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Abstract
Background

Brain-computer interfaces (BCIs) can restore communication in movement- and/or speech-impaired
individuals by enabling neural control of computer typing applications. Single command “click” decoders
provide a basic yet highly functional capability.

Methods

We sought to test the performance and long-term stability of click-decoding using a chronically implanted
high density electrocorticographic (ECoG) BCI with coverage of the sensorimotor cortex in a human
clinical trial participant (ClinicalTrials.gov, NCT03567213) with amyotrophic lateral sclerosis (ALS). We
trained the participant’s click decoder using a small amount of training data (< 44 minutes across four
days) collected up to 21 days prior to BCI use, and then tested it over a period of 90 days without any
retraining or updating.

Results

Using this click decoder to navigate a switch-scanning spelling interface, the study participant was able
to maintain a median spelling rate of 10.2 characters per min. Though a transient reduction in signal
power modulation interrupted testing with this �xed model, a new click decoder achieved comparable
performance despite being trained with even less data (< 15 min, within one day).

Conclusion

These results demonstrate that a click decoder can be trained with a small ECoG dataset while retaining
robust performance for extended periods, providing functional text-based communication to BCI users.

Plain Language Summary
People living with amyotrophic lateral sclerosis (ALS) struggle to communicate with family and
caregivers due to progressive muscle weakness. This study investigated whether the brain signals of a
participant with ALS could be used to control a spelling application. Speci�cally, when the participant
attempted to make a �st, a computer algorithm detected increased neural activity from electrodes
implanted on the surface of his brain, and thereby generated a mouse-click. The participant used these
self-generated clicks to select letters or words from a spelling application to type sentences. Our
algorithm was trained using less than one hour’s worth of recorded brain signals and then performed
reliably for a period of three months. This approach can potentially be used to restore communication to
other severely paralyzed individuals over an extended period of time and after only a short training
period. 

Introduction
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Brain-computer interfaces (BCIs) can allow individuals with a variety of motor impairments to control
assistive devices using their neural signals1–11. In particular, implantable BCIs have the potential to
provide higher performance compared to non-invasive BCIs and may provide round-the-clock availability.
These capabilities are derived either from single neuron activity recorded by microelectrode arrays
(MEAs), or from neural population activity recorded by macroelectrodes (typically consisting of
electrocorticographic (ECoG) arrays on the cortical surface)12. Although sophisticated capabilities and
high performance of MEA BCIs have been reported, their use outside of research environments has been
limited due to varying degrees of long-term signal attrition13,14 and day-to-day instability in decoding
models trained on single neuron activity, often requiring frequent recalibration15. On the other hand,
extensive safety and e�cacy data from the use of chronic ECoG recordings for epilepsy management16

suggests that ECoG implants have the potential to deliver greater long-term signal stability. However, the
utility of ECoG for chronically implanted BCIs has only been tested in a few participants.

In the �rst clinical trial of a chronic ECoG BCI1, a participant with quadriplegia and anarthria due to
amyotrophic lateral sclerosis (ALS) attempted hand movements to generate “brain clicks”, in turn
controlling a switch-scanning spelling application. These brain clicks were detected as spectral changes
in ECoG signals recorded from a single pair of electrodes on the surface of hand area of contralateral
motor cortex. Though the participant used these brain clicks to communicate in her daily life for more
than 3 years17, several months of data collection were necessary for parameter optimization. In a
separate clinical trial4,18, participants with severe upper limb paralysis due to ALS or primary lateral
sclerosis were implanted with an endovascular stent-electrode array and required 1–12 sessions of
training with their brain click BCI before long-term use4. However, due to the location of electrodes in the
superior sagittal sinus, the participants triggered brain clicks with attempted foot movements, which may
not be intuitive for computer control. Moreover, device limitations in both clinical trials may have
constrained brain click speed and overall performance of the BCIs. Vansteensel et al. reported 87–91%
click accuracy (comprised of correctly detected and withheld clicks) with a 1 s latency1 while Mitchell et
al. reported ~ 82% accuracy with a 0.9 s latency or a 97% accuracy with a 2.5 s latency4.

In this study, we tested whether improved click performance could be achieved using high density ECoG
recordings from sensorimotor cortex. We implanted two 8 x 8 ECoG grids (4 mm pitch, PMT Corp.,
Chanhassen, MN) over left hand and face cortical regions in a clinical trial participant with ALS
(ClinicalTrials.gov, NCT03567213). The participant generated clicks using the implanted BCI to spell
sentences at a signi�cantly improved spelling rate compared to prior brain click work using a switch-
scanning paradigm1. Moreover, the participant achieved high click-detection accuracies with low false-
positive rates and low latencies from attempted movement onset to click. We found that a �xed ECoG-
based click decoder trained on a limited dataset maintained high performance over a period of several
months without requiring re-training or daily model adaptation. Finally, o�ine analysis suggested that
similar performance is achievable with a smaller number of ECoG electrodes over only the cortical hand-
knob region.
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Methods

Clinical trial
This study was performed as part of the CortiCom clinical trial (ClinicalTrials.gov Identi�er:
NCT03567213), a phase I early feasibility study of the safety and preliminary e�cacy of an implantable
ECoG BCI. Due to the exploratory nature of this study and the limited number of participants, the primary
outcomes of the trial were stated in general terms (Supplementary Note 1) and were designed to gather
preliminary data on: 1) the safety of the implanted device, 2) the recording viability of the implanted
device, and 3) BCI functionality enabled by the implanted device using a variety of strategies. No
methods or statistical analysis plans were prede�ned for assessing these outcomes given their
exploratory nature and the limited number of participants. Results related to the �rst two primary
outcome variables, though necessarily provisional as they are drawn from only one participant, are
reported in Supplementary Notes 2 and 3 respectively. Results related to BCI functionality, also
necessarily provisional and exploratory (Supplementary Note 4), are addressed within the subsequent
methodology and results, which nevertheless employed rigorous analyses and statistics.

The study protocol can be found as an additional supplemental �le. The study protocol was reviewed and
approved by Johns Hopkins University Institutional Review Board and by the US Food and Drug
Administration (FDA) under an investigational device exemption (IDE).

Participant
All results reported here were based on data from the �rst and only participant to date in the CortiCom
trial. The participant gave written consent after being informed of the nature of the research and implant
related risks. To date this participant has had no serious or device-related adverse events, and thus the
primary outcome of the CortiCom trial has been successful. The secondary outcomes of the CortiCom
trial are reported, in part, here; speci�cally, our success rate and latency are reported in terms of click
detection accuracy and time from attempted movement onset to click.

The participant was a right-handed man who was 61 years old at the time of implant in July 2022 and
diagnosed with ALS roughly 8 years prior. Due to bulbar dysfunction, the participant had severe
dysphagia and progressive dysarthria. This was accompanied by progressive dyspnea. The participant
could still produce overt speech, but slowly and with limited intelligibility. He had experienced progressive
weakness in his upper limbs such that he is incapable of performing activities of daily living without
assistance; his lower limbs are less affected.

Neural implant
The CortiCom study device was composed of two 8x8 subdural ECoG grids manufactured by PMT
Corporation (Chanhassen, MN), which were connected to a percutaneous 128-channel Neuroport pedestal
manufactured by Blackrock Neurotech Corporation (Salt Lake City, UT). Final assembly and sterilization
of the study device was performed by Blackrock Neurotech. Both subdural grids consisted of soft silastic
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sheets embedded with platinum-iridium disc electrodes (0.76 mm thickness, 2-mm diameter exposed
surface) with 4 mm center-to-center spacing and a total surface area of 12.11 cm2 (36.6 mm x 33.1 mm).
The device included two reference wires, which were exposed to match the recording surface area of the
ECoG electrodes. During all recordings with the study device, the Neuroport pedestal was coupled to a
small (24.9 mm x 17.7 mm x 17.9 mm) external device (Neuroplex-E; Blackrock NeurotechCorp.) for
signal ampli�cation, digitization, and digital transmission via a mini-HDMI cable to the Neuroport
Biopotential System (Blackrock Neurotech Corp.) (Fig. 1a).

The two electrode grids of the study device were surgically implanted subdurally, over sensorimotor
cortex representations for speech and upper extremity movements in the left hemisphere. Implantation
was performed via craniotomy under monitored anesthesia care with local anesthesia and sedation
tailored to intraoperative task participation. There were no surgical complications or surgically related
adverse events. The locations of targeted cortical representations were estimated prior to implantation
using anatomical landmarks from a pre-operative structural MRI, functional MRI, and somatosensory
evoked potentials. The locations of the subdural grids with respect to surface gyral anatomy were
con�rmed after implantation by co-registering a post-operative high-resolution CT with a pre-operative
high-resolution MRI using Freesurfer19 (Fig. 1b).

Testing and calibration
At the beginning of each session, a 60 second calibration period was recorded, during which the
participant was instructed to sit still and quiet with his eyes open and visually �xated on a computer
monitor. For each channel, we then computed the mean and standard deviation of the spectral-temporal
log-powers for each frequency bin. These estimates of resting baseline cortical activity were
subsequently used for normalization of power estimates during model training and BCI operation.

Training task
Training data was collected across four sessions (six training blocks in total) spanning 15 days (Fig. 2a).
For each block, the participant was instructed to attempt a brief grasp with his right hand (i.e.,
contralateral to the implanted arrays) in response to visual cues (Supplementary Fig. 1). Due to the
participant’s severe upper extremity impairments, his attempted movements primarily involved �exion of
the middle and ring �ngers. After each attempt, the participant released his grasp and passively allowed
his hand to return to its resting position hanging from the wrist at the end of his chair’s armrest.

Each trial of the training task consisted of a single 100 ms “Go” stimulus prompting the participant to
attempt a grasp, followed by an interstimulus interval (ISI), during which the participant remained still and
�xated his gaze on a crosshair in the center of the monitor. Previous experiments using longer cues had
resulted in more variable response latencies and durations. The length of each ISI was randomly chosen
to vary uniformly between a lower and upper bound to reduce anticipatory behavior. The experimental
parameters across all training sessions are shown in Supplementary Table 1. In total, almost 44 min of
data (260 trials) was collected for model training.
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Data collection
Neural signals were recorded by the Neuroport system at a sampling rate of 1 kHz. BCI2000 was used to
present stimuli during training blocks and to store the data for o�ine analysis20. Video of the
participant’s right hand (i.e., which was overtly attempting grasp movements) and the monitor displaying
the spelling application was recorded at 30 frames per second (FPS) during all spelling sessions except
the last two (at 60 FPS). A 150 ms synchronization audio cue was played at the beginning of each
spelling block (see Real-Time Switch-Scanning) so that the audio recorded by the Neuroport biopotential
system’s analog input could be used o�ine to synchronize the video frames with the neural data. A pose
estimation algorithm21 was applied o�ine to the hand video to infer the horizontal and vertical positions
of 21 hand and �nger landmarks within each video frame. The horizontal coordinates of the metacarpal-
phalangeal (MCP) joint landmarks for the �rst and �fth digits were used to normalize horizontal positions
of all landmarks, while the MCP and �ngertip coordinates of the same digits were used to normalize
vertical positions.

Feature extraction and label assignment
For each of the 128 recording channels, we used a Fast Fourier Transform (FFT) �lter to compute the
spectral power of 256 ms windows shifted by 100 ms increments. The spectral power in each frequency
bin was log-transformed and normalized to the corresponding calibration statistics. We summed the
spectral power in the frequency band between 110 and 170 Hz to compute our high-gamma (HG) power.
We chose this lower bound of the frequency band because post-movement low frequency activity
sometimes extended to 100 Hz in several channels (Supplementary Fig. 2). This resulted in a 128-channel
feature vector that was used in subsequent model training.

After computing each channel’s trial-aligned HG power (-1 s to 2.5 s post-cue), we accounted for the inter-
trial variability due to reaction delay by re-aligning each trial’s HG power using a subset of highly
activated channels22. This resulted in generally increased HG power correlations between trials
(Supplementary Figs. 3–5). We visually determined the onset and offset of the re-aligned trial-averaged
HG power from the channels used for re-alignment (Supplementary Fig. 6). The average neural activity
onset and offset were manually estimated from the aligned neural data to be roughly 0.2 s and 1.2 s
post-cue, respectively, with neural activity more clearly differentiating from rest activity starting at 0.3 s
post-cue and ending at 1.1 s post-cue. We consequently assigned grasp labels to ECoG feature vectors
falling between 0.3 s and 1.1 s post-cue for each trial, and rest labels to all other feature vectors. Since
this overall strategy relies only on the visual inspection of neural signals, we believe it to be compatible
with reduced availability of ground truth signals, like movement, as might be the case in locked-in
participants.

Model architecture and training
We designed a recurrent neural network in a many-to-one con�guration to learn changes in HG power over
sequences of 1 s (Supplementary Fig. 7). Each 128-channel HG power vector was input into a long short-
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term memory (LSTM) layer with 25 hidden units for modelling sequential dependencies. From here, 2
consecutive fully-connected (FC) layers with 10 and 2 hidden units, respectively, determined probabilities
of the rest or grasp class. The former utilized an eLU activation function while the latter employed
softmax to output normalized probability values. In total, the architecture consisted of 17,932 trainable
parameters, and was trained on a balanced dataset of rest and attempted grasping sequences by
randomly downsampling from the overrepresented rest class.

We determined the model’s hyperparameters by evaluating our model’s o�ine accuracy using 10-fold
cross-validation with data collected for training (see Cross-validation). For each cross-validated model,
we limited training to 75 epochs during which classi�cation accuracy of the validation fold plateaued. We
used categorical cross-entropy for computing the error between true and predicted labels of each 45-
sample batch and updated the weights using adaptive moment optimization (Adam optimizer)23. To
prevent over�tting on the training data, we used a 30% dropout of weights in the LSTM and FC layers. All
weights were initialized according to a He Normal distribution.24 The model was implemented in Python
3.8 using Keras with a TensorFlow backend (v2.8.0).

Real-time pipeline

Pipeline structure
We used ezmsg, a Python-based messaging architecture (https://github.com/iscoe/ezmsg)25, to create a
directed acyclic graph of processing units, in which all pre-processing, classi�cation, and post-processing
steps were partitioned.

Real-time pre-processing
Neural data was streamed in intervals of 100 ms via a ZeroMQ connection from BCI200020 to our real-
time pipeline, which was hosted on a separate machine dedicated to real-time inference. Incoming data
updated a running 256 ms buffer, from which a 128-channel feature vector of HG power was then
computed as described above (Figs. 1c and 1d). This feature vector was stored in a running buffer of 10
feature vectors (Fig. 1e), which represented 1 s of feature history for our LSTM input (Fig. 1f).

Classi�cation and post-processing
A rest or grasp classi�cation was generated every 100 ms by the FC layer, after which it entered a running
buffer of classi�cations, which in turn was updated with each new classi�cation. This buffer was our
voting window, which contained a pre-determined number of classi�cations (10 and 7 for the medical
communication board and the spelling interface respectively), and in which a given number of those
classi�cations (voting threshold) were required to be grasp in order to initiate a click (Fig. 1g). This voting
window and threshold were applied to prevent sporadic grasp classi�cations from being interpreted as an
intention to execute a click. A click triggered selection of the participant’s desired row or column in the
switch-scanning application (Fig. 1h).

Switch-scanning applications
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A switch-scanning application is an augmentation and alternative communication (AAC) technology that
allows users with severe motor or cognitive impairments to navigate to and select icons or letters by
timing their clicks to the desired row or column during periods in which rows or columns are sequentially
highlighted26–32. The participant generated a click by attempting a brief grasping movement as described
in Training task.

Medical communication board
As a preliminary assessment of our model’s sensitivity and false positive detections, we �rst cued our
participant to navigate to and select keys with graphical symbols from a medical communication board
(Supplementary Fig. 8). Graphical symbols were obtained from https://communicationboard.io/. We used
a 10-vote voting window with a 10-vote threshold (all 10 classi�cations within the running voting window
needed to be grasp to initiate a click) and set our row and column scan rates to 1.5 per s. Finally, we
enforced a lock-out period of 1 s, during which no other clicks could be produced, after clicking on a row
or a button within a row (Fig. 1g). This prevented multiple clicks being produced from the same
attempted grasp.

Spelling application
We then developed a switch-scanning spelling application, in which the participant was prompted to spell
sentences (Supplementary Fig. 9). The buttons within the spelling interface were arranged in a grid
design that included a center keyboard as well as autocomplete options for both letters and words. Letter
and word autocompletion options were both generated by a distilBERT language model33 hosted on a
separate server, providing inference through an API. The distilBERT model was chosen over larger
language models for its faster inference speed. We added three pre-selection rows at the beginning of
each switch scanning cycle as well as one pre-selection column at the beginning of column scanning
cycle. These allowed the participant a brief preparation time if he desired to select the �rst row, or �rst
column within a selected row. We decided to use a 7-vote voting window with a 7-vote threshold, which
decreased latency from attempted grasp onset to click (see Click latencies) compared to when using the
medical communication board. However, after several sessions of spelling and feedback from the
participant, we reduced the voting threshold requirement to a 4-vote threshold (any 4/7 classi�cations
within the running voting window needed to be grasp to initiate a click). We again enforced a lock-out
period of 1 s.

Real-time switch-scanning
Using the communication board, the participant was instructed to navigate to and select one of the keys
verbally cued by the experimenter. If the participant selected the incorrect row, the cued key was changed
to be in that row. Once a key was selected, the switch-scanning cycle would start anew (Supplementary
Video 1, Supplementary Fig. 8).

To test real-time spelling performance using our click detector, the participant was required to type out
sentences by using the switch-scanning spelling application. The sentences were sampled from the
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Harvard sentence corpus34 and were presented at the top of the speller in faded gray text. If the
participant accidentally clicked a wrong key, resulting in an incorrect letter or autocompleted word, the
corresponding output text would be highlighted in red. The participant was then required to delete it using
the DEL or A-DEL (auto-delete) keys respectively. Once the participant completed a sentence, he advanced
to the next one by clicking the ENTER key (Supplementary Video 2, Supplementary Fig. 9). A spelling
block consisted of 3–4 sentences to complete, and in each session the participant completed 1–6
spelling blocks (Fig. 2b).

Performance evaluation

Sensitivity and click rates
Sensitivity was measured as the percentage of correctly detected clicks:

where in one session  were the total number of correct clicks and  were the total
number of attempted grasps, and where . For a detected click to be correct
(i.e., a true positive), it had to have occurred on the user interface (as visual feedback to the participant)
within 1.5 s after the onset of an attempted grasp. Attempted grasps with no clicks occurring within this
time period were considered false negatives. Clicks that occurred outside this time period were assumed
to be unrelated to any attempted grasp and were thus considered false positives. True positive and false
positive frequencies (TPF and FPF respectively) were measured per unit time and for each session were
de�ned as the following:

where  and  are the number of true and false positives in a session respectively, and  is the
total spelling time for that session. Whether the participant clicked the correct or incorrect key had no
bearing on sensitivity, TPF, or FPF as these metrics depended only on whether a click truly occurred
following an attempted grasp.

Click latencies
Movement onsets and offsets were determined from the normalized pose-estimated landmark
trajectories of the hand. Speci�cally, only the landmarks of the �ngers with signi�cant movement during
the attempted grasp were considered. Then, for each attempted grasp, movement onset and offset times
were visually estimated.

For each correctly detected attempted grasp, we computed both: a) the time elapsed between movement
onset and algorithm detection, and b) the time elapsed between movement onset and the click appearing
on the spelling application’s user interface. The latency to algorithm detection was primarily composed of

Sensitivity = × 100%
Ntrueclicks

Nattemptedgrasps

Ntrueclicks Ngrasps

Ntrueclicks ≤ Nattemptedgrasps

TPF = = FPF =
NTP

T

Ntrueclicks

T

NFP

T

NTP NFP T
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the time necessary to reach the voting threshold (i.e., a 4-vote threshold usually produced at least 400 ms
latency if four grasps were sequentially classi�ed). The latency to the on-screen click appearing on the
spelling interface depended on the algorithm detection latency along with additional network and
computational overhead necessary for displaying the click.

Spelling rates
Spelling rates were measured by correct characters per minute (CCPM) and correct words per minute
(CWPM). Spelled characters and words were correct if they exactly matched their positions in the
prompted sentence. For example, if the participant spelled a sentence with 30 characters (5 words) with 1
character typo, only 29 characters (4 words) contributed to the CCPM (CWPM). Note that all spelling was
performed with assistance of autocompletion options from the language model.

Cross-validation
We partitioned our training data into 10 folds such that each fold contained an equal number of rest and
grasp samples of HG power feature vectors (rest samples were randomly downsampled to match the
number of grasp samples). To minimize data leakage of time dependent data into the validation fold, all
samples within a fold were contiguous and each sample belonged to only one fold. Each fold was used
once for validation and a corresponding cross-validated model was trained on the remaining 9 folds.

Channel contributions and o�ine classi�cation
comparisons
Using the subset of samples in the training data labeled as grasp, we computed each channel’s
importance to generating a grasp classi�cation given our model architecture. Speci�cally, we computed
the integrated gradients from 10 cross-validated models (see Cross-validation) with respect to the input
features from each sample labeled as grasp in the corresponding validation folds. This generated an
attribution map for each sample35, from which we calculated the L2-norm across all 10 historical time
feature vectors2, resulting in a 1x128 saliency vector. Due to the random initialization of weights in the
RNN-FC network, models trained on features from the same set of folds were not guaranteed to converge
to one set of �nal weights. We therefore retrained the set of 10 cross validated models 20 times and
similarly recomputed the saliency vectors for each sample. The �nal saliency map was computed by
averaging the attribution maps across all repeated samples and normalizing the resulting mean values
between 0 and 1. We repeated this process using HG features from all channels except one (channel 112)
and again by using features from a subset of 12 electrodes over cortical hand-knob (anatomically
determined as channels 92, 93, 94, 100, 101, 102, 108, 109, 110, 116, 117, 118; Fig. 4e, Supplementary
Figs. 2,3). Neither of these two model architectures were deployed for real-time BCI use.

To inform whether models trained with HG features from these smaller subsets of channels could retain
robust click performance, we computed o�ine classi�cation accuracies using 10-fold cross-validation
(see Cross-validation). We repeated cross-validation (see above) such that for each of the 10 validation
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folds a set of 20 accuracy values was produced. We then took the average of these 20 values to obtain a
�nal accuracy for each fold. For each subset of channels, a confusion matrix was generated using the
true and predicted labels across all validation folds and all repetitions.

Statistics and Reproducibility

Statistical analysis
Spelling blocks with a speci�c voting threshold were collected on no more than nine sessions. Given this
small sample size, we could not assume normality in the distribution of the sample mean of any of the
performance metrics (sensitivity, TPF, FPF, latencies, CCPM, CWPM). Therefore, we decided to use the
non-parametric Wilcoxon Rank-Sum test to determine whether there were signi�cant differences between
performance metrics from spelling blocks where different voting thresholds were applied. A P-value less
than 0.05 was considered signi�cant. Similarly, we used the Wilcoxon Rank-Sum test to determine
whether there were signi�cant differences in o�ine classi�cation accuracies when different
con�gurations of channels were used from model-training and validation. We additionally used a Holm-
Bonferroni correction to adjust for multiple comparisons.

Reproducibility of experiments
Neural data collection and processing as well as decoder performance were reproducible across sessions
as the participant was able to repeatedly demonstrate click control using neural signals from attempted
hand movements to spell sentences. However, as this study reports on the �rst and only participant in this
trial so far, further work will be necessary to test the reproducibility of these results in other participants.

Results

Long-term usage with a �xed click detector
The participant used the �xed click detector to effectively control a switch-scanning application for a total
of 626 min spanning a 90-day period that started on Day 21 after the completion of training data
collection (Fig. 2b). Speci�cally, we recorded one session with the medical communication board and 17
sessions with the spelling application. We de�ned Day 0 as the last session of training data collection.
We used a voting threshold of 10/10 votes with the communication board. Using the spelling application,
we initially used a voting threshold of 7/7 votes, but reduced this threshold to 4/7 votes on Day + 81 as
the participant reported that he preferred an increased sensitivity despite the resulting increase in false
positive detections. We found that the decoder performance remained robust for 111 days.

Switch-scanning performance
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With the switch-scanning medical communication board, the click-detection model achieved 93%
sensitivity (percentage of detected clicks per attempted grasps) with a median latency of 1.23 s from
movement onset to on-screen click (visual feedback on the user interface) using a 10-vote threshold. No
false positives were detected.

Using the switch-scanning spelling application (from Day + 46 to Day + 111), the click detector achieved a
median detection sensitivity of 94.9% using a 7-vote threshold, and a sensitivity of 97.8% when using a 4-
vote threshold (P = 0.057, Wilcoxon Rank-Sum test; Fig. 3a). The median true positive frequency (TPF)
was 10.7 per min using a 7-vote threshold, which improved to 11.6 per min when using a 4-vote threshold
(P = 0.005, Wilcoxon Rank-Sum test; Fig. 3b); the median false positive frequency (FPF) was 0.029 per
min (1.74 per h) using a 7-vote threshold and 0.101 per min (6.03 per h) when using a 4-vote threshold (P 
= 0.20, Wilcoxon Rank-Sum test; Fig. 3b).

As expected, we observed a decrease in latency from movement onset to algorithmic detection and on-
screen click when switching from the 7-vote to the 4-vote threshold (Fig. 3c). Using the 7-vote threshold,
the median detection latency was 0.75 s and signi�cantly dropped to 0.48 s using the 4-vote threshold (P 
= 0.013, Wilcoxon Rank-Sum test). Meanwhile the median on-screen click latency was 0.93 s using the 7-
vote threshold and dropped to 0.68 s using the 4-vote threshold (P = 3 x 10− 4, Wilcoxon Rank-Sum test).
The delay between algorithmic detection and on-screen click was consistently ~ 200 msec, due to
network and computational overhead.

Consequently, the participant was able to achieve high rates of spelling (Fig. 3d). Speci�cally, median
spelling rate was 9.1 correct characters per minute (CCPM) using the 7-vote threshold, which signi�cantly
improved to 10.2 CCPM using the 4-vote threshold (P = 0.031, Wilcoxon Rank-Sum test). Similarly, he
achieved 1.85 correct words per minute (CWPM) using the 7-vote threshold, which signi�cantly improved
to 2.14 CWPM using the 4-vote threshold (P = 0.015, Wilcoxon Rank-Sum test). In one session, the
participant achieved a spelling rate greater than 11 CCPM with the 4-vote threshold, which to our
knowledge is the highest spelling rate achieved using single-command BCI control with a switch-
scanning spelling paradigm.

Decoder retraining due to transient performance drop
On Day + 118 (Supplementary Fig. 10 for timeline), the detector sensitivity fell below the pre-set
performance threshold of 80% (Supplementary Fig. 11), which was likely due to a drop in the movement-
aligned HG response across a subset of channels (Supplementary Fig. 12). We found no hardware or
software causes for the observed deviations in HG responses. Moreover, the participant had no subjective
change in strength, no changes on detailed neurological examination or cognitive testing, and no new
�ndings on brain computerized tomography images.

To ensure that BCI performance was not permanently affected, we retrained and tested a click detector
with the same model architecture using data collected roughly four months after the observed
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performance drop (Supplementary Note 5). The new click detection algorithm used a total of 15 min of
training data, which was all collected within one day (Supplementary Fig. 13a); afterward, the model
weights remained �xed again. To determine the optimal voting threshold for continued long-term use, we
additionally evaluated real-time click performance using all voting thresholds from 2/7 to 7/7 votes with
this new click detection algorithm (Supplementary Fig. 14).

The participant used this retrained click detector for a total of 428 min in six sessions spanning a 21-day
period after re-training (Supplementary Fig. 13b). The optimal combination of sensitivity (Supplementary
Note 6) and false detections was achieved using a 6-vote threshold. Using this threshold, we achieved
similar performance metrics to those from the original click detector with a 4-vote threshold, namely a
median detection sensitivity of 94.8%, median TPF and FPF of 11.3 per min and 0.20 per min respectively,
and a median CCPM and CWPM of 10.1 and 2.2 respectively (for all comparisons P > 0.05, Wilcoxon
Rank-Sum test) (Supplementary Fig. 15). Expectedly the median on-screen click latency was 0.86 s,
roughly 200 ms higher compared to the previous 4-vote threshold, due to the two extra votes required for
generating a click (P = 10− 3, Wilcoxon Rank-Sum test).

Electrode contributions to grasp classi�cation
To assess which channels produced the most important HG features for classi�cation of attempted
grasp, we generated a saliency map across all channels used to train our original model (Fig. 4a). As
expected, channels covering cortical face region were generally not salient for grasp classi�cation. The
channel producing the most salient HG features was located in the upper-limb area of somatosensory
cortex (channel 112, Supplementary Fig. 16), with a saliency value 55% and 88% higher than the next two
most salient channels respectively (Supplementary Fig. 16a). Indeed, prior to the observed performance
drop, this channel had a relatively ampli�ed spectral response compared to other channels during
attempted grasp. We then computed the corresponding o�ine classi�cation accuracy of our original
model architecture for comparison to a model architecture without channel 112 and an architecture using
channels only over cortical hand-knob (see Methods: Channel contributions and o�ine classi�cation
comparisons); the mean accuracy from repeated 10-fold cross-validation (CV) was 92.9% (Fig. 4b).

To ensure that real-time classi�cation accuracy was not entirely driven by channel 112, we evaluated a
model trained on HG features from all other channels o�ine. As expected, this model relied strongly on
channels covering the cortical hand-knob region (Fig. 4c), and notably was not as dependent on a single
channel; the saliency of the most important channel was only 23% and 60% larger than the next two most
salient channels, respectively (Supplementary Fig. 16b). The o�ine mean classi�cation accuracy from
repeated 10-fold CV was 91.7% (Fig. 4d), which was not signi�cantly lower compared to the mean
accuracy using all channels (P = 0.139, Wilcoxon Rank-Sum test with 3-way Bonferroni-Holm correction,
Fig. 4g).

As channels covering the cortical hand-knob region made relatively larger contributions to decoding
results, we investigated the classi�cation accuracy of a model trained on HG features from a subset of
electrodes covering only this region (Fig. 4e). Saliency values followed a �atter distribution; the saliency
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of the most important channel was only 21% and 44% larger than the next two most salient channels
respectively (Supplementary Fig. 16c). Though the o�ine mean classi�cation accuracy from repeated 10-
fold CV remained high at 90.4% (Fig. 4f), it was statistically lower compared to the mean accuracy using
all channels (P = 0.015, Wilcoxon Rank-Sum test with 3-way Bonferroni-Holm correction, Fig. 4g). This
suggests that a model trained on HG features from only the cortical hand-knob could still produce
effective click detection, but parameters used for data labeling, model training, and post-processing may
need to be more thoroughly explored to optimize click performance.

Discussion
In this study we show that a clinical trial participant with ALS was able to use a �xed decoder trained on a
limited multichannel electrocorticographic (ECoG) dataset to generate stable real-time clicks over a period
of three months. Speci�cally, the participant used his click detector to select the appropriate letters and
words to form sentences using a switch-scanning spelling application. Our detector’s high sensitivity
(97.8%), low false positive frequency (0.101 per min) and minimal latency between onset of attempted
grasp and click (0.48 s) allowed him to quickly and reliably spell sentences over a several months without
retraining the model.

A signi�cant barrier to the use of BCI systems by clinical populations outside of the laboratory is that
users must often undergo an extensive period of training for optimizing �xed decoders1, or daily model
retraining or updating3. For example, reliable switch-scan spelling was demonstrated for up to 36 months
using a �xed decoder but required several months of data collection to optimize parameters for inhibiting
unintentional brain clicks1,17. However, our click detector’s long-term performance with a relatively small
training dataset suggests a potentially reduced need for model optimization using ECoG signals with
higher spatial density (for example, 12 electrodes with 4 mm pitch covering the cortical hand-knob region
in this study compared to 4 electrodes with 10 mm pitch in the aforementioned one). Similarly, an
endovascular electrode stent-array was recently used to train an attempted movement detector4. Though
this is an extremely promising BCI technology for click decoding, the anatomical constraints on the
number and proximity of electrodes in the stent-array to motor cortex may make it di�cult to scale up
from simple brain-clicks to more complex BCI commands3,36,37. The device we used in this study may
have included more electrodes over upper-limb cortex than was necessary for click detection, but it
allowed us to explore the upper bounds of click performance that might be expected for a device with
these capabilities in a participant with ALS.

Our model detected intended clicks with high sensitivity and low false positive rates. The high sensitivity
was likely attributable to the high contrast between HG power during movement vs. rest, or baseline
conditions, which had previously enabled real-time grasp detection3,38,39 but may have not been as
robustly detected by the Activa PC + S device40 in previous work1. The voting window provided a simple
yet effective heuristic strategy for inhibiting false detections; post-hoc analysis of real-time performance
revealed that false detections particularly increased when less than three votes were required for
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producing a click (Supplementary Fig. 13). We initially chose a conservative voting threshold of 100%
(7/7 votes), but later adjusted it to 57% (4/7 votes), as the participant reported that he preferred an
increased sensitivity and reduced click latency despite a slight increase in false detections. This
experience supports the utility of allowing users to �ne-tune algorithmic parameters that can affect BCI
performance and the user experience and that may vary signi�cantly among users and among different
applications that use a click-detector.

Using a switch-scanning spelling application, the participant achieved high spelling rates by timing his
clicks to select the appropriate row or column. Our results improve upon the previous work by
Vansteensel et al. (2016) in which a participant with ALS was implanted with four contacts over hand
motor cortex and achieved a spelling rate of 1.8 CPM and a latency of 1 s per click. These results may
have been limited by lower sensitivity for high frequency activity, a single bipolar channel, and a 5 Hz
transmission rate of power values (related to energy consumption of wireless signal transmission, see
Vansteensel et al., 2016). In fact, our spelling rates were comparable to those from other clinical
populations who have used switch scanning keyboards without a BCI, including people living with ALS41

or other causes of motor impairments42. It is worth noting that although the integration of eye-tracking
with click decoding may enable even faster user interface navigation and spelling rates4,43, it may also
cause eyestrain during long periods of use44 and worsen as residual eye movements deteriorate in late-
stage ALS45–47.

To explore whether more limited electrode coverage of sensorimotor cortex would be su�cient for
comparable click performance, we conducted a channel-wise saliency analysis. Despite the substantially
higher saliency of one channel in post-central gyrus adjacent to the cortical hand knob, many of our
highly salient channels were located over the pre-central gyrus at the cortical hand knob11,48, and a virtual
grid con�ned to this area had only a slight reduction in grasp classi�cation accuracy (90.4%, vs. 92.9% in
the all-channel model). As suggested by our high o�ine accuracy, a click detector of comparable
performance might be effective using this smaller cortical coverage while leaving open the possibility of
training models for multiclass or cursor-based control.

After nearly four months without re-training or updating our model, we observed a drop in BCI
performance caused by a modest decrease in the modulation of upper-limb HG power in several
electrodes over hand area of sensorimotor cortex. This decrease was especially pronounced in the most
salient channel used to train the original detector, so it was not unexpected that BCI performance was
affected. There were no accompanying new neurological symptoms or changes in cognitive testing, nor
any evidence of adverse events or device malfunction. Variations in signal amplitude and spectral energy
similar to those we observed in our participant have been reported in ECoG signals recorded for several
years by the Neuropace (TM) RNS system49. However, the RNS system typically stores samples of ECoG
from only 4 bipolar channels (8 contacts) in each patient, and is indicated for patients with epilepsy, not
patients with ALS, for which there is scarce data on long-term ECoG. We are aware of only one such
study17, but this study did not report signal characteristics on the granular timescale necessary for
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comparison to our results. Regardless of the cause, our click detector’s small amount of training data did
not include the signal regime we observed during the performance drop. Nevertheless, we successfully
tested another click detector, which was retrained with even less data using a similar work�ow, and
achieved equally robust performance in subsequent testing sessions, suggesting that long-term
discernability of HG activity was not affected. In the future, it may be possible to achieve both high
performance and longevity by updating our model periodically, for example once every few months,
simulating a periodic in-lab or outpatient checkup.

Our study adds to the expanding literature on ECoG as an effective recording modality for long-term BCI
use. Importantly, due to the participant’s residual upper limb movement, we were able to assess click
performance using his “ground-truth” movement attempts. However, more work is needed to determine
how a rapidly trained �xed click detector can provide long-term e�cacy for the population of individuals
suffering from more severe movement impairments. Robust click-detection capability complements
recent major advancements in real-time spelling2,50 and speech decoding51,52 and provides a more
application-agnostic capability for navigating menus and applications. Optimal spelling performance,
however, was likely not realized as the linguistic statistics of our Harvard sentence prompts were not
su�ciently representative of the word sequences on which our language model was trained. Therefore,
we expect that spelling rates could be substantially improved during free-form spelling and even more so
with a language model tuned to the linguistic preferences of the participant. Further, there is likely a user-
speci�c regularity of model updates that would optimize the balance between independent long-term BCI
use and technician intervention, which is especially relevant during home-use. Finally, we expect that click
detectors, in addition to their utility as a communication tool, may be critical for accessibility software
beyond spelling interfaces or communication boards such as web-browsers, internet of things (IoT), and
multimedia platforms, and thus merit further investigation.
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Figure 1

Real-time decoding pipeline. (a) The participant was seated upright with his forearms on the armrests of
a chair facing a computer monitor where the switch-scanning speller application was displayed. (b)
Position of both 64-electrode grids overlayed on the left cortical surface of the participant’s brain. The
dorsal and ventral grids primarily covered cortical upper limb and face regions respectively. The
electrodes are numbered in increasing order from left to right and from bottom to top. Magenta: pre-
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central gyrus; Orange: post-central gyrus. (c) ECoG voltage signals were streamed in 100 ms packets to
update a 256 ms running buffer for real-time spectral pre-processing. A sample of signals from 20
channels is shown.     (d) A Fast Fourier Transform �lter was used to compute the spectral power of the 256
ms buffer, from which the HG log-power (110-170 Hz) was placed into a 1 s running buffer (10 feature
vectors). (e) The running buffer was then used as time history for the recurrent neural network (RNN). (f)
An RNN-FC (RNN-fully connected) network then predicted rest or grasp every 100 ms depending on the
higher output probability. (g) Each classi�cation result was stored as a vote in a 7-vote running buffer
such that the number of grasp votes had to surpass a predetermined voting threshold (4-vote threshold
shown) to initiate a click. A lock-out period of 1 s immediately followed every detected click to prohibit
multiple clicks from occurring during the same attempted movement. (h) Once a click was detected, the
switch scanning speller selected the highlighted row or element within that row. Two clicks were
necessary to type a letter or autocomplete a word.

Figure 2

Long-term use of a �xed click detector. (a) Training data was collected during 4 sessions that occurred
within a period of 15 days. For each day, each sub-bar represents a separate block of training data
collection (6 training blocks total). (b) Using the �xed decoder, one block of switch-scanning with the
communication board was performed +21 days post-training data collection (purple). From Day +46 to
Day +81, the �xed decoder was used for switch-scan spelling with a 7-vote threshold (blue). From Day
+81 to Day +111, the �xed decoder was used for switch-scan spelling with a 4-vote threshold (teal). For
each day, each sub-bar represents a separate spelling block of 3-4 sentences. The horizontal axis
spanning both (a) and (b) represents the number of days relative to the last day of training data
collection (Day 0).
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Figure 3

Long-term switch-scanning spelling performance. Across all subplots, triangular and circular markers
represent metrics using a 7-vote and 4-vote voting threshold respectively. (a) Sensitivity of grasp
detection for each session. Dashed line delineates 100% sensitivity. (b) True-positive and false-positive
frequencies (TPF and FPF) measured as detections per minute. Dashed line delineates 0 FPF. (c) Average
latencies with standard deviation error bars of grasp onset to algorithm detection and to on-screen click.
The averages and standard deviations were computed from latency measurements across all spelling
blocks from one session using the same voting threshold. Using 7-vote and 4-vote voting thresholds, on-
screen clicks happened an average of 207 ms and 203 ms respectively after detection. Note that
detection latencies were not registered in the �rst six sessions. (d) Correct characters and words per
minute (CCPM and CWPM).



Page 25/26

Figure 4

Channel importance for grasp classi�cation. Saliency maps for the model used in real-time, a model
using HG features from all channels except from channel 112, and a model using HG features only from
channels covering cortical hand-knob are shown in (a), (c) and (e) respectively. Electrodes overlayed with
larger circles represent greater importance for grasp classi�cation. White and transparent circles
represent electrodes which were not used for model training. Mean confusion matrices from repeated 10-
fold CV using models trained on HG features from all channels, all channels except for channel 112, and
channels covering only the cortical hand-knob are shown in (b), (d), and (f) respectively. For all confusion
matrices, the percent value in each element of the matrix represents how many times the validation
features across all repetitions of all validation folds were predicted correctly or incorrectly. The mean
classi�cation accuracy was computed from averaging the values on the diagonal of the confusion
matrix. (g) Box and whisker plot showing the o�ine classi�cation accuracies from 10 cross-validated
testing folds using models with the above-mentioned channel subsets. Speci�cally, for one model
con�guration, each dot represents the average accuracy of the same validation fold across 20 repetitions
of 10-fold CV (see Methods: Channel contributions). O�ine classi�cation accuracies from CV-models
trained on all features from all channels were statistically higher than CV-models trained on features from
channels only over cortical hand-knob (*P = 0.015, Wilcoxon Rank-Sum test with 3-way Bonferroni-Holm
correction). O�ine classi�cation accuracies from CV-models trained on features from all channels except
for channel 112 were not statistically different from those trained on features from all channels or
features only from channels only over cortical hand-knob.
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