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Abstract

Apical–basal progenitor cell polarity establishes key features of the radial and laminar architecture 

of the developing human cortex. The unique diversity of cortical stem cell populations and an 

expansion of progenitor population size in the human cortex have been mirrored by an increase in 

the complexity of cellular processes that regulate stem cell morphology and behaviour, including 

their polarity. The study of human cells in primary tissue samples and human stem cell-derived 

model systems (such as cortical organoids) has provided insight into these processes, revealing 

that protein complexes regulate progenitor polarity by controlling cell membrane adherence 

within appropriate cortical niches and are themselves regulated by cytoskeletal proteins, signalling 

molecules and receptors, and cellular organelles. Studies exploring how cortical stem cell polarity 

is established and maintained are key for understanding the features of human brain development 

and have implications for neurological dysfunction.

The cerebral cortex is highly expanded in humans when compared with other mammals 

and has several unique features relating to the organization, number and diversity of cell 

types that it contains. Many of these characteristics are established during development. 

The developing human cerebral cortex contains more diverse populations of progenitors, 
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along with vastly increased numbers of progenitor cells, than that of other mammals1. The 

formation and function of the diverse progenitor cell types that create the human cortex are 

reliant upon the establishment and maintenance of their apical–basal cell polarity. In this 

Review, we will use ‘polarity’ to refer to any asymmetric spatial distribution of a cell’s 

morphology that is predominantly dependent on the apical–basal orientation of progenitor 

cells during cortical development.

Although foundational studies in animal model systems have illuminated the mechanisms 

guiding cortical polarity, the unique expansion in size and diversity of the progenitor 

populations presents a unique challenge to our understanding of these phenomena in the 

human cortex2,3. Further, features of human brain development implicated in multiple 

neurodevelopmental disorders may not be shared with animal models. It is therefore 

imperative to study the regulation of polarity in human cortical progenitors to understand 

the origins of neurological disease in the human brain. Recent years have seen advances in 

methods for culturing human neural cells while maintaining their polarity and organization. 

These studies have generated critical insights into how cytoskeletal regulators, organelle 

functions and division dynamics influence progenitor cell polarity and, in turn, increase 

progenitor cell diversity in the developing human brain.

In this Review, we provide an overview of these developments and findings, with a focus 

on those aspects that relate specifically to human neural progenitor polarity. In addition, 

we discuss the consequences of disrupted developmental progenitor polarity and the role 

of such disruptions in various human neurological diseases, including various cortical 

malformations, neuropsychiatric disorders and neurodegenerative diseases. We will show 

how recent innovations in methods for culturing human cells, as well as the discovery 

of human-enriched populations of cortical progenitors, provide an opportunity to better 

understand the development of the unique features of the human cortex and to evaluate how 

changes in progenitor polarity impact the human brain in neurological disease states.

Human cortical progenitor populations

In the developing human cerebral cortex, distinct populations of stem cells and progenitor 

cells proliferate, differentiate and migrate to establish the radial and laminar architecture 

of the cortex during neurogenesis4,5 (FIG. 1). The cerebral cortex originates from the 

invagination and expansion of the anterior end of the neural tube. The single layer of 

neuroepithelial progenitor cells forming the neural tube are the primary stem cell population 

from which all other cortical cell types arise. The polarity and radial organization of this 

founding progenitor population thus define the radial architecture of the developing human 

cortex6.

Stem cells

A collective term for neuroepithelial cells and radial glial cells; multipotent cells that give 

rise to other progenitor cells and various neuronal and glial cell types.
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Progenitor cells

Multipotent cells (such as intermediate progenitor cells) that differentiate into postmitotic 

cell types.

Early in the first trimester of human development, cortical neuroepithelial cells extend 

from the apical side of the neural tube, which borders the lumen, to the basal lamina 

at the pial surface7,8. This apical–basal polarity is retained as the early neuroepithelial 

cells develop into a pseudostratified neuroepithelium. Through the process of interkinetic 

nuclear migration (INM) neuroepithelial cell nuclei move in a basal direction during G1 

phase of the cell cycle, with S phase occurring at the basal (pial) surface. The nuclei 

then move apically during G2 phase prior to mitosis (M phase), which takes place at 

the apical (ventricular) surface (FIG. 1). During the first trimester, neuroepithelial cell 

numbers increase through symmetric division to expand the progenitor pool. During each 

mitotic division, parent neuroepithelial cells retract their basal processes and daughter cells 

then re-establish basal contact by extending new processes to the basal lamina9. Studies 

conducted in the mouse, chicken and zebrafish have suggested that, in these species, parent 

neuroepithelial cells split their basal process during cytokinesis; however, this has not been 

observed in human studies10. A prolonged expansion of neuroepithelial stem cells has been 

proposed to be the main driver of the increase in neuron numbers in the human cortex6. 

Although neuroepithelial cells are relatively uniform in terms of their morphology and 

behaviour, recent studies have identified transcriptional diversity and molecular variations 

within this population in the human brain, suggesting that even early stem cells may have 

distinct developmental trajectories and functions11.

Neuroepithelial cells

Pseudostratified stem cells that establish the developing neocortex through their polar 

morphology.

Cell cycle

A process of cell division, in which one cell becomes two; composed of stages 

that include cell growth (G1 phase, G2 phase), DNA synthesis (S phase) and mitosis/

cytokinesis (M phase).

Symmetric division

Cell division in which a parent cell gives rise to two identical daughter cells. This type of 

division can be self-renewing.

The general mitotic behaviour and pseudostratified morphology of neuroepithelial cells 

are typical of epithelial cell types, but these features become more specialized as the 

neuroepithelial cells differentiate. In the cortex of all mammals, including humans, 

neuroepithelial cells transform into ventricular radial glial (vRG) cells, also called apical 
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radial glia (FIG. 1). In the human cortex, this cellular transformation occurs towards the 

end of the first trimester9,11,12. The apico-basal polarity of neuroepithelial cells defines the 

polarity of vRG cells, which are elongated and anchored apically at the ventricular surface 

with a long basal process attached to the pial surface. However, unlike neuroepithelial 

cells, the basal processes of vRG cells do not retract during mitosis and, instead, remain 

anchored to the basal lamina9. This change in mitotic behaviour presumably enables the 

radial glial scaffold to expand significantly over time and makes it possible for the radial 

fibre to guide the migration of newborn neurons13,14. vRG cells exhibit INM and divide at 

the ventricular surface, similar to neuroepithelial cells; however, although their basal fibres 

extend across the entire cortical mantle, the region of nuclear movement is restricted to the 

ventricular zone (VZ). Although vRG cells do undergo symmetric (proliferative) divisions, 

they mostly undergo asymmetric division to self-renew and either generate neurons directly 

or indirectly through production of a population of neurogenic transit-amplifying cells, 

called intermediate progenitor cells (IPCs)9,15,16. The dynamics of radial glial expansion, 

polarity and architecture have been studied extensively in the mouse, but the diversity of 

radial glia subtypes in the human brain has only been appreciated for the past 15 years17.

Radial glial scaffold

A structure in the developing cerebral cortex that has an apical–basal orientation and is 

composed of the basal processes of radial glial cells. The scaffold is required to support 

neurons as they migrate through the developing cortex to reach their laminar position. 

Progenitor polarity is essential for scaffold integrity.

Ventricular zone

(VZ). A progenitor zone located on the apical side of the developing cortex in close 

proximity to the lateral ventricle. The VZ is usually defined as the zone of interkinetic 

nuclear migration of radial glia.

Asymmetric division

Cell division in which a parent cell gives rise to two different daughter cells. This can be 

a differentiating division.

Cortical neurogenesis and the increased diversity of radial glial subtypes begins towards 

the end of the first trimester. In humans, the progenitor domains expand into an inner 

subventricular zone (iSVZ) and an outer subventricular zone (oSVZ), in which distinct 

cell populations arise from vRG progenitors17–20 (FIG. 1). Asymmetric divisions of vRG 

cells contribute directly to early generated neurons that form the subplate and the marginal 

zone, as well as to IPCs that subsequently give rise to the neurons that will reside in the 

deep layers of the cortex21–25. vRG cells also give rise to a second population of radial 

progenitors that reside in the expanded oSVZ domain17. These cells, called outer radial glial 

(oRG) cells or basal radial glia, are enriched in humans compared with other species; they 
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are a minor population in the mouse but are found in increased numbers in mammals with 

large brains, including carnivores and non-human primates26,27.

oRG cells have a unique transcriptional signature and polar morphology compared with 

other radial glia28. They lose their apical attachment to the ventricular surface, retaining 

only a long basal process extending towards the pial surface. They exhibit a unique division 

behaviour called mitotic somal translocation (MST), in which the nucleus of the parent cell 

moves rapidly (by translocating, or ‘jumping’) along the basal fibre immediately prior to 

division17 (FIG. 1). MST is driven by myosin motors, depends on the integrity of the oRG 

cell’s basal process19,29,30 and has been hypothesized to contribute to the expansion of the 

human oSVZ29. Similar to vRG cells, oRG cells undergo self-renewing divisions as well as 

asymmetric divisions giving rise to IPCs or directly to neurons.

By the middle of the second trimester, oRG cells become the predominant progenitor 

population giving rise to neurons in the human cortex28. During the horizontal divisions, by 

which oRG cells are generated from vRG cells, the basally positioned daughter cells inherit 

the basal process of the dividing vRG cell and become oRG cells, whereas the apically 

positioned daughter cells lose their basal processes but maintain their apical anchor and 

become truncated radial glial cells31. Owing to a surge in oRG cell generation, the radial 

glial scaffold is primarily composed of the basal processes of oRG cells at this stage31. The 

radial architecture of the human cortex during the second half of neurogenesis, when upper 

cortical layer neurons are being generated, is therefore determined by the polarity of oRG 

cells. At the ventricular surface, the truncated radial glial cells grow basal processes that do 

not extend to the pial surface but, instead, become truncated, often ending on blood vessels 

and contributing to a shortened radial glial scaffold31,32 (FIG. 1).

Horizontal divisions

Cell divisions in which there is a horizontal plane of cytokinesis. These divisions are 

typically asymmetric.

IPCs, sometimes classified together with oRG cells as basal progenitors33, are, in rodents, 

typically defined by their expression of the transcription factor EOMES (also known 

as TBR2), indicating their neurogenic commitment, an expression pattern also present 

in human IPCs34,35. In contrast to neuroepithelial and radial glial cells, IPCs are often 

multipolar, without a defined polarity36. Various morphologies or morpho-types have been 

described for primate basal progenitors, based largely on the number and orientation of 

their processes37. Typically, these processes are shorter than those of the long basal radial 

glial fibres30,36,37. As noted above, IPCs derived from vRG cells are thought to give rise 

to the earlier-born deep-layer excitatory neurons, whereas oRG cell-derived IPCs produce 

the later-born upper-layer excitatory neurons31. Both the developmental timing and the 

expansion of the oRG cell and upper-layer neuron populations in the human brain support 

this hypothesis. Most postmitotic excitatory neurons maintain both a polar and a radial 

organization as they extend their primary dendrite towards the pial surface during migration 

and maintain apico-basal orientation as they develop their dendritic trees38. This complex 

neuronal polarity is maintained by axon guidance and dendritic formation signals, such 
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as neurotrophins, cadherins and semaphorins, which regulate actin through Rho GTPases 

and microtubule stabilization through protein kinase A (PKA) and serine/threonine protein 

kinase (AKT) signalling39. oRG cells also differentiate into various glial cells. These include 

astrocytes and oligodendrocyte precursor cells40,41. It has been shown that human vRG cells 

and oRG cells give rise to distinct populations of astrocytes42, although the contribution of 

radial glial polarity to astrocyte fate and laminar position is unknown. In order to decipher 

how polarity of diverse progenitor types impacts human brain development, we need to 

study the molecular mechanisms regulating polarity in the human cortex.

Modelling human progenitor polarity

A major challenge to understanding many of the features of human cerebral cortex 

development described above is the lack of suitable models. Mouse models do not 

recapitulate the full diversity of progenitor types, extended developmental timelines or 

complex organization of the human brain26,30,43,44. Developing human brain tissue is largely 

inaccessible and cannot be experimentally manipulated throughout development. However, 

pluripotent stem cell (PSC)-derived in vitro model systems can provide access to developing 

human neural progenitors.

Pluripotent stem cell

(PSC). A cell that has the potential to become any other cell type in the body. There are 

two types of PSC: embryonic stem cells are derived from the inner cell mass of blastocyst 

and induced PSCs are reprogrammed from somatic cells.

In two-dimensional adherent conditions, PSC-derived neural progenitors display similar 

morphological features to endogenous progenitor cells and form pseudostratified epithelial-

like circular structures called neural rosettes. The cells in these rosettes consist of 

polarized radial glia with their apical processes making contact with the central lumen45. 

These adherent radial glia are capable of differentiating into various cell types, including 

neurons and astrocytes46. However, adherent cultures have limitations, including the need 

for passaging, challenges with long-term adherence and a lack of extracellular matrix 

proteins and three-dimensional architecture. With the innovation of three-dimensional 

culture methods, such as cerebral organoids, it has become more tractable to study 

early developmental events, including progenitor polarity, in a more complex, tissue-like 

structure45,47 (BOX 1). Organoids can therefore be a useful in vitro model system to 

evaluate the proliferation, morphology and polarity of human neuroepithelial cells and radial 

glial cells over time48.

Cerebral organoids

Three-dimensional neural structures resembling the developing cerebrum that 

spontaneously differentiate from pluripotent stem cells without manipulation of 

developmental signalling molecules.
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Time-lapse imaging studies of progenitor cells in human cerebral organoids reveal similar 

cellular behaviour to that of the developing human cortex (BOX 1). Markers of their apical 

surfaces and of mitosis are strongly expressed along the lumen edge49. Neuroepithelial 

and radial glial cells both display characteristic apical to basal INM but differ from each 

other in the mode of cell division and rates of proliferation50. Similar to in vivo behaviour, 

symmetrically dividing mitotic neuroepithelial cells round up at the lumen and retract their 

basal processes and daughter cells regrow new basal processes following mitosis9. In a 

comparative study, an increase in organoid apical surface area, a shorter neuroepithelial 

cell cycle length and a delayed transition to neurogenesis were all observed in human 

cerebral organoids as compared with those derived from gorilla cells51, highlighting species-

specific features of human organoid cultures. The distinctive proliferating and symmetric 

mitotic divisions of neuroepithelial cells were observed in younger organoids (from 5 days 

to 5 weeks in culture)9,51, whereas radial glial progenitors increased in number in older 

organoids (5–10 weeks in culture). These radial glial progenitors did not retract their basal 

processes during division and showed a range of distinct cleavage angles and types of 

division including vertical self-renewing, horizontal asymmetric and oblique divisions9,49. 

The basal processes of both neuroepithelial and radial glial cells extended from the lumen 

towards the outer edge of the rosette9,47,49. oRG cells were present in an expanded 

SVZ domain in cortical organoids after 10–15 weeks in culture and display stereotyped 

behaviours including MST division49. Thus, although it is challenging to study mitotic 

dynamics in the endogenous human brain over a range of developmental time points, human 

organoid models have made the study of these refined cellular behaviours experimentally 

tractable.

In organoids, the signalling molecules and protein complexes that regulate progenitor 

polarity can also be easily perturbed and assayed for their impact on early radial scaffold 

organization and radial glial polarity. For example, in human cortical organoids, glycogen 

synthase kinase 3 (GSK3) is required to maintain the establishment of vRG polarity, 

lumen formation and radial glial proliferation rates, whereas the serine/threonine protein 

kinase mTOR regulates oRG morphology and process length52,53. Organoids are thus a 

useful tool to study the impact of gene function, molecular signalling and cell polarity on 

developmental processes in the early human neuroepithelium.

Despite these advantages, cerebral organoid models do show limited specification and 

maturation of refined human cortical cell types54,55, making it important to validate findings 

regarding polarity and cell type transitions in primary samples, when possible. For example, 

recent studies utilizing non-human primate tissue suggest that both radial glial fibres and 

neuroepithelial cells may retract their basal processes prior to mitosis56. As studies in 

organoids have utilized the lack of this retraction in radial glial cells as a cell type-defining 

behaviour, this makes the transition state from neuroepithelial cells to radial glia less clear 

in this model. Additionally, a transcriptional study of first-trimester cortical development 

indicated significant differences in the temporal expression level of gene programmes 

defining neuroepithelial or radial glial cell types in organoids compared with primary 

tissue11.
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Although these findings highlight some of the current limitations in the recapitulation 

of complex corticogenesis in organoids, the studies also show that many features are 

preserved, demonstrating their value as a human model system. For example, organoids have 

robust division and differentiation programmes and clearly defined early cytoarchitectural 

organization54,55 (BOX 1). This has allowed organoid models to be used to discover features 

of human progenitor morphology, behaviour and polarity in the context of both health and 

disease.

Mechanisms of progenitor polarity

As noted above, both neuroepithelial and vRG cell progenitors have highly polarized apico-

basal orientation and are anchored to the apical surface of the developing cortex7,9, whereas 

oRG cells maintain their apico-basal orientation with a single primary process oriented 

towards the basal surface of the cortex17. IPCs are not defined by polarity or orientation 

to a particular cortical surface but are a delaminated population with variable morphology 

and great dynamic mobility22. The differences in polarity and orientation of these distinct 

progenitor populations enable their key functions. Neuroepithelial cells are fundamental in 

establishing the initial apico-basal organization and proliferative stem cell expansion of the 

emerging neocortex. vRG cells and oRG cells not only serve as neural stem cells but (via 

their radial fibres) also form a scaffold that guides neuronal migration57,58. Neurogenic 

IPCs, on the other hand, are not physically constrained and are able to migrate more freely 

within the progenitor zones, which may enable subsequent neurogenic contributions to 

appropriate laminae. Neuroepithelial cells and vRG cells contain a primary cilium, which 

is an important determinant of progenitor polarity. Neuroepithelial cells that contain a 

primary cilium on the basolateral, rather than an apical, surface are committed to IPC fate 

and delaminate from the apical surface59. Each distinct progenitor population not only has 

unique functions, guided by their specific polarity and morphology, but also has distinct 

regulatory mechanisms.

Primary cilium

A slim microtubule-based organelle that is present in most eukaryotic cells. The primary 

cilium is made up of nine microtubule bundles (called an axoneme) and has a ciliary 

membrane. In neuroepithelial cells and radial glial cells, the primary cilia extend into the 

ventricular space.

Regulation of apical and basal progenitor attachment.

The establishment of apico-basal polarity in cortical progenitors requires the assembly 

and regulation of specialized junctional complexes — including tight junctions and 

adherens junctions — along the apical edge of neuroepithelial cells and vRG cells60–62. 

In humans the establishment of neuroepithelial cell polarity during the first trimester of 

development is particularly important9,11,51. Polarity-regulating junctional complexes have 

been predominantly studied in the mouse (FIG. 2; reviewed extensively in REFS.59–68); 

therefore, here we will focus on human-specific aspects of their regulation and their 

contributions to cortical progenitor polarity.
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Tight junctions and adherens junctions are cell–cell adhesion complexes that have distinct 

functional roles in controlling the polarity of neuroepithelial cells and radial glial cells, 

respectively. Tight junctions are typically located more apically and associated with apical 

polarity, whereas adherens junctions are located at slightly more basal positions with 

respect to the tight junctions. However, studies in mouse models have shown that the 

localization of these junctional complexes to the apical membrane of the progenitors is 

controlled by similar intracellular transport mechanisms. Further, the proteins that comprise 

both of these junctional complexes regulate polarity. Briefly, tight junctions regulate 

polarity by coordinating transport of ions and small molecules, whereas adherens junctions 

coordinate polarity through their roles as transmembrane and scaffolding proteins (reviewed 

elsewhere2,69–73) (FIG. 2). Interestingly, the outcome of these disparate mechanisms of 

polarity regulation is the regulated asymmetrical transport of NUMB protein to the 

apical membrane, where it can regulate the local intercellular milieu via the NOTCH 

signalling cascade74,75. There is, however, evidence for the existence of human-specific 

mechanisms that influence these junctional complexes. Recent genomic studies have 

identified distinct human paralogs of mouse polarity and proliferation-regulating proteins 

of the NOTCH2 family in human neural progenitors76–78. In stem cell and organoid 

models, expression of one of the human-specific NOTCH2 paralogs, NOTCH2NL, increases 

progenitor proliferation76,78. The functional effects of allelic variations of NOTCH2NL in 

the human cortex also appear to be relevant to neurodevelopmental disorders: duplications 

of NOTCH2NL are present in patients with macrocephaly, whereas microcephaly is seen 

in patients with NOTCH2NL deletions78. However, whether these human-specific NOTCH 

proteins have a role in regulating progenitor polarity remains unclear and detailed studies in 

the human cortex are still needed to better understand these mechanisms.

Macrocephaly

A cortical malformation in which the cortex is larger than normal, identified by an 

increase in head circumference.

Microcephaly

A cortical malformation in which the cortex is smaller than normal.

In rodents, experimental disruption of any of the components of the junctional complexes 

results in delamination, with a loss of cell polarity and a separation of the progenitors from 

the apical surface, leading to cortical disorganization74,79,80. In humans, however, it has 

been suggested that the developmentally regulated dissolution of junctional complexes may 

increase the size of the developing cortex by contributing to the emergence of delaminated 

progenitor cells, such as oRG cells and IPCs28,32,58. In support of this idea, recent studies 

have shown that cellular pathways controlling epithelial–mesenchymal transition (EMT) 

via loss of cellular adhesion and polarity in epithelial cell types are enriched during oRG 

cell generation in the human brain. Proteins such as PTPRZ1 that are involved in EMT 

may regulate the production of oRG cells and changes in oRG cell morphology and 

polarity28,29,32. More broadly, EMTs and dissolution of junctional complexes impact the 
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morphology and polarity both of neuroepithelial cells as they transition to radial glial cells 

and of vRG cells as they differentiate into neurogenic IPCs. Future studies probing the 

cell type-specific contributions of EMTs, junctional complex changes during transitions 

and the delamination of progenitors using human models, such as organoids, will further 

our understanding of the role of polarity regulation in long-term cortical organization and 

function.

Delamination

A process in which epithelial cells lose contact with their neighbours and move out of the 

epithelial sheet. In the developing cerebral cortex, this occurs when neuroepithelial cells 

and radial glial cells lose junctional contacts and/or retract their cellular processes and 

then migrate into a different position in the developing cortex.

Intracellular trafficking.

The trafficking of organelles and junctional complex components by the cytoskeleton 

(see below) plays a role in the maintenance of progenitor polarity. Little is known about 

how this occurs in the developing human brain. However, in vRG cells in the mouse 

cerebral cortex, lipid signalling regulates apically directed trafficking of the Golgi complex 

through interaction with the actin cytoskeleton during neurogenesis81. This process requires 

phosphatidylinositol transfer proteins and is key to proper Golgi organelle distribution 

and overall polarity81. Mitochondrial transport is also needed for appropriate metabolic 

regulation of polar processes in mouse progenitor cells. Mitochondria are trafficked from the 

cell soma along the vRG basal process and accumulate in high-energy locations such as the 

endfeet82 (FIG. 2). When sugar levels in blood or cerebrospinal fluid (CSF) are disrupted, 

misregulated mitochondrial trafficking results in the production of inappropriate levels of 

Ca2+ and, ultimately, causes the degradation of the radial glial scaffold82. In human cell 

cultures, when the trans-Golgi Network is disrupted by mutations in the ADP-ribosylation 

factor guanine nucleotide-exchange factor 2 (ARFGEF2), the transport of Golgi complexes 

to the cell surface is disrupted83. Ultimately, mechanisms that interfere with polarized 

organelle trafficking can lead to decreased radial glial proliferation and migration3,82,83.

Cerebrospinal fluid

(CSF). A fluid that contains the necessary nutrients for brain health. CSF is produced 

by the choroid plexus and flows through the ventricles. During development, radial glial 

apical and basal endfeet are exposed to CSF.

Cytoskeletal regulation.

Cytoskeletal proteins regulate cellular morphology, mitotic behaviour and polarity by 

establishing filamentous structures that provide cellular support and mediate protein and 

organelle trafficking (see above). The cytoskeleton of all cells, including progenitors, is 

composed of actin filaments and microtubules. The family of Rho GTPases regulate actin 

and microtubule motility and assembly in a dynamic manner84. The regulation of these 
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cytoskeletal proteins can uniquely regulate aspects of cell polarity, as well as cellular 

structure, migration and the mitotic behaviour of radial glial cells29,32,52,85. In addition, 

microtubule motor proteins and associated proteins use microtubules to mediate nuclear 

movement, self-renewal and INM in radial glial cells. In rodents, disruptions in intracellular 

transport via the cytoskeleton can lead to changes in the polarity of radial glial cells86,87. 

Although many features of cytoskeletal function are conserved across mammalian species, 

the unique progenitor types present in the developing human cortex require different 

molecular regulation of the cytoskeleton.

For example, investigations in human oRG cells have revealed a novel division of labour 

amongst different cytoskeletal proteins and signalling regulators that drive polarity and 

division in this cell type (FIG. 3). MST, under-taken by oRG cells during mitosis, consists of 

three distinct stages: the migratory movement of the cell prior to the jump, the actual ‘jump’ 

(the rapid movement of the nucleus during S phase) and cytokinesis. The jump requires 

the activation of the actin-binding protein non-muscle myosin II, but does not require 

microtubule function, and is also independent of cytokinesis. This non-muscle myosin 

II-mediated behaviour requires signalling via the Rho GTPase ROCK29. By contrast, mitotic 

cell division in oRG cells requires the microtubule protein β-tubulin. Finally, the length of 

the oRG fibre, fibre orientation and corresponding jump distance are dependent on F-actin 

regulation by CDC42, which is in turn regulated by mTOR signalling52 (FIG. 3). oRG cells 

are an expanded progenitor population in humans, and this complex cytoskeletal regulation 

demonstrates how different aspects of division behaviour, and subsequent establishment of 

cellular identity and polarity, can be regulated by distinct molecular machinery.

The polarity of multipolar IPCs in the human cortex is also maintained by the regulation 

of the actin cytoskeleton. Expression of the membrane-bound PALMDELPHIN protein 

(PALMD-CAAX) is enriched in the SVZ of the human and ferret, but not mouse, 

neocortex30. PALMD-CAAX controls the cytoskeleton and complexes with the cytoskeletal-

associated proteins ADD3 to maintain the multipolar morphology of IPCs as well as 

their proliferative capacity, possibly via downstream effects of integrin signalling30. Future 

studies will be needed to explore the differential regulation of the cytoskeleton in diverse 

cortical cell types and how this regulates the dynamics of progenitor cell polarity during 

developmental transition states.

Unique regulation of polarity in human oRG cells.

ARHGAP11B, a Rho GTPase activating protein that regulates progenitor proliferation 

and polarity, is expressed in the developing human cortex, but not in the cortex of 

other mammals, including non-human primates88,89. ARHGAP11B arose from a partial 

duplication of the gene encoding a related protein, ARHGAP11A. ARHGAP11B gain-of-

function experiments in mice and ferrets demonstrate that the presence of this protein leads 

to an increase in symmetric divisions of progenitors, as well as an increase in oRG cell 

numbers and changes in radial polarity (with an increase in monopolar and bipolar radial 

glial-like cells, compared with multipolar IPCs)88,89. The increase in oRG cell numbers in 

mice expressing ARHGAP11B is associated with increased proliferation of oRG cells, but 
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not vRG cells, resulting in a subsequent increase in cortical neuron number and overall 

cortical size90.

Similarly, in the human cortex, but not in that of non-human primates, there is a specific 

increase in the expression of the gene encoding mTOR in oRG cells91,92 that is not observed 

in other human progenitor types52. Functional studies in human oRG cells demonstrate 

that dysregulation of mTOR signalling results in changes to oRG morphology, motility 

and basal process orientation52. Interestingly, despite the evolutionary divergence that leads 

to increased mTOR signalling in human oRG cells, the downstream mechanisms through 

which this signalling mediates oRG cell morphology and migration are conserved. mTOR 

regulates actin abundance in oRG cells through activation of the Rho GTPase protein 

CDC42, to maintain oRG fibre length and polarity.

Together, these studies demonstrate some of the unique features of recent evolution that 

have influenced the regulation of human progenitor number, cortical expansion and polarity. 

However, the downstream targets of the affected genes remain part of the shared cytoskeletal 

machinery. Many questions remain about the mechanisms driving conserved and divergent 

programmes altering cellular morphology and polarity in human progenitor cells.

Functions of progenitor polarity

Polarity governs response to developmental signals.

The progenitor niches (VZ, oSVZ) of the developing human cortex contain distinct 

progenitor cell types that are actively patterned by developmental signalling molecules vital 

for appropriate proliferation, fate determination and regionalization. The morphology and 

polarity of each of the progenitor subtypes found in the developing human cortex uniquely 

determine how the cells interact within various developmental niches, as well as how they 

receive and respond to patterning information from extracellular sources.

Developmental niches

Uniquely defined extracellular micro-environments that are clearly distinguished from 

other parts of the cortex.

Neuroepithelial cells and radial glial cells receive extracellular signals from the ventricle93, 

the basement membrane and/or the pial surface, and local signals from neighbouring cells. 

In mouse models, these apical progenitors receive diffusible signals from the CSF through 

their primary cilia at the ventricular surface, initiating signalling cascades that can regulate 

their proliferation94–96; however, the influence of the CSF and/or ciliary interactions in 

the regulation of human cell types has not been directly explored94–96. There is evidence 

from animal studies that as the composition of the CSF changes with development, its 

effects on progenitor cells also change. For example, multiple studies demonstrate that 

rodent forebrain explants or neurospheres created using progenitor cells obtained at distinct 

developmental stages require age-matched CSF to optimally maintain appropriate progenitor 

identity, proliferation and neuronal differentiation. Further investigations are required to 

understand the influence of temporal changes in CSF during human development93,97.
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In mouse models, as apical progenitors mature and gap junction complexes form between 

radial glia and migrating neurons, they begin to be influenced by neighbouring cells98,99. 

In addition, the basal processes of radial glial cells can integrate extracellular signals from 

the basement membrane, the meninges and the pial surface100,101. Several recent studies 

have highlighted the dynamic organization of basal processes and their ability to respond to 

local signals9,102, often through local translation occurring at the basal endfeet. The endfeet 

thus serve as both sensors and effectors of signals from the basal niche, and errors in these 

functions can result in neurodevelopmental disorders102–104.

Similar to vRG cells, oRG cells can receive niche signals from the pial surface via their 

basal processes, but unlike apical progenitors they do not receive direct signals from the 

ventricular surface (although they may receive small molecular weight signals from the 

CSF). In mice, ferrets and humans, both vRG cells and oRG cells receive developmental 

cues from their cortical neighbours or from the local environment via intercellular and 

intracellular signalling, blood vessels and the extracellular matrix19,76,78,101. Radial glial 

cells are also coupled to one another by gap junctions, and studies in mouse models 

have shown that changes in membrane potential can spread to neighbouring radial glia 

and impact progenitor cell identity105. Similarly, newborn neurons in mice are coupled to 

radial glial cells by gap junction contacts and can influence radial glial polarity via contact 

inhibition106–108. Additionally, radial glial cells express GABA and glutamate receptors and 

respond to neurotransmitter signals, presumably released by neurons, to regulate radial glia 

proliferation98,99,109.

IPCs can also receive signals from their cortical neighbours, including endothelial 

cells110,111, as well as from the extracellular matrix. As IPCs are delaminated, and often 

multipolar, the niches within which they reside change with time during human cortical 

development36. IPCs are less likely to receive long-range signals from their processes as 

radial glia do, but instead are more likely to respond to local cues from immediate cell 

neighbours.

Studies in the mouse highlight how polarity differences between progenitor cell types can 

regulate their ability to respond to signals from different developmental niches, and similar 

principles are likely to apply in the developing human brain. During early gestational stages 

in rodents, immature excitatory migrating neurons move radially along the basal processes 

of their parent or neighbouring progenitor cells, and do not disperse far laterally112–114. 

As a result, neurons retain their anteroposterior or medio-lateral position within the cortex 

at these early stages and the overall positional information of these cells is maintained in 

the maturing cortex115,116. This radial organization establishes overall network topology 

by establishing cortical columns. Thus, the polarity of progenitor cells contributes to the 

generation of the cortical protomap and the emergence of functional modules that define 

cortical networks117. This spatial map is particularly challenging to establish and maintain 

in human PSC-derived models, such as organoids. Future studies in which these models 

are refined to enable them to maintain a radial glial scaffold long-term will therefore be 

key for understanding the mechanisms that establish human cortical network topology and 

organizational dynamics.
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Polarity influences gyrencephaly.

Junctional complexes anchor progenitors to one another, thus forming the apical 

(ventricular) surface of the epithelium. The mitotic expansion of progenitors at the apical 

surface is, however, limited by the available ventricular space. One way to accommodate 

increased progenitor cell numbers is via INM, which allows the relatively bulky cell nuclei 

to occupy the apical surface only during mitosis and permits a larger number of progenitor 

cells to contact the apical surface through their apical endfeet. It has also been proposed that 

the evolution of the expanded cerebral cortex in humans may result not only from INM and 

an increase in apical surface area through expansion of the ventricle, but also from a longer 

proliferative period118,119. In addition, some of the shifts in the mechanisms regulating 

progenitor polarity at the apical surface discussed above may have also contributed by 

leading to the generation of greater numbers of basally located progenitors3,120,121 capable 

of undergoing mitosis away from the ventricular surface. In support of this idea, the number 

of oRG cells is increased in large brain mammals, as is the degree of gyrencephaly122. 

True gyrencephaly has been described as the expansion and folding of the outer surface of 

the cortex, resulting in an increase in surface area, whereas the ventricular surface remains 

small and relatively smooth. This supports the hypothesis that progenitors not bound to the 

ventricular surface may contribute to human cortical expansion123. Radial and tangential 

tension produced by radial glial fibres and axon tracts, increased ventricular surface area 

and greater numbers of neurons and glial cells have all been hypothesized to contribute 

to cortical folding123–125. How oRG cells may contribute to cortical folding is, however, 

unclear. A recent study in non-human primates emphasized that neurogenesis is completed 

prior to cortical folding, and points to oRG cell production of glial cells as a feature that 

may increase cortical size and folding40. Thus, although it seems likely that changes in cell 

polarity have contributed to evolutionary changes in brain size and structure, much work 

remains to be done to understand the cell type-specific mechanisms driving evolutionary 

expansion and the contribution of unique cell types, molecular programmes and transition 

states to the overall composition of the human cortex.

Gyrencephaly

The characteristic folding of the cerebral cortex, resulting in increased cortical surface 

area.

Polarity alterations in disease

Defects in progenitor development — and, in particular, progenitor polarity — are 

implicated in numerous neurological conditions. Mutations impacting the radial architecture 

of the developing cortex and its proliferation dynamics result in various cortical 

malformations and dysplasias accompanied by seizures and neuropsychiatric symptoms, 

and perhaps can even be linked to neurodegenerative diseases73,121. In animal models, 

disruptions of the microtubule-regulated and polar processes of cell division impact overall 

brain size and can lead to microcephaly or megalencephaly, whereas loss of the apical 

adherence that underlies progenitor polarity can result in changes to brain structure 

producing microcephaly, lissencephaly and cortical heterotopias, and changes in basal 
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process adherence and polarity can impact neuronal migration and also result in heterotopias 

and epilepsy (TABLE 1).

Megalencephaly

A cortical malformation in which the brain is atypically large or heavy, defined by an 

increase in brain tissue.

Lissencephaly

A cortical malformation in which the brain is smooth and does not have appropriate 

gyrification.

Heterotopias

Cortical malformations in which neural cells are in the incorrect position.

Polarity changes in microcephaly.

Dysfunction of the centrosome in apical progenitors can result in a premature shift 

from symmetric to asymmetric divisions, depleting the progenitor pool and resulting in 

microcephaly. Several gene mutations identified in patients with microcephaly, including 

mutations in MCPH1, ASPM, CDK5RAP2 and CENPJ126–131, affect the centrosomal 

complex. The ASPM protein complex also anchors vRG cells to the apical surface, 

and recent studies in gene-edited ferrets132 have shown that loss of Aspm function 

results in delamination of apical vRG cells and a concomitant increase in the number 

of basally located oRG cells. In human cerebral organoids, deletion of the centrosomal 

protein WDR62 during progenitor proliferation specifically impacts oRG cells by affecting 

cilium disassembly, increasing cilia length and delaying cell cycle progression resulting 

in premature differentiation133. Future studies exploring how dysregulation of other 

centrosomal genes impact the polarity of apical and basal progenitor types in human PSC 

models will provide us with further information on the mechanisms regulating brain size and 

growth.

Centrosome

A cellular structure that comprises microtubules and is involved in cell division.

Polarity changes in lissencephaly.

LIS1, the gene mutated in individuals with classic lissencephaly, and 14.3.3ε, a highly 

abundant adaptor protein encoded by YWHAE, maintain expression of cell adhesion 

molecules and microtubule organization in vRG cells in human organoid models through 

non-cell autonomous N-CADHERIN and/or β-CATENIN signalling134–136. LIS1 regulates 

the microtubule protein dynein, and is required to maintain radial glial cell polarity and 

appropriate division behaviour in the rat cortex137. In humans, LIS1 mutation alters the 
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cleavage angle of vRG cell mitotic divisions, increases the number of multipolar SVZ 

progenitors (at the expense of vRG cells) and produces an increase in the number of deep-

layer neurons, suggesting a premature shift towards differentiating divisions and depletion 

of the progenitor pool49,134. This leads to smaller size in brain organoids137. Miller–Dieker 

syndrome, caused by a heterozygous deletion of chromosome 17p13.3 that involves the 

genes LIS1 and YWHAE, leads to a more severe form of lissencephaly accompanied 

by microcephaly136,138. oRG cells in organoids derived from patients with Miller–Dieker 

syndrome have altered MST behaviour; they translocate farther and their mitosis is delayed 

or arrested. This change, as well as the altered spindle orientation of vRG cells, leads to 

increased differentiating divisions and a depletion of the radial glial cell pool49.

Deep-layer neurons

Subcortically projecting excitatory neurons that reside in cortical layers V and VI.

Polarity changes in megalencephaly.

Megalencephaly arises due to a mutation in PTEN and is characterized by brain 

overgrowth. Megalencephaly is often associated with malformations of cortical development 

and increased risk of epilepsy, intellectual disability and autistic phenotypes139. Neural 

progenitor cells may contribute to these phenotypes. Indeed, abnormal expansion of the 

progenitor pool in the VZ and oSVZ, along with inappropriate migration, contribute to an 

increase in organoid surface folding following homozygous PTEN deletion140. However, 

whether alterations in radial glial cell polarity impact proliferation and differentiation in this 

human model remains to be explored in future studies.

Polarity changes in hydrocephalus.

Changes to the radial orientation of neuroepithelial cells and radial glial cells can result 

in hydrocephalus. For example, in mice, vRG cells that lack primary cilia show changes 

to the mitotic spindle and generate an increased number of IPCs141. This change in radial 

organization at the apical surface is associated with altered mTOR signalling and leads to 

an increase in ventricular size during embryogenesis resulting in postnatal hydrocephalus141. 

In mice, mutations in Lgl1, which encodes a protein that interacts with the PAR6/aPKC 

polarity complex, result in inability of neuroepithelial cells to apically localize NOTCH 

signalling inhibitors, leading to prolonged symmetric divisions80. Prolonged symmetric 

proliferative divisions, occurring at the expense of differentiation, can lead to progenitor cell 

death, increased ventricular size and hydrocephalus80,142. Future studies exploring how gene 

mutations altering ciliary phenotypes impact human neuroepithelial cells, vRG cells, oRG 

cells and IPCs will be key to increase our understanding of the relationship between division 

types, polarity and the integrity of the ventricular surface.

Hydrocephalus

A condition in which there is increased cerebrospinal fluid volume in the ventricles.
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Polarity changes in holoprosencephaly.

The appropriate development of forebrain midline structures is required for normal brain 

and craniofacial development. In holoprosencephaly, midline structures, including the 

eyes, do not develop correctly as a consequence of disruption to forebrain development 

during early gestation. When the Rho GTPase CDC42 is deleted in the developing rodent 

cortex, this leads to inappropriate localization of apical polarity complex proteins in 

neuroepithelial cells and altered radial glial fibre length. The consequences of these changes 

to neuroepithelial and radial glial polarity and structure include a lack of hemisphere 

separation and holoprosencephaly143. Future studies implementing patient-derived and gene-

edited human stem cell models, such as organoids, may help explore this mechanism in 

human holoprosencephaly.

Polarity changes in cortical dysplasias and epilepsy.

Although several cortical malformations arise as a result of dysregulation of apical polarity, 

anchoring of the radial glial cell basal process to the pial surface is also vulnerable to 

disruption in cortical disease. Disruption of the radial processes of both vRG cells and oRG 

cells can be problematic for human brain development and function32,49,52,144. Similarly, 

when β1-class integrins that regulate basal polarity are deleted in the rodent brain, radial 

glial cell endfeet do not appropriately connect to the pial surface, impacting formation of 

the meninges at the pial surface as well as distribution of Cajal–Retzius neurons in the 

marginal zone68. Changes to the laminar organization of cortical neurons as a result of 

radial process disruption characterize a range of cortical dysplasias and malformations. For 

example, subcortical band heterotopia is associated with a mutation in the Rho GTPase 

RHOA, resulting in arrested neuronal migration145. In mice with mutations in RhoA, there is 

widespread disruption to the cytoskeleton, including both actin filaments and microtubules, 

leading to changes in the radial glial scaffold that alter the final positioning of neurons. 

Periventricular heterotopia occurs when neurons are mispositioned and do not migrate away 

from the lateral ventricle, resulting in a malformation that is often associated with seizures. 

This disorder is caused by mutations that disrupt vesicle trafficking and cell adhesion in 

radial glial cells, including mutations in FLNA, ARFGEF2 and MAP3K4 (REFS.146,147). 

PCDH19 girls clustering epilepsy is a form of epilepsy caused by loss of the X chromosome 

gene PCDH19, encoding Protocadherin 19), which regulates radial glial polarity. Loss of 

PCDH19 results in inappropriate and premature differentiation of radial glial cells into 

neurons148.

Cortical dysplasias that result in paediatric epilepsy, including focal cortical dysplasia 

and tuberous sclerosis, are caused by mutations in mTOR signalling genes139,149–151. As 

described above, mTOR regulates oRG cell morphology and basal process orientation52. 

Disruption of mTOR signalling in cortical organoids or primary cortical tissue leads to 

truncation of the oRG basal process, changes to oRG cell migration and division behaviour 

and, ultimately, broad disruption of the glial scaffold52. These effects arise owing to changes 

in cytoskeleton organization involving the Rho GTPase proteins, which are known regulators 

of cell polarity. Thus, cytoskeletal regulatory mechanisms maintain the radial architecture 

of the human cortex with implications for long-term effects on cortical cell migration and 

organization.
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Polarity changes in neuropsychiatric disease.

Several lines of evidence indicate that loss of progenitor polarity is associated with the 

development of neuropsychiatric disease. For example, mutations of the disrupted in 

schizophrenia 1 gene (DISC1) increase the incidence of major depression, schizophrenia 

and bipolar disorder, and disrupt the WNT signalling pathway through abnormal GSK3 
expression and loss of β-catenin activity152,153. Loss of DISC1 function leads to a decrease 

in radial glial cell proliferation with a corresponding increase in early differentiation154. 

In organoids, when GSK3 function is inhibited, vRG cell polarity and proliferation are 

disrupted. Cellular migration is also impacted by phosphorylation of DIXDC1, which 

regulates binding of DISC1 to its partner, NDEL1. Without these interactions, neuronal 

positioning is disorganized155. More broadly, in case studies, individuals with mutations in 

WNT signalling genes, such as FZD3, have an increased incidence of schizophrenia156.

The 15q11.2 copy number variant is a risk factor for both schizophrenia and autism. This 

mutation impacts the function of CYFIP1, which comprises one part of the actin-regulating 

WAVE protein complex. Changes to CYFIP1 and WAVE result in changes to the adherens 

junctions and polarity of radial glial cells derived from 15q11.2 patient induced PSC 

lines157. The loss of radial glial cell polarity results in inappropriate positioning of vRG 

cells at a distance from the ventricle with a corresponding increase in multipolar IPCs that 

leads to the generation of cortical neurons outside the appropriate proliferative zone157.

Overall, mechanistic studies in human stem cells and mice support the hypothesis that 

autism and schizophrenia risk genes may be associated, in part, with early defects in 

progenitor polarity, morphology and proliferation. Further study of these cellular processes 

in human model systems can clarify their contribution to the onset of specific disorders.

Polarity changes in neurodegeneration.

Recent intriguing studies have provided hints that foundational cortical progenitor polarity 

may influence the onset of neurodegeneration. Primary human developing cortical tissue 

from embryos carrying Huntington disease-related mutations in HTT are reported to exhibit 

inappropriate localization of radial glial junctional complexes, abnormal cilia development 

and changes to radial glial cell polarity. The changes to vRG cell morphology and polarity 

also impact INM division behaviour resulting in premature differentiation of radial glial 

cells into IPCs158. Cortical organoids created by differentiating induced PSCs derived from 

individuals with Huntington disease also demonstrate morphological abnormalities159. It is 

surprising, given these findings, that disruptions to the seminal developmental processes of 

cell polarity have no apparent effects on cortical organization in individuals with Huntington 

disease until the onset of symptoms several decades later. However, these observations 

support the fundamental importance of neural progenitor polarity in early development and 

suggest that progenitor polarity might play a role in maintaining a healthy cerebral cortex 

throughout the lifespan.
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Conclusions

The establishment of neuroepithelial and radial glial cell polarity is vital for the ordered 

proliferation, differentiation, cytoarchitecture and structure of the developing human 

brain. Early-established progenitor polarity sets the stage for appropriate connectivity and 

organization of mature cell types in the adult brain. The increased diversity of progenitor 

types in the developing human cortex compared with other species makes the study of 

these processes more challenging, but also vitally important for a fundamental understanding 

of human brain function and health. The recent establishment of human stem cell-derived 

models enables functional studies of human cortical progenitor polarity and early cortical 

organization. However, the difficulty in establishing and maintaining cortical organization 

in vitro presents technical challenges for assessing the long-term impacts of polarity on 

human brain development. Future studies should explore cell type-specific mutations driving 

cortical malformations within diverse progenitor classes in order to understand subsequent 

impact on mature cortical organization, connectivity and function. Moreover, although 

defects in polarization of progenitor cells have consequences on their division programmes, 

cellular orientation and differentiation, it will be important to understand how these changes 

also impact neuronal and glial progeny. Continued studies of the contribution of cortical 

progenitor polarity to the establishment of the complex structure of the developing human 

brain promise to provide significant future insights into evolutionary adaptations as well as 

the origin of many neurological disorders.
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Box 1 |

Progenitor diversity and cytoarchitecture in human cerebral organoids

Cerebral organoids are pluripotent stem cell-derived cultures that resemble the 

developing human brain in terms of the cell types that they contain and their 

organizational features. Although cerebral organoids are smaller in scale than the brain, 

they exhibit similar features, including the generation of neuroepithelial structures 

consisting of proliferating progenitor cells arranged around a central lumen (see the 

figure)45,47,49,169. These three-dimensional ‘neural rosettes’, in which neuroepithelial-

like cells express the tight-junction protein ZO1 (indicating that they express genes 

characteristic of neuroepithelial cells), exhibit neuroepithelial cell-like morphology and 

are stratified along an apical–basal orientation, mimicking the pseudostratified progenitor 

zone of the developing cortex that lies adjacent to the lateral ventricle11,51. Progenitor 

rosettes are consistently observed in cerebral organoid protocols45,47. Within the rosette 

structures, ventricular radial glial (vRG) cells (the major progenitor population present 

in the ventricular zone (VZ)) display the same bipolar morphology and broad marker 

expression that are seen in vRG cells in vivo9,51. As at the ventricular surface of 

the developing cortex, vRG cells in organoids undergo mitosis at the apical surface 

of the rosette (adjacent to the lumen). The vRG cells then extend basal processes 

to the outermost border of the progenitor rosette and create an apical–basal-oriented 

scaffold reminiscent of that present in the developing human cortex45. As vRG cells 

in the organoids differentiate, they give rise to intermediate progenitor cells (IPCs) 

and neurons, as well as to outer radial glial (oRG) cells that create a subventricular 

zone (SVZ)-like domain169. The specification of truncated radial glial cells and the 

discontinuity of the glial scaffold that occurs in later neurogenesis in vivo31 have not 

yet been described in organoid models. Instead, as the progenitors in the organoids 

differentiate into neurons, the radial scaffold-like structure begins to lose its orientation 

and overall cellular organization, rather than becoming increasingly large and complex 

as it does in vivo54. The differentiation of the progenitor cells produces separation of 

the progenitor and neuronal domains and a rudimentary inside-out organization arises169. 

oSVZ, outer subventricular zone.
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Fig. 1 |. Progenitor types and division programmes in the developing human cortex.
During early human forebrain development a pseudostratified layer of neuroepithelial 

cells populate the developing neural tube6. Neuroepithelial cells divide symmetrically at 

the ventricular surface in self-renewing divisions7. From the end of the first trimester, 

neuroepithelial cells differentiate into multiple subtypes of radial glial cells, including 

apically localized, early-born ventricular radial glial (vRG) cells and later-born outer radial 

glial (oRG) cells22,62,162. vRG cells divide in a process known as interkinetic nuclear 

migration, in which the nucleus moves in a basal direction during DNA synthesis (S phase) 

and then moves in an apical direction to undergo mitosis at the ventricular surface. oRG cells 

divide in a process known as mitotic somal translocation, in which the cell body ‘jumps’ 

(moves quickly) in a basal direction before dividing horizontally by mitosis29. Both vRG 

cells and oRG cells differentiate into neurogenic intermediate progenitor cells (IPCs) or 

directly into neurons (not shown)19,22,163–165. Later in neurogenesis, the apically localized 

radial glial cells become truncated radial glial (tRG) cells31. The cortex is divided into 

distinct zones, in which each of these cellular populations resides. Early in development, 

the cortex comprises the neuroepithelial domain and the marginal zone, whereas later — 

as the complexity of cell types and cortical size expands — the progenitor zone is divided 

into the ventricular zone (VZ), inner subventricular zone (iSVZ) and outer subventricular 

zone (oSVZ), and the neuronal domains are divided into the cortical plate, containing layers 

II–IV of excitatory neurons, and the marginal zone (which contains Cajal–Retzius cells), in 

layer I above the cortical plate166. As progenitor cells differentiate into neurons, they move 

basally along the radial glial scaffold to form the intermediate zone and neurons differentiate 

to contribute to the growing cortical plate167.
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Fig. 2 |. Subcellular structures and organelles regulating progenitor polarity.
The specific morphology and polarity of different cortical progenitor subtypes are regulated 

by distinct molecular mechanisms. Although the dynamic regulation of human progenitor 

polarity is being revealed, most mechanistic studies have been performed in rodent 

or other model species. This figure represents a cumulative understanding of polarity 

from animal and human studies. The apical membranes of neuroepithelial cells form 

the ventricular surface of the cortex. Neuroepithelial cells express the transmembrane 

glycoprotein prominin 1 at the apical membrane168 and tight junctions form between 

neuroepithelial cells to establish the ventricular surface and establish their polarity. In a 

more basal location within the cells, along the cell body, adherens junctions are also formed 

between neuroepithelial cells60,61,63. Ventricular radial glial (vRG) cells have a similar 

apical–basal polarity, but their apical anchoring to the ventricular surface is regulated by 

a different set of proteins, including those that comprise the PAR3 complex, and the vRG 

cells are predominantly connected to one another by adherens junctions75. The proteins 

NUMB and/or NUMBL help maintain these adherens junctions at the apical surface74. 

Junctional complexes regulate receipt of NOTCH signals, which are involved in mediating 

proliferation and polarity. The human-specific receptor, NOTCH2NL, impacts radial glial 
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cell proliferation76,78. Outer radial glial (oRG) cells retain a basal polarity, but without 

an apical attachment. Their connection to the basal lamina is regulated by cadherins and 

integrins65,67 in the oRG cell endfeet and the integrity of their basal processes is maintained 

by appropriate F-actin activity (regulated by the GTPase CDC42) and mitochondrial 

function52,82.
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Fig. 3 |. Human-specific regulation of the cytoskeleton in outer radial glial cells.
In the developing human cortex, outer radial glial (oRG) cells divide via a process known 

as mitotic somal translocation (MST). Appropriate oRG cell basal polarity is vital for the 

basal direction and appropriate migration of differentiating oRG cells during MST. Each 

phase of MST is regulated by distinct molecular components. Nuclear movement prior 

to division is regulated by non-muscle myosin II and requires ROCK signalling29. The 

distance of the MST ‘jump’ is regulated by mTOR-mediated CDC42 activity52. Finally, 

oRG cell cytokinesis requires β-tubulin29. Intermediate progenitor cell (IPC) multipolar 

process numbers are regulated by membrane-bound PALMD-CAAX and ADD3 (REF.30).
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