractability of representing the histories of the processes 

and their impact on the processes’ evolution. Recent work gained traction by focusing 

specifically on Hawkes processes, describing self- and mutually-excitatory processes (Zhou 

et al. 2013, Xu et al. 2016, Eichler et al. 2017). Early applications of Hawkes processes 

include modeling seismic activity and neural firing patterns, with more recent applications 

to interactions in social networks and medical event streams. For Granger causality analysis, 
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Eichler et al. (2017) provided straightforward conditions on the link functions of the 

conditional intensities of the multivariate Hawkes process and derived a nonparametric 

estimation procedure.

Let N = N(t) ∣ t ∈ [0, T ]  be a point process arising from a Hawkes process with conditional 

intensity functions

λi(t) = vi + ∑
j = 1

p
ϕij(u)dNj(t − u), i = 1, …, p, 21.

where νi is the baseline intensity and ϕij are the link functions with ϕij(u) = 0 for u ≤ 0 and 

∫0
∞ ϕij(u) du ≤ 1. Then, Nj does not Granger cause Ni if and only if ϕij(u) = 0 for all u ∈ ℝ

(Eichler et al. 2017).

Zhou et al. (2013), Xu et al. (2016), and Hansen et al. (2015) recently used sparsity-inducing 

penalties to infer (high-dimensional) Granger causal networks from Hawkes processes. 

Motivated by neuroscience applications, Chen et al. (2017a) generalized Hawkes processes 

to allow for inhibitory interactions, Chen et al. (2017c) proposed a screening approach for 

efficient estimation of high-dimensional Hawkes process networks, and Wang et al. (2020) 

developed a high-dimensional inference framework for Hawkes processes. The PAR model 

version of Equation 20 is also closely related to the continuous-time Hawkes process model 

and can be used as an alternative to the above approaches.

4.2. Methods for Capturing Interactions in Nonlinear Time Series

Beyond the analysis of discrete-valued time series, as in Section 4.1, there are a range of 

other scenarios where the relationships between the past of one series and future of another 

fall outside of the VAR model class of traditional model-based Granger causality analysis. 

In such cases, model-based methods have been shown to fail in numerous real-world 

settings (Teräsvirta et al. 2010, Tong 2011, Lusch et al. 2016). One example is time series 

with heavy tails, which have been modeled using VARs with elliptical errors (Qiu et al. 

2015). Another example of particular importance in a number of applications—and one we 

focus on in this review—is that of nonlinear interactions. Model-free methods, like transfer 

entropy (Vicente et al. 2011) or directed information (Amblard & Michel 2011), can detect 

nonlinear dependencies between past and future with minimal assumptions on the predictive 

relationships. However, these estimators have high variance and require large amounts of 

data for reliable estimation. These approaches also suffer from curse of dimensionality 

(Runge et al.2012), making them inappropriate in high-dimensional settings.

Dynamical system representations, often in the form of coupled ordinary differential 

equations (ODEs), have long been used to capture nonlinear relationship in time series. 

While ODEs are inherently deterministic, a commonly used approach is to assume that data 

from the underlying ODEs are contaminated with mean-zero additive noise et:

ẋti = αi + fi xt , 22.
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yt = xt + et, 23.

where fi:ℝp ℝ is a function mapping the current state of all variables to the change in xi

(the derivative ẋti).

While ODE-based approaches for analyzing specific systems use parametric forms, more 

recent work has focused on system identification using flexible specifications of functions fi. 

One such approach, which has been successfully applied to high-dimensional problems, is to 

consider an additive ODE instead of Equation 22; that is,

ẋti = αi + ∑
j = 1

p
fij xtj . 24.

For the system in Equation 24, it follows from Definition 1 that xj is Granger noncausal 

for xi if and only if fij = 0. Using this connection, Henderson & Michailidis (2014) and Wu 

et al. (2014) developed regularized nonparametric estimation procedures to infer nonzero 

functions, fij, and Chen et al. (2017b) addressed the key challenge of estimating the 

derivative ẋti and established the consistency of the network Granger causality estimates.

The ODE-based approaches discussed above offer flexible alternatives to parametric 

approaches for modeling nonlinear dynamics. However, they are limited to additive 

interaction mechanisms. A promising alternative is to consider more general dynamics 

and interactions by leveraging neural networks. Neural networks can represent complex, 

nonlinear, and nonadditive interactions between inputs and outputs. Indeed, their time series 

variants, such as autoregressive multilayer perceptrons (MLPs) (Kişi 2004, Billings 2013, 

Raissi et al. 2018) and recurrent neural networks (RNNs) like long-short term memory 

networks (LSTMs) (Graves 2012), have shown impressive performance in forecasting 

multivariate time series given their past (Zhang 2003, Li et al. 2017, Yu et al. 2017).

Consider a nonlinear autoregressive (NAR) model that allows xt to evolve according to 

general nonlinear dynamics (Billings 2013), assuming an additive zero mean noise et:

xt = g x < t1, …, x < tp + et . 25.

In an NAR forecasting setting, there is a long history of modeling g using neural networks, 

via both traditional architectures (Chu et al. 1990, Billings & Chen 1996, Billings 2013) and 

more recent deep learning techniques (Li et al. 2017, Yu et al. 2017, Tao et al. 2018). These 

approaches utilize either an MLP with inputs X < t = X(t − 1): (t − K), for some lag K, or a recurrent 

network, like an LSTM, that does not require specifying the lag order.

While these methods have shown impressive predictive performance, they are essentially 

black-box models and provide little interpretation of the multivariate structural relationships 

in the series. In the context of Granger causality, due to sharing of hidden layers, it is 

difficult to specify sufficient conditions on the weights that simultaneously allow series j to 
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Granger cause series i but not other series i′ for i ≠ i′. A second drawback is that jointly 

modeling a large number of series leads to many network parameters. Thus, these methods 

require much more data to fit reliably and tend to perform poorly in high-dimensional 

settings. Finally, a joint network over all xti for all i assumes that each time series depends 

on the same past lags of other series. However, in practice, each xti may depend on different 

past lags of other series. As in the linear methods discussed in Section 3.2, appropriate lag 

selection is crucial for Granger causality selection in nonlinear approaches—especially in 

highly parameterized models like neural networks.

With an eye toward inferring Granger causality but simultaneously tackling the sample 

complexity and lag selection problems, Tank et al. (2021a) proposed a framework leveraging 

the component-wise model of Equation 9 that disentangles the effects of lagged inputs on 

individual output series. The method models the component-wise transition functions gi

using neural networks—either via an MLP or RNN like the LSTM—and deploys carefully 

constructed sparsity-inducing penalties on particular groupings of neural network weights to 

identify Granger noncausal interactions. One of the penalties—building on the hierarchical 

group lasso (Kim & Xing 2010, Huang et al. 2011, Nicholson et al. 2017b)—automatically 

detects both nonlinear Granger causality and the lags of each inferred interaction in the 

MLP setting. The LSTM-based formulation, in contrast, sidesteps the lag selection problem 

entirely because the recurrent architecture efficiently models long-range dependencies 

(Graves 2012). The proposed penalties, depicted together with the methods in Figure 8, 

also aid in handling limited data in the high-dimensional setting. We review each approach 

below.

4.2.1. Multilayer perceptrons.—Define gi via an MLP with L − 1 layers and ht
l

representing the H values of lth hidden layer at time t. The parameters are given by weights 

W l and biases bl at each layer (with appropriate dimensions for that layer). To draw an 

analogy with the linear VAR model of Equation 6, we further decompose the weights at 

the first layer across time lags, W 1 = W 11, …, W 1K . The resulting component-wise MLP 

(cMLP) is given as (Tank et al. 2021a)

ht
1 = σ ∑

k = 1

K
W 1kxt − k + b1 ,

ht
l = σ W lht

l − 1 + bl , l = 2, …, L − 1,
xti = W Lht

L − 1 + bL + eti,

26.

where σ is an activation function, such as logistic or tanh, and eti is mean zero white 

noise. Tank et al. (2021a) use a linear output decoder W L. However, as the authors mention, 

other decoders like a logistic, softmax, or Poisson likelihood with exponential link 

function (McCullagh & Nelder 1989) could be used to model nonlinear Granger causality 

in multivariate binary (Hall et al. 2016), categorical (Tank et al. 2021b), or positive count 

time series (Hall et al. 2016). From Equation 26, the Granger noncausality conditions are 

straightforward to elicit:

Shojaie and Fox Page 20

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proposition 4 (Tank et al.2021a). In the MLP model of Equation 26, following Definition 1, 

if the jth column of the first layer weight matrix, W : j
1k, contains zeros for all k, then series xj

does not Granger cause series xi.

By Proposition 4, if the first layer weight matrix, W : j
1k, contains zeros for all k, then x < tj

does not influence the hidden unit ℎt
1 and thus the output xti. Following Definition 1, we 

see that gi—which is implicitly defined through the hidden layers of the MLP in Equation 

26—is then invariant to x < tj. Thus, analogously to the VAR case, one may select for Granger 

causality by applying a group penalty to the columns of the W 1k matrices for each gi,

min
W

∑
t = K

T
xit − gi x(t − 1): (t − K)

2 + λ ∑
j = 1

p
Ω W : j

1 , 27.

where Ω is a penalty that shrinks the entire set of first layer weights for input series j, i.e., 

W : j
1 = W : j

11, …, W : j
1K , to zero. Three penalties, illustrated in Figure 9, are considered by Tank 

et al. (2021a): (a) a group lasso penalty over the entire set of outgoing weights across all 

lags for time series j, W : j
1  (the analogue to the group lasso penalty across lags in the VAR 

case); (b) a novel group sparse group lasso penalty that provides both sparsity across groups 

(a sparse set of Granger causal time series) and sparsity within groups (a subset of relevant 

lags); and (c) a hierarchical group lasso penalty to simultaneously select for both Granger 

causality and the lag order of the interaction.

4.2.2. Recurrent neural networks.—As in the MLP case, it is difficult to disentangle 

how each series affects the evolution of another series when using a standard RNN. This 

problem is even more severe in complicated recurrent networks like LSTMs. For a general 

RNN, the hidden state at time t is updated recursively:

ht = fi xt, ht − 1 ,
xti = W 2ht + eti,

28.

where fi is a nonlinear function that depends on the particular recurrent architecture and W 2

are the output weights.

Because LSTMs are effective at modeling complex time dependencies, Tank et al. (2021a) 

focus on modeling the recurrent function fi using an LSTM (Graves 2012). The LSTM 

introduces a second hidden state variable ct, the cell state, and updates its set of hidden states 

(ct, ht) recursively as

f t = σ W fxt + Ufh(t − 1) ,
it = σ W inxt + Uinh(t − 1) ,
ot = σ W oxt + Uoh(t − 1) ,
ct = f t ⊙ ct − 1 + it ⊙ σ W cxt + Ucht − 1 ,
ht = ot ⊙ σ ct ,

29.
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where ☉ denotes element-wise multiplication. The input (it), forget (f t), and output (ot) 

gates control how each component of the cell state (ct) is updated and then transferred 

to the hidden state (ht) used for prediction. The additive form of the cell state update in 

the LSTM allows it to encode long-range dependencies: Cell states from far in the past 

may still influence the cell state at time t if the forget gates remain close to one. In the 

context of Granger causality, this flexible architecture can represent long-range, nonlinear 

dependencies between time series.

Let W = W 1, W 2, U1  be the full set of parameters, where 

W 1 = W f T, W in T, W o T,  W c T T
 and U1 = Uf T, Uin T, Uo T, Uc T T

 are the full set 

of first layer weights. In Equation 29, the set of input matrices W 1 controls how the past 

time series affect the hidden representation update and thus the prediction of xti. Granger 

noncausality for this component-wise LSTM (cLSTM) follows directly from Definition 1:

Proposition 5 (Tank et al. 2021a). For the cLSTM of Equations 28 and 29, following 

Definition 1, a sufficient condition for Granger noncausality of a series xj on a series xi is 

that all elements of the jth column of W 1 are zero, W : j
1 = 0.

Thus, we may select for Granger causality using a group lasso penalty across columns of W 1

and considering

min
W

∑
t = 2

T
xit − gi x < t

2 + λ ∑
j = 1

p
W : j

1
2 . 30.

As with the cMLP, gi for the cLSTM is implicitly defined through the recurrent structure of 

Equations 28 and 29. For larger λs, many columns of W 1 will be zero, leading to a sparse set 

of Granger causal connections (see Figure 10). Tank et al. (2021a) optimized the objectives 

in Equations 27 and 30 (under various choices of penalty) using proximal gradient descent.

4.3. Subsampled and Mixed-Frequency Time Series

Even if the time series follows a linear VAR (Equation 6), if the process is observed at a 

sampling rate slower than the true causal scale of the underlying process, as depicted in 

Figure 11a, a causal analysis rooted at this slower time scale may miss true interactions 

and add spurious ones (Boot et al. 1967, Breitung & Swanson 2002, Silvestrini & Veredas 

2008, Zhou et al. 2014). Mixed-frequency time series also present a challenge to Granger 

causal analysis. Example scenarios are depicted in Figure 11b–d. The scenario in Figure 

11b often arises in econometrics, among other fields, and VAR models are fit at the scale 

of the least finely sampled time series (see, e.g., Schorfheide & Song 2015). However, for 

macroeconomic indicators like GDP, the scale of sampling is often determined by practical 

considerations and may not reflect the true causal dynamics, leading to confounded Granger 

and instantaneous causality judgments (Breitung & Swanson 2002, Zhou et al. 2014). The 

scenarios in Figure 11c–d combine subsampled and mixed-frequency settings and their 

respective challenges.
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Recently, causal discovery in subsampled time series has been studied with methods in 

causal structure learning using graphical models (Danks & Plis 2013, Plis et al. 2015, 

Hyttinen et al. 2016). These methods are model free and automatically infer a sampling 

rate for causal relations most consistent with the data. For mixed-frequency autoregressive 

models with no subsampling at the fastest scale (Figure 11b), finding identifiability 

conditions was an open problem for many years (Chen & Zadrozny 1998). Anderson et 

al. (2016) recently showed that in the scenario in Figure 11b, a nonstructural autoregressive 

model is generically identifiable from the first two observed moments, so unidentifiable 

models make up a set of measure zero of the parameter space (see also Zadrozny 2016). 

In this section, we instead outline the model-based approach and identifiability conditions 

explored by Tank et al. (2019) for Granger causality analysis of SVAR models under both 

subsampling and mixed-frequency settings.

An SVAR (Lütkepohl 2005) allows the dynamics of xt to follow a combination of 

instantaneous effects, autoregressive effects, and independent noise. For simplicity, let us 

consider a lag one SVAR:

xt = Bxt + Dxt − 1 + et, 31.

where B ∈ ℝp × p is the structural matrix that determines the instantaneous linear effects, 

D ∈ ℝp × p is an autoregressive matrix that specifies the lag one effects conditional on the 

instantaneous effects, et ∈ ℝp is a white noise process such that E et = 0 for all t, and eti is 

independent of et′j for all i, j, t, t′ such that i, t ≠ j, t . We assume etj is distributed as etj pej. 

Solving Equation 31 in terms of xt gives the following lag one SVAR process:

xt = (I − B)−1Dxt − 1 + (I − B)−1et = Axt − 1 + Cet . 32.

In Equation 32, Aij denotes the lag one linear effect of series xj on series xi, and C ∈ ℝp × p

is the structural matrix. The error eti is known as the shock to series xi at time t, and the 

element Cij is the linear instantaneous effect of etj on xti. The most typical condition is 

that C is lower triangular with ones on the diagonal, implying a known causal ordering of 

the instantaneous effects. When the errors, et, are non-Gaussian, both the causal ordering 

and instantaneous effects C may be inferred directly from the data using techniques from 

independent component analysis (Hyvärinen et al. 2010). Alternatively, C can be directly 

estimated via maximum likelihood (Lanne et al. 2017).

In the subsampled case, shown in Figure 11a, we observe xt every k time steps, leading to 

X = x1, x2, …, xT ≡ x1, x1 + k, …, x1 + (T − 1)k  observations, where T  is the number of subsampled 

observations. By marginalizing out the unobserved xt, we obtain the evolution equations

xt = x1 + tk = Ax1 + tk − 1 + Ce1 + tk = A Ax1 + tk − 2 + Ce1 + tk − 1 + Ce1 + tk
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= A kxt − 1 + ∑
l = 0

k − 1
A lCe1 + tk − l 33.

= A kxt − 1 + Let, 34.

where et = e1 + tk
T , …e2 + (t − 1)k

T T is the stacked vector of errors for time 1 + tk and the unobserved 

points between 1 + tk and 1 + t − 1 k and L = C, …, A k − 1C . Equation 33 states that the 

subsampled process is a linear transformation of the past subsampled observations with 

transition matrix A k and a weighted sum of the shocks across all unobserved time points. 

Each shock is weighted by A raised to the power of the time lag. Equation 34 appears to 

take a similar form to the structural process in Equation 31; however, now the vector of 

shocks, et, is of dimension kp, with special structure on both the structural matrix L and 

the distributions of the elements in et. Unfortunately, this representation does not have the 

interpretation of instantaneous causal effects, as there are now multiple shocks per individual 

time series. We refer to the full parameterization of the subsampled structural model in 

Equation 34 as (A, C, pe; k).

A classical analysis based on xt that does not account for subsampling would incorrectly 

estimate lagged Granger causal effects in A k, because Aij = 0 does not imply that 

A k
ij = 0, and vice versa (Gong et al. 2015). Similarly, estimation of structural interactions 

may also be biased if subsampling is ignored. This is illustrated in Figure 12, where an 

analysis based on subsampled data identifies no lagged causal effect between x1 and x2 but 

a relatively large instantaneous interaction. Tank et al. (2019) provide further details and 

examples.

The mixed-frequency scenarios, Figure 11b–d, are also considered by Tank et al. (2019) and 

involve defining sampling rates for each series and a set of indicator matrices that select the 

observed time points from Equation 32. Despite more cumbersome notation, the resulting 

process follows analogously to the derivation of Equation 34 and can be written as

xt = Fxt − 1 + Let, 35.

where xt − 1 are observed lags of the series, F  is a function of elements of A, and L follows 

analogously to the subsampled case using elements of A premultiplying elements of C. As in 

the subsampled case, we refer to a parameterization of a mixed-frequency structural model 

as (A, C, pe; k), where k is now a p-vector of sampling rates.

The similar form of Equations 34 and 35 suggests similar identifiability results hold. 

However, not accounting for subsampling in the mixed-frequency setting (Figure 11c) leads 

not only to the kind of mistaken inferences discussed above but also to further mistakes 

unique to the mixed-frequency case (see Tank et al. 2019 for examples).
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While both lagged Granger causality and instantaneous structural interactions are 

confounded by subsampling and mixed-frequency settings, Tank et al. (2019) showed that 

when accounting for this structure, we may, under some conditions, still estimate the A
and C matrices of the underlying process directly from the subsampled or mixed-frequency 

data (see Theorem 1). The identifiability of A and C relies on a set of assumptions outlined 

below.

Assumption 1. xt is stationary so that all singular values of A have modulus less than one.

Assumption 2. The distributions pej are distinct for each j after rescaling ej by any nonzero 

scale factor, their characteristic functions are all analytic or they are all nonvanishing, and 

none of them has an exponent factor with polynomial of degree at least two.

Assumption 3. All pej are asymmetric.

Assumption 4. The variance of each pej is equal to one, i.e., Λ = Ip.

Assumption 5. The matrix C is full rank.

Theorem 1 (Tank et al. 2019). Suppose that etj are all non-Gaussian and independent, and 

the data xt are generated by Equation 32 with representation (A, C, pe; k). Assume that the 

process also admits another mixed-frequency subsampling representation A′, C′, pe
′; k . In the 

pure subsampling case, kj = k for all j. If Assumptions 1, 2, and 4 hold, then we have the 

following:

1. C is equal to C′ up to permutation of columns and scaling of columns by 1 or −1; 

that is, C′ = CP  where P  is a scaled permutation matrix with 1 or −1 elements. 

This implies Σ = CCT = C′C′T = Σ′

2. For mixed-frequency only, if C is lower triangular with positive diagonals, i.e., 

the instantaneous interactions follow a directed acyclic graph, and if for all i
there exists a j such that any multiple of ki is 1 smaller than some multiple of kj

with Aj:C: i ≠ 0, then A = A′.

3. If Assumptions 3 and 5 also hold, then A = A′.

Theorem 1 demonstrates that identifiability of structural models still holds for mixed-

frequency series with subsampling under non-Gaussian errors. The mixed-frequency setting 

provides additional information to resolve parameter ambiguities in the non-Gaussian 

setting. Specifically, Aij is identifiable if there is one time step difference between when 

series xj and xi are sampled. This information can be used to resolve sign ambiguities in 

columns of A, which leads to statement 2 in Theorem 1. This result applies directly to the 

standard mixed-frequency setting (Schorfheide & Song 2015, Anderson et al. 2016), where 

one series is observed at every time step, as in Figure 11b. It also applies to the case in 

Figure 11d, since there exist time steps where one series is observed one time step before 

another series.
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In the case of subsampling, if the instantaneous causal effects follow a directed acyclic 

graph, the structure can be identified without any prior information about causal ordering of 

the variables.

Corollary 1 (Tank et al.2019). If Assumptions 1,2, and 4 hold and the true structural process 

corresponds to a directed acyclic graph G—that is, it has a lower triangular structural matrix 

C with positive diagonals, and it admits another representation with structural matrix C′—
then C = C′. Hence, the structure of G is identifiable without prior specification of the causal 

ordering of G.

Together, Theorem 1 and Corollary 1 imply that when the shocks, et, are independent and 

asymmetric, a complete causal diagram of the lagged and the instantaneous effects is fully 

identifiable from the subsampled time series, X.

To estimate Granger causality from subsampled and mixed-frequency time series, Tank et al. 

(2019) modeled the non-Gaussian errors of the SVAR as a mixture of Gaussian distributions 

with m components. The authors develop an expectation–maximization algorithm for joint 

estimation of the full set of parameters based only on the observed subsampled and mixed-

frequency data X. The method is the same for all scenarios in Figure 11a–d.

5. CONCLUSION

In the first part of this article, we briefly reviewed classical approaches to Granger causality, 

mentioned some of their applications, and discussed their shortcomings. These shortcomings 

are primarily due to the restrictive (and unattainable) assumptions that are needed in order 

to infer causal effects from time series data, which was the original premise of Granger 

causality. They are also due to the limitations of simple approaches that were historically 

used to investigate Granger causal relations.

In the second part of the article, we discussed recent efforts to relax some of the 

assumptions made by classical approaches and/or generalize their applicability. These 

include investigating Granger causal relations among a large set of variables, automatic 

lag selection, accounting for nonstationarity, developing flexible methods for non-Gaussian 

and noncontinuous observations, and attempts to account for differences between the true 

causal time scale and the frequency of the observed data. These recent developments have 

expanded the application domains of Granger causality and offer new opportunities for 

investigating interactions among components of complex systems with the goal of gaining a 

systems perspective to their joint behavior.

In spite of recent progress, there is still much more work to be done in this area. Even when 

not trying to infer causal effects, we would ideally need flexible nonparametric approaches 

that handle many observed time series while accounting for unmeasured variables and 

allowing for nonstationarity. However, despite these limitations, emerging data, especially 

those obtained from interventions over time and perturbations to the system’s state, offer 

new opportunities for discovering causal effect of variables on each other. At minimum, 

these new data and continued developments in this area can help researchers take the first 
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step toward causal inference by restricting the set of possible causal hypotheses. We believe 

this area will continue to be an active area of research.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation (NSF) grant DMS-1722246, National 
Institutes of Health (NIH) grant R01GM133848, and Air Force Office of Scientific Research (AFOSR) grant 
FA9550-21-1-0397.

LITERATURE CITED

Agresti A, Kateri M. 2011. Categorical data analysis. In International Encyclopedia of Statistical 
Science, ed. Lovric M, pp. 206–8. Berlin: Springer

Ahelegbey DF, Billio M, Casarin R. 2016. Sparse graphical vector autoregression: a Bayesian 
approach. Ann. Econ. Stat./Ann. d’Écon. Stat 123–124:333–61

Ahn SC, Horenstein AR. 2013. Eigenvalue ratio test for the number of factors. Econometrica 
81(3):1203–27

Aldor-Noiman S, Brown LD, Fox EB, Stine RA. 2016. Spatio-temporal low count processes with 
application to violent crime events. Stat. Sin 26:1587–610

Amblard PO, Michel OJ. 2011. On directed information theory and Granger causality graphs. J. 
Comput. Neurosci 30(1):7–16 [PubMed: 20333542] 

Amengual D, Watson MW. 2007. Consistent estimation of the number of dynamic factors in a large N 
and T panel. J. Bus. Econ. Stat 25(1):91–96

Anderson BD, Deistler M, Felsenstein E, Funovits B, Koelbl L, Zamani M. 2016. Multivariate AR 
systems and mixed-frequency data: G-identifiability and estimation. Econom. Theory 32(4):793–
826

Bai P, Safikhani A, Michailidis G. 2020. Multiple change points detection in low rank and sparse high 
dimensional vector autoregressive models. IEEE Trans. Signal Proc 68:3074–89

Bańbura M, Giannone D, Reichlin L. 2010. Large Bayesian vector auto regressions. J. Appl. Econom 
25(1):71–92

Basu S, Li X, Michailidis G. 2019. Low rank and structured modeling of high-dimensional vector 
autoregressions. IEEE Trans. Signal Proc 67(5):1207–22

Basu S, Michailidis G. 2015. Regularized estimation in sparse high-dimensional time series models. 
Ann. Stat 43(4):1535–67

Basu S, Shojaie A, Michailidis G. 2015. Network Granger causality with inherent grouping structure. 
J. Mach. Learn. Res 16(1):417–53 [PubMed: 34267606] 

Bauwens L, Laurent S, Rombouts JVK. 2006. Multivariate GARCH models: asurvey. J. Appl. Econom 
21(1):79–109

Belviso F, Milani F. 2006. Structural factor-augmented VARs (SFAVARs) and the effects of monetary 
policy. BE J. Macroecon 6(3):1–46

Berchtold A 2001. Estimation in the mixture transition distribution model. J. Time Ser. Anal 
22(4):379–97

Berchtold A, Raftery A. 2002. The mixture transition distribution model for high-order Markov chains 
and non-Gaussian time series. Stat. Sci 17(3):328–56

Bergmann TO, Hartwigsen G. 2021. Inferring causality from noninvasive brain stimulation in 
cognitive neuroscience. J. Cogn. Neurosci 33(2):195–225 [PubMed: 32530381] 

Bernanke BS, Blinder AS. 1992. The federal funds rate and the channels of monetary transmission. 
Am. Econ. Rev 82(4):901–21

Bernanke BS, Boivin J, Eliasz P. 2005. Measuring the effects of monetary policy: a factor-augmented 
vector autoregressive (FAVAR) approach. Q. J. Econ 120(1):387–422

Bernanke BS, Kuttner KN. 2005. What explains the stock market’s reaction to Federal Reserve policy? 
J. Finance 60(3):1221–57

Shojaie and Fox Page 27

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Billings SA. 2013. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and 
Spatio-Temporal Domains. New York: Wiley

Billings SA, Chen S. 1996. The determination of multivariable nonlinear models for dynamic systems 
using neural networks. In Neural Network Systems Techniques and Applications, ed. Leondes C, 
pp. 231–78. Cambridge, MA: Academic

Billio M, Casarin R, Rossini L. 2019. Bayesian nonparametric sparse VAR models. J. Econom 
212(1):97–115

Boot JC, Feibes W, Lisman JHC. 1967. Further methods of derivation of quarterly figures from annual 
data. J. R. Stat. Soc. Ser. C 16:65–75

Boyd S, Vandenberghe L. 2004. Convex Optimization. Cambridge, UK: Cambridge Univ. Press

Breitung J, Swanson NR. 2002. Temporal aggregation and spurious instantaneous causality in multiple 
time series models. J. Time Ser. Anal 23(6):651–65

Bressler SL, Seth AK. 2011. Wiener–Granger causality: a well established methodology. Neuroimage 
58(2):323–29 [PubMed: 20202481] 

Chamberlain G 1982. The general equivalence of Granger and Sims causality. Econometrica 50:569–
81

Chen B, Zadrozny PA. 1998. An extended Yule-Walker method for estimating a vector autoregressive 
model with mixed-frequency data. Adv. Econom 13:47–74

Chen S, Shojaie A, Shea-Brown E, Witten D. 2017a. The multivariate Hawkes process in high 
dimensions: beyond mutual excitation. arXiv: 1707.04928 [stat.ME]

Chen S, Shojaie A, Witten DM. 2017b. Network reconstruction from high-dimensional ordinary 
differential equations. J. Am. Stat. Assoc 112(520):1697–707 [PubMed: 29618851] 

Chen S, Witten D, Shojaie A. 2017c. Nearly assumptionless screening for the mutually-exciting 
multivariate Hawkes process. Electron. J. Stat 11(1):1207 [PubMed: 28845209] 

Ching W, Fung ES, Ng MK. 2002. A multivariate Markov chain model for categorical data sequences 
and its applications in demand predictions. IMA J. Manag. Math 13(3):187–99

Chiou-Wei SZ, Chen CF, Zhu Z. 2008. Economic growth and energy consumption revisited—evidence 
from linear and nonlinear Granger causality. Energy Econ 30(6):3063–76

Chu SR, Shoureshi R, Tenorio M. 1990. Neural networks for system identification. IEEE Control Syst. 
Mag 10(3):31–35

Chudik A, Pesaran MH. 2011. Infinite-dimensional VARs and factor models. J. Econom 163(1):4–22

Cox LATJ, Popken DA. 2015. Has reducing fine particulate matter and ozone caused reduced mortality 
rates in the United States? Ann. Epidemiol 25(3):162–73 [PubMed: 25571792] 

Cromwell JB, Terraza M. 1994. Multivariate Tests for Time Series Models. Thousand Oaks, CA: 
SAGE

Danks D, Plis S. 2013. Learning causal structure from under sampled time series. Presented at NIPS 
2013 Workshop on Causality, Lake Tahoe, NV, Dec. 9

Davis RA, Zang P, Zheng T. 2016. Sparse vector autoregressive modeling. J. Comput. Graph. Stat 
25(4):1077–96

Dhamala M, Rangarajan G,Ding M. 2008. Estimating Granger causality from Fourier and wavelet 
transforms of time series data. Phys. Rev. Lett 100(1):018701 [PubMed: 18232831] 

Doshi-Velez F, Wingate D, Tenenbaum J, Roy N. 2011. Infinite dynamic Bayesian networks. In 
ICML’11: Proceedings of the 28th International Conference on Machine Learning, ed. Getoor L, 
Scheffer T, pp. 913–20. Madison, WI: Omnipress

Eichler M 2007. Granger causality and path diagrams for multivariate time series. J. Econom 
137(2):334–53

Eichler M 2012. Graphical modelling of multivariate time series. Probab. Theory Relat. Fields 153(1–
2):233–68

Eichler M, Dahlhaus R, Dueck J. 2017. Graphical modeling for multivariate Hawkes processes with 
nonparametric link functions. J. Time Ser. Anal 38(2):225–42

Etzel N, Shojaie A. 2016. ngc: penalized estimation and visualization for network Granger causality. R 
Package. https://github.com/shojaie/ngc

Florens JP, Mouchart M. 1982. A note on noncausality. Econom. J. Econom. Soc 50:583–91

Shojaie and Fox Page 28

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/shojaie/ngc


Fox E, Sudderth EB, Jordan MI, Willsky AS. 2011. Bayesian nonparametric inference of switching 
dynamic linear models. IEEE Trans. Signal Proc 59(4):1569–85

Fujita A, Sato JR, Garay-Malpartida HM, Yamaguchi R, Miyano S, et al. 2007. Modeling gene 
expression regulatory networks with the sparse vector autoregressive model. BMC Syst. Biol 1:39 
[PubMed: 17761000] 

George EI,Sun D,Ni S. 2008. Bayesian stochastic search for VAR model restrictions. J. Econom 
142(1):553–80

Geweke J 1982. Measurement of linear dependence and feedback between multiple time series. J. Am. 
Stat. Assoc 77(378):304–13

Ghahramani Z1997. Learning dynamic Bayesian networks. In International School on Neural 
Networks, Initiated by IIASS and EMFCSC, ed. Giles CL, Gori M, pp. 168–97. New York: 
Springer

Ghosh S, Khare K, Michailidis G. 2019. High-dimensional posterior consistency in Bayesian vector 
autoregressive models. J. Am. Stat. Assoc 114(526):735–48 [PubMed: 31474783] 

Glymour C, Zhang K, Spirtes P. 2019. Review of causal discovery methods based on graphical models. 
Front. Genet 10:524 [PubMed: 31214249] 

Gong M, Zhang K, Schölkopf B, Tao D, Geiger P. 2015. Discovering temporal causal relations from 
subsampled data. Proc. Mach. Learn. Res 37:1898–1906

Granger CWJ. 1969. Investigating causal relations by econometric models and cross-spectral methods. 
Econometrica 37:424–38

Granger CWJ. 1980. Testing for causality: a personal viewpoint. J. Econ. Dyn. Control 2:329–52

Granger CWJ. 1988. Some recent development in a concept of causality. J. Econom 39(1–2):199–211

Granger S 2001. Social engineering fundamentals, part I: hacker tactics. Security Focus, Dec. 18

Graves A 2012. Supervised Sequence Labelling with Recurrent Neural Networks. New York: Springer

Hall EC, Raskutti G, Willett R. 2016. Inference of high-dimensional autoregressive generalized linear 
models. arXiv:1605.02693 [stat.ML]

Hansen NR, Reynaud-Bouret P, Rivoirard V, et al. 2015. Lasso and probabilistic inequalities for 
multivariate point processes. Bernoulli 21(1):83–143

Haslbeck JM, Waldorp LJ. 2020. mgm: Estimating time-varying mixed graphical models in high-
dimensional data. J. Stat. Softw 93(8). 10.18637/jss.v093.i08

Henderson J, Michailidis G. 2014. Network reconstruction using nonparametric additive ODE models. 
PLOS ONE 9(4):e94003 [PubMed: 24732037] 

Holland PW. 1986. Statistics and causal inference. J. Am. Stat. Assoc 81(396):945–60

Hong Y, Liu Y, Wang S. 2009. Granger causality in risk and detection of extreme risk spillover 
between financial markets. J. Econom 150(2):271–87

Huang J, Zhang T, Metaxas D. 2011. Learning with structured sparsity. J. Mach. Learn. Res 
12(Nov.):3371–412

Hyttinen A, Plis S, Järvisalo M, Eberhardt F, Danks D. 2016. Causal discovery from subsampled time 
series data by constraint optimization. arXiv:1602.07970 [cs.AI]

Hyvärinen A, Zhang K, Shimizu S, Hoyer PO. 2010. Estimation of a structural vector autoregression 
model using non-Gaussianity. J. Mach. Learn. Res 11:1709–31

Kilian L 2013. Structural vector autoregressions. In Handbook of Research Methods and Applications 
in Empirical Macroeconomics, ed. Hashimzade N, pp. 515–54. Cheltenham, UK: Edward Elgar

Kilian L, Lütkepohl H. 2017. Structural Vector Autoregressive Analysis. Cambridge, UK: Cambridge 
Univ. Press

Kim S, Xing EP. 2010. Tree-guided group lasso for multi-task regression with structured sparsity. In 
ICML’10: Proceedings of the 27th International Conference on Machine Learning, ed. Fürnkranz 
J, Joachims T, pp. 543–50. Madison, WI: Omnipress

Kişi Ö 2004. River flow modeling using artificial neural networks. J. Hydrol. Eng 9(1):60–63

Kontoyiannis I, Skoularidou M. 2016. Estimating the directed information and testing for causality. 
IEEE Trans. Inform. Theory 62(11):6053–67

Shojaie and Fox Page 29

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lanne M, Meitz M, Saikkonen P. 2017. Identification and estimation of non-Gaussian structural vector 
autoregressions. J. Econom 196(2):288–304

Leeper EM, Sims CA, Zha T, Hall RE, Bernanke BS. 1996. What does monetary policy do? Brookings 
Pap. Econ. Activ 1996(2):1–78

Li Y, Yu R, Shahabi C, Liu Y. 2017. Diffusion convolutional recurrent neural network: data-driven 
traffic forecasting. arXiv:1707.01926 [cs.LG]

Litterman RB. 1986. Forecasting with Bayesian vector autoregressions—five years of experience. J. 
Bus. Econ. Stat 4(1):25–38

Lozano AC, Abe N, Liu Y, Rosset S. 2009. Grouped graphical Granger modeling for gene expression 
regulatory networks discovery. Bioinformatics 25(12):i110–18 [PubMed: 19477976] 

Lusch B, Maia PD, Kutz JN. 2016. Inferring connectivity in networked dynamical systems: challenges 
using Granger causality. Phys. Rev. E 94(3):032220 [PubMed: 27739857] 

Lütkepohl H 1982. Non-causality due to omitted variables. J. Econom 19(2–3):367–78

Lütkepohl H 2005. New Introduction to Multiple Time Series Analysis. New York: Springer

Maziarz M 2015. A review of the Granger-causality fallacy. J. Philos. Econ 8(2):86–105

McCullagh P, Nelder JA. 1989. Generalized Linear Models. Boca Raton, FL: Chapman and Hall/CRC

McKenzie E 2003. Discrete variate time series. Handb. Stat 21:573–606

Moauro F, Savio G. 2005. Temporal disaggregation using multivariate structural time series models. 
Econom. J 8(2):214–34

Mosedale TJ, Stephenson DB, Collins M, Mills TC. 2006. Granger causality of coupled climate 
processes: ocean feedback on the North Atlantic Oscillation. J. Climate 19(7):1182–94

Nakajima J, West M. 2013. Bayesian analysis of latent threshold dynamic models. J. Bus. Econ. Stat 
31(2):151–64

Neykov M, Ning Y, Liu JS, Liu H, et al. 2018. A unified theory of confidence regions and testing for 
high-dimensional estimating equations. Stat. Sci 33(3):427–43

Nicholson W, Matteson D, Bien J. 2017a. BigVAR: tools for modeling sparse high-dimensional 
multivariate time series. arXiv:1702.07094 [stat.CO]

Nicholson WB, Matteson DS, Bien J. 2017b. VARX-L: structured regularization for large vector 
autoregressions with exogenous variables. Int. J. Forecast 33(3):627–51

Nicolau J 2014. A new model for multivariate Markov chains. Scand. J. Stat 41(4):1124–35

Noble NR, Fields TW. 1983. Sunspots and cycles: comment. South. Econ. J 50:251–54

Onatski A 2010. Determining the number of factors from empirical distribution of eigenvalues. Rev. 
Econ. Stat 92(4):1004–16

Pfaff B 2008. VAR, SVAR and SVEC models: implementation within R package vars. J. Stat. Softw 
27(4):1–32

Plis S, Danks D, Freeman C, Calhoun V. 2015. Rate-agnostic (causal) structure learning. In Advances 
in Neural Information Processing Systems, ed. Cortes C, Lawrence N, Lee D, Sugiyama M, 
Garnett R, pp. 3285–93. N.p.: NeurIPS

Qiu H, Xu S, Han F, Liu H, Caffo B. 2015. Robust estimation of transition matrices in high 
dimensional heavy-tailed vector autoregressive processes. JMLR Worksh. Conf. Proc 37:1843–51

Quinn CJ, Kiyavash N, Coleman TP. 2015. Directed information graphs. IEEE Trans. Inform. Theory 
61(12):6887–909

Raftery AE. 1985. A model for high-order Markov chains. J. R. Stat. Soc. Ser. B 47(3):528–39

Raissi M, Perdikaris P, Karniadakis GE. 2018. Multistep neural networks for data-driven discovery of 
nonlinear dynamical systems. arXiv:1801.01236 [math.DS]

Reid AT, Headley DB, Mill RD, Sanchez-Romero R, Uddin LQ, et al. 2019. Advancing functional 
connectivity research from association to causation. Nat. Neurosci 22(11):1751–60 [PubMed: 
31611705] 

Runge J, Heitzig J, Petoukhov V, Kurths J. 2012. Escaping the curse of dimensionality in estimating 
multivariate transfer entropy. Phys. Rev. Lett 108(25):258701 [PubMed: 23004667] 

Safikhani A, Shojaie A. 2020. Joint structural break detection and parameter estimation in high-
dimensional nonstationary VAR models. J. Am. Stat. Assoc 10.1080/01621459.2020.1770097

Shojaie and Fox Page 30

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schorfheide F, Song D. 2015. Real-time forecasting with a mixed-frequency VAR. J. Bus. Econ. Stat 
33(3):366–80

Seth AK, Barrett AB, Barnett L. 2015. Granger causality analysis in neuroscience and neuroimaging. 
J. Neurosci 35(8):3293–97 [PubMed: 25716830] 

Sheehan RG, Grieves R. 1982. Sunspots and cycles: a test of causation. South. Econ. J 48:775–77

Shojaie A, Basu S, Michailidis G. 2012. Adaptive thresholding for reconstructing regulatory networks 
from time-course gene expression data. Stat. Biosci 4(1):66–83

Shojaie A, Michailidis G. 2010. Discovering graphical Granger causality using the truncating lasso 
penalty. Bioinformatics 26(18):i517–23 [PubMed: 20823316] 

Silvestrini A, Veredas D. 2008. Temporal aggregation of univariate and multivariate time series 
models: A survey. J. Econ. Surv 22(3):458–97

Sims CA. 1972. Money, income, and causality. Am. Econ. Rev 62(4):540–52

Sims CA. 1980. Macroeconomics and reality. Econom. J. Econom. Soc 48:1–48

Song S, Bickel PJ. 2011. Large vector auto regressions. arXiv:1106.3915 [stat.ML]

Stock JH, Watson M. 2011. Dynamic factor models. Oxford Handb Online. 10.1093/oxfordhb/
9780195398649.013.0003

Stokes PA, Purdon PL. 2017. A study of problems encountered in Granger causality analysis from a 
neuroscience perspective. PNAS 114(34):E7063–72 [PubMed: 28778996] 

Stram DO, Wei WW. 1986. A methodological note on the disaggregation of time series totals. J. Time 
Ser. Anal 7(4):293–302

Tank A, Covert I, Foti N, Shojaie A, Fox EB. 2021a. Neural Granger causality. IEEE Trans. Pattern 
Anal. Mach. Intel In press. https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3065601

Tank A, Fox EB, Shojaie A. 2019. Identifiability and estimation of structural vector autoregressive 
models for subsampled and mixed-frequency time series. Biometrika 106(2):433–52 [PubMed: 
31097836] 

Tank A, Li X, Fox E, Shojaie A. 2021b. The convex mixture distribution: Granger causality for 
categorical time series. SIAM J. Math. Data Sci 3(1):83–112

Tao Y, Ma L, Zhang W, Liu J, Liu W, Du Q. 2018. Hierarchical attention-based recurrent highway 
networks for time series prediction. arXiv:1806.00685 [cs.LG]

Teräsvirta T, Tjøstheim D, Granger CWJ. 2010. Modelling Nonlinear Economic Time Series. Oxford, 
UK: Oxford Univ. Press

Tibshirani R 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1):267–
88

Tong H 2011. Nonlinear time series analysis. In Encyclopedia of Mathematics. Berlin: EMS. http://
encyclopediaofmath.org/index.php?title=Nonlinear_time_series_analysis&oldid=37777

Vicente R, Wibral M, Lindner M, Pipa G. 2011. Transfer entropy—a model-free measure of effective 
connectivity for the neurosciences. J. Comput. Neurosci 30(1):45–67 [PubMed: 20706781] 

Wang X, Kolar M, Shojaie A. 2020. Statistical inference for networks of high-dimensional point 
processes. arXiv:2007.07448 [stat.ML]

Weiß CH. 2018. An Introduction to Discrete-Valued Time Series. New York: Wiley

Wu H, Lu T, Xue H, Liang H. 2014. Sparse additive ordinary differential equations for dynamic gene 
regulatory network modeling. J. Am. Stat. Assoc 109(506):700–16 [PubMed: 25061254] 

Xu H, Farajtabar M, Zha H. 2016. Learning Granger causality for Hawkes processes. Proc. Mach. 
Learn. Res 48:1717–26

Yu R, Zheng S, Anandkumar A, Yue Y. 2017. Long-term forecasting using tensor-train RNNs. 
arXiv:1711.00073 [cs.LG]

Yuan M, Lin Y. 2006. Model selection and estimation in regression with grouped variables. J. R. Stat. 
Soc. Ser. B 68(1):49–67

Zadrozny PA. 2016. Extended Yule-Walker identification of VARMA models with single or mixed-
frequency data. J. Econom 193(2):438–46

Zhang GP. 2003. Time series forecasting using a hybrid ARIMA and neural network model. 
Neurocomputing 50:159–75

Shojaie and Fox Page 31

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3065601
http://encyclopediaofmath.org/index.php?title=Nonlinear_time_series_analysis&oldid=37777
http://encyclopediaofmath.org/index.php?title=Nonlinear_time_series_analysis&oldid=37777


Zheng L, Raskutti G. 2019. Testing for high-dimensional network parameters in auto-regressive 
models. Electron. J. Stat 13(2):4977–5043

Zhou D, Zhang Y, Xiao Y, Cai D. 2014. Analysis of sampling artifacts on the Granger causality 
analysis for topology extraction of neuronal dynamics. Front. Comput. Neurosci 8:75 [PubMed: 
25126067] 

Zhou K, Zha H,Song L. 2013. Learning social infectivity in sparse low-rank networks using multi-
dimensional Hawkes processes. Proc. Mach. Learn. Res 31:641–49

Zhu D, Ching W. 2010. A new estimation method for multivariate Markov chain model with 
application in demand predictions. In BIFE ‘10: Proceedings of the 2010 Third International 
Conference on Business Intelligence and Financial Engineering, pp. 126–30. Washington, DC: 
IEEE

Zhu K, Liu H. 2020. Confidence intervals for parameters in high-dimensional sparse vector 
autoregression. arXiv:2009.09462 [stat.ME]

Shojaie and Fox Page 32

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A simple VAR process with three variables generated according to Equation 5. The time 

series plots (center, right) suggest Granger causal interactions between x2 and x3 in a 

bivariate analysis excluding x1. Moreover, the direction of causality is different when 

C = 0.7 x2 x3  and C = 0 x3 x2 . Bivariate VAR modeling using the vars R package 

(Pfaff 2008) confirms these observations. Abbreviation: VAR, vector autoregressive.
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Figure 2. 
Illustration of the link between network Granger causality and parameters of SVAR models. 

(a) Lag matrices A1, …, Ad and inverse covariance matrix of the innovation, Σ−1, of 

an SVAR model. Nonzero entries of Ak and Σ−1 are shaded. (b) Expanded graphical 

model, which replicates variables over time. (c) Compact graphical model combining 

all interactions from past lags. In both graphs, Granger causal interactions (solid edges) 

correspond to nonzero entries in Ak and instantaneous causal effects (dashed undirected 

edges) correspond to nonzero entries in Σ−1. Abbreviation: SVAR, structural vector 

autoregressive.

Shojaie and Fox Page 34

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Illustration of different sparsity-inducing penalties for Granger causality estimation based on 

vector autoregressive (VAR) processes: (a) the lasso penalty Aij
k  applied to each entry of lag 

matrices (Fujita et al. 2007); (b) the group lasso penalty Aij
1 , Aij

2 , …, Aij
d

2 applied to all lags 

of the same entry (i, j) (Lozano et al. 2009); (c) general group lasso penalty (Basu et al. 

2015), applied to groups of related variables or entire lag matrices Ak; and (d) joint lasso 

and hierarchical group lasso penalties for inducing sparsity while selecting lags by forcing 

Ak = 0 for larger k (Nicholson et al. 2017b).
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Figure 4. 
(a) Lasso versus (b) group lasso estimates of T-cell gene regulatory networks (Basu et 

al. 2015). The terms API, MAPK, and TCF are names of genetic pathways based on 

information from the Kyoto Encyclopedia of Gene and Genome. Figure adapted with 

permission from Basu et al. (2015).
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Figure 5. 
Illustration of two approaches for lag selection: (a) Assuming a decay assumption—that 

is, Ak = 0 Ak′ = 0∀k′ ≥ k—the lag d can be estimated by identifying the first k such that 

Ak = 0. (b) The lag d can be estimated without assuming a decay assumption by enforcing 

entire lag matrices to be zero and setting d = maxk A
k ≠ 0.
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Figure 6. 
(a) Illustration of Granger noncausality in an example with p = 2 and m1 = m2 = 3. Since 

the tensor represents conditional probabilities, the columns of the front face of the tensor, 

the vertical x1t axis, must sum to one. Here, x2 is not Granger causal for x1 since each 

slice of the conditional probability tensor along the x2 mode is equal. (b) Schematic of 

the mixture transition distribution (MTD) factorization of the conditional probability tensor 

p x1t ∣ x(t − 1)1, x(t − 1)2 . Figure adapted with permission from Tank et al. (2021b).

Shojaie and Fox Page 38

Annu Rev Stat Appl. Author manuscript; available in PMC 2023 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Schematic of identifiability conditions for the (a) MTD and (b) mLTD with d = 3 and 

m1 = m2 = m3 = 3. Identifiability for MTD requires a zero entry in each row of Zj; for mLTD, 

the first column and last row must all be zero. In MTD, the columns of each Zj must sum 

to the same value and must sum to one across all Zj. Abbreviations: mLTD, multinomial 

logistic transition distribution; MTD, mixture transition distribution. Figure adapted with 

permission from Tank et al. (2021b).
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Figure 8. 
(a) Schematic for cMLPs. If outgoing weights for x < tj (dark blue) are penalized to zero, then 

xj does not Granger cause xi. (b) The group lasso penalty jointly penalizes the full set of 

outgoing weights while the hierarchical version penalizes the nested set of outgoing weights, 

penalizing higher lags more. (c) Schematic for cLSTM. If outgoing weights to hidden units 

from an input x t − 1 j are zero, then xj does not Granger cause xi. Abbreviations: cLSTM, 

component-wise long-short term memory network; cMLP, component-wise multilayer 

perceptron. Figure adapted with permission from Tank et al. (2021a).
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Figure 9. 
Example of group sparsity patterns of cMLP first layer weights with four first layer 

hidden units (H = 4) and four input series (p = 4) with maximum lag k = 4. Differing 

sparsity patterns are shown for the three different structured penalties: (a) group lasso, (b) 

group sparse group lasso, and (c) hierarchical lasso. Abbreviation: cMLP, component-wise 

multilayer perceptron.
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Figure 10. 
Example of group sparsity patterns in a cLSTM with H = 4 and p = 4. Due to the group 

lasso penalty on the columns of W , the W f, W in, W o, and W c matrices share the same 

column sparsity pattern. Abbreviation: cLSTM, component-wise long-short term memory 

network.
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Figure 11. 
Four types of structured sampling. Black lines indicate observed data and dotted lines 

indicate missing data. (a) Both series are subsampled. (b) The standard mixed-frequency 

case, where only the second series is subsampled. (c) A subsampled version of panel b 
where each series is subsampled at different rates. (d) A subsampled mixed-frequency series 

that has no common factor across sampling rates and thus is not a subsampled version of 

panel b. Figure adapted with permission from Tank et al. (2019).
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Figure 12. 
Depiction of how subsampling confounds causal analysis of lagged and instantaneous 

effects. (a) True causal diagram for regularly sampled data. (b) Estimated causal structure 

when subsampling is ignored. Figure adapted with permission from Tank et al. (2019).
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