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Abstract  56 

Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal 57 

studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 58 

479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three 59 

body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and 60 

pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, 61 

and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of 62 

lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, 63 

organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung 64 

microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill 65 

patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for 66 

microbiota-targeted interventions in precision medicine.  67 

 68 

 69 

 70 
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Introduction  73 

Microbiota play a critical role in maintaining homeostasis and overall health. However, during critical 74 

illness, such as acute respiratory failure (ARF), microbial communities can be severely disrupted.1,2 Such 75 

disruptions, characterized by deviations from a healthy microbial composition and diversity, may occur early in 76 

the hospital stay and have been associated with worse clinical outcomes.3–5 Previous research has primarily 77 

focused on cross-sectional analyses of microbiota within individual body sites, neglecting potential interactions 78 

between different compartments and the longitudinal evolution of microbial communities. Moreover, the 79 

influence of patient-level factors and therapeutic interventions, including antimicrobial therapies, on the 80 

microbiome of critically ill patients remains poorly understood, partly due to limitations of scale in studies 81 

published to date. 82 

Precision medicine approaches in ARF have predominantly focused on host factors.6 For instance, 83 

identifying distinct subphenotypes based on patterns of host response biomarkers measured in plasma 84 

samples (hyper- vs. hypo-inflammatory) has demonstrated prognostic value.7–9 Hyperinflammatory patients 85 

exhibit elevated levels of injury and inflammation biomarkers, more severe organ dysfunction, worse prognosis, 86 

and may have distinct responses to treatments.8 However, the role of respiratory or intestinal microbiota in 87 

modulating host responses and their contributions to defined subphenotypes are still not well understood. 88 

Furthermore, limited data are available regarding the potential influence of respiratory microbiota on systemic 89 

host responses measured in plasma or localized inflammation within the lungs.10 To advance precision 90 

medicine approaches that take into account the microbial side of the critically ill host, it is crucial to understand 91 

the dynamics of the microbiome and its relationship with host biological factors, clinical diagnoses, and 92 

therapeutic interventions in critical illness. 93 

To address these knowledge gaps, we conducted a longitudinal assessment of the microbiome in a 94 

large cohort of 479 ARF patients, specifically focusing on three key body sites: the oral cavity, lungs, and gut. 95 

By integrating bacterial and fungal community profiles with host response biomarkers measured in plasma and 96 

lower respiratory tract (LRT) samples, we examined the temporal associations between patient-level factors 97 

and therapeutic interventions on microbial communities. We derived unsupervised clusters of microbiota and 98 

https://sciwheel.com/work/citation?ids=2910596,1130664&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9365225,8139965,11642750&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8658305&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7657922,12219556,12208446&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12219556&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15020819&pre=&suf=&sa=0&dbf=0
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determined their associations with host-response subphenotypes and clinical outcomes. Finally, we validated 99 

our findings in two separate cohorts with a total of 146 patients with COVID-19-associated ARF. 100 

Results 101 

Cohort Description:  102 

We performed discovery analyses in a cohort of 479 patients with ARF who received invasive 103 

mechanical ventilation (IMV) via endotracheal intubation in UPMC Intensive Care Units (ICUs) (UPMC-ARF 104 

cohort), and then independent validation analyses in two cohorts of critically ill patients with COVID-19 105 

pneumonia (49 patients at UPMC [UPMC-COVID cohort], and 97 patients at Massachusetts General Hospital 106 

ICUs, MGH-COVID cohort).  107 

In the UPMC-ARF cohort, we enrolled patients with non-COVID etiologies of ARF between March 2015 108 

and June 2022. We collected baseline research biospecimens within 72hrs from intubation, including blood for 109 

separation of plasma, oropharyngeal swabs (oral samples), endotracheal aspirates (ETA) collected for 110 

research or excess bronchoalveolar lavage fluid (BALF) from clinical bronchoscopy (lung samples), and rectal 111 

swabs or stool (gut samples).3,11,12 We repeated research biospecimen sampling between days 3-6 (middle 112 

interval) and days 7-12 (late interval) post-enrollment for subjects who remained in the ICU. We extracted DNA 113 

and performed next-generation sequencing (bacterial 16S rRNA gene sequencing [16S-Seq] for all available 114 

samples; fungal Internal Transcribed Spacer sequencing [ITS-Seq] targeting the regions 1 and 2 of the ITS 115 

rRNA gene, and Nanopore DNA metagenomics for a subset of samples) to profile microbiota in the oral, lung 116 

and gut communities, respectively.3,12,13 We measured biomarker proteins in plasma samples and ETA/BALF 117 

supernatants with Luminex panels to profile systemic and regional (lung) host responses.7,10  118 

Patients had a median (interquartile range) age of 59.6 (46.7-68.7) years, 54.4% were men and 90.2% 119 

were whites (Table 1). At the time of enrollment, 25.0% of patients were diagnosed with Acute Respiratory 120 

Distress Syndrome (ARDS per the Berlin definition14) and 39.8% with pneumonia, 86.8% were receiving 121 

systemic antibiotics, and 64.8% received corticosteroids for various indications. By 60 days, 26.9% of patients 122 

had died. Among the 350 patients who survived hospitalization, 48.8% were discharged to their home, with the 123 

remainder requiring additional longer-term care.  124 

https://sciwheel.com/work/citation?ids=9365225,7728930,14818913&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9365225,14818913,15077397&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15020819,7657922&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=585910&pre=&suf=&sa=0&dbf=0
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In the UPMC-COVID cohort, we enrolled 49 patients with COVID-19 ARDS requiring IMV and obtained 125 

longitudinal plasma and ETA samples at baseline, middle and late intervals (Table S1). We performed 16S 126 

sequencing for bacteria and measured host response biomarkers in both sample types. In the MGH-COVID 127 

cohort, we enrolled 97 hospitalized patients, obtained serial lung (sputum or ETA) and stool (gut) samples 128 

(Table S1) and performed Illumina metagenomics.15 To contextualize microbiota analyses from critically ill 129 

patients, we incorporated previously generated 16S-Seq data from upper respiratory tract (URT), LRT and 130 

stool samples collected from healthy volunteers (Healthy Controls), as previously described in smaller cross-131 

sectional studies from our group.11,12  132 

 133 

Progressive dysbiosis of microbial communities in three body compartments.   134 

Among all three cohorts and healthy controls, we analyzed a total of 2557 clinical samples and 233 135 

experimental control samples, with the latter obtained either during patient sampling at the bedside or during 136 

sample processing in the laboratory. In an initial quality control step, we demonstrated robust detection of 137 

bacterial 16S reads in oral, lung and gut samples in the UPMC-ARF cohort compared to negative controls 138 

(Figure S1A-B). We also found that rectal swabs not coated by stool (“unsoiled” swabs) had systematic 139 

differences in bacterial load (16S rRNA gene copies by qPCR) and beta diversity (Manhattan distances) 140 

compared to stool or visibly “soiled” rectal swabs (Figure S1C-D). Therefore, we excluded “unsoiled” rectal 141 

swabs from further analyses because they may not offer sufficient representation of gut microbiota.11  142 

Samples from critically ill patients had significantly lower alpha diversity (Shannon index) in each 143 

compartment compared to corresponding healthy control samples. Alpha diversity further declined in all three 144 

body compartments across longitudinal samples (Figure 1A). Similarly, baseline ICU samples had markedly 145 

significant differences in beta diversity from healthy controls (Figure 1B). Taxonomic composition comparisons 146 

showed depletion of multiple commensal taxa in ICU samples, with significant enrichment for Staphylococcus 147 

in oral and lung samples, and Anaerococcus and Staphylococcus in gut samples (Figure 1C-D-E). Among ICU 148 

samples, bacterial load quantification by 16S qPCR confirmed that the LRT had significantly lower biomass 149 

compared to URT (oral) and gastrointestinal tract (Figure 1F).  150 

https://sciwheel.com/work/citation?ids=15345479&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14818913,7728930&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7728930&pre=&suf=&sa=0&dbf=0
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We then examined the compositional similarity (Bray-Curtis indices) between compartments to 151 

understand the relationship between the low biomass (lung) vs. high biomass (oral and gut) communities. We 152 

found higher similarity between oral-lung vs. gut-lung communities in the baseline and middle intervals (Figure 153 

1G). Taxonomic comparisons between compartments revealed that no specific taxa were systematically 154 

different between oral and lung microbiota (Figure 1H), whereas in gut-lung comparisons, lung communities 155 

were enriched for typical respiratory commensals (e.g. Rothia, Veillonella, Streptococcus) and gut communities 156 

for gut commensals (e.g. Bacteroides, Lachnoclostridium, Lachnospiraceae_uncl) (Figure 1I). We specifically 157 

tested whether certain patients had enrichment for gut-origin bacteria in their oral or lung samples despite no 158 

overall enrichment of the lung compartment for gut bacteria. We found that 4.8% and 8.1% of oral and lung 159 

samples, respectively, had >30% relative abundance for gut-origin bacteria (Fisher’s test p=0.03, Figure S2A), 160 

with progressively increased enrichment over time (Fisher’s test = 0.02, Figure S2B) in lung samples. 161 

Importantly, the gut-origin taxa enrichment in these lung samples could not be fully explained by oropharyngeal 162 

colonization with such taxa (Figure S2C). Taken together, these multi-site analyses point to the oral cavity as 163 

the primary source of lung microbiota, which could be seeded by micro-aspiration along the respiratory tract’s 164 

gravitational gradient. At the same time, our analyses also provided evidence for gut-origin bacteria enrichment 165 

in the LRT in a subset of critically ill patients.  166 

We next examined the longitudinal composition of microbial communities by classifying bacteria in 167 

terms of their oxygen requirements (obligate anaerobes, facultative anaerobes, aerobes, microaerophiles, 168 

variable or unclassifiable) and plausible respiratory pathogenicity (oral commensals, recognized respiratory 169 

pathogens or other).12 In both oral and lung communities, we found a progressive decline in the relative 170 

abundance of obligate anaerobes over time. There was, however, no corresponding change in the gut 171 

composition of anaerobic (obligate or facultative) bacteria over time (Figure 2A-B). Stratified by plausible 172 

pathogenicity, we found a progressive decline of oral commensal bacteria in all three compartments, with a 173 

corresponding increase in pathogen abundance (Figure 2C-D). Fungal ITS sequencing showed that >50% of 174 

communities in all three compartments were dominated by C. albicans (defined as >50% relative abundance), 175 

with a progressive decline in fungal Shannon index in oral and lung communities during follow-up (Figure S3). 176 

Nanopore metagenomics of lung samples provided similar bacterial representations to 16S analyses and 177 

https://sciwheel.com/work/citation?ids=14818913&pre=&suf=&sa=0&dbf=0
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confirmed high abundance of C.albicans detected by ITS sequencing (Figure S3). Thus, our analyses revealed 178 

a pattern of compartment-wide dysbiosis in ICU patients, with progressive decline in diversity and enrichment 179 

for plausible pathogenic bacteria and C. albicans. We then sought to understand whether patient-level 180 

variables accounted for baseline or longitudinal dysbiosis.  181 

 182 

Clinical diagnoses and antibiotic exposure correlate with microbial community diversity and composition.  183 

We constructed linear regression models with ecological metrics indicative of dysbiosis as outcomes 184 

(baseline Shannon index, obligate anaerobe and respiratory pathogen abundance) and clinical variables as 185 

predictors (Figure S4). History of COPD, immunosuppression and clinical diagnosis of pneumonia showed the 186 

most significant associations with dysbiosis features, e.g. lower Shannon and anaerobe abundance in oral and 187 

lung communities for patients with COPD, and increased pathogen abundance in all three compartments for 188 

patients with history of immunosuppression (Figure S4). History of immunosuppression was also associated 189 

with higher abundance of C. albicans in oral and lung samples (Figure S3D). To further explore iatrogenic 190 

forces on microbiota composition, we focused on two common treatments in the ICU: antibiotics and steroids. 191 

We assessed antibiotic usage by i) anaerobic coverage, ii) a numerical scale that included duration, timing and 192 

type,16 and iii) the Narrow Antibiotic Treatment (NAT) score.12,17 We quantified steroid use as the daily 193 

equivalent dosage of prednisone in milligrams. Antibiotic usage was associated with Shannon index, anaerobe, 194 

and pathogen abundance in baseline gut samples, with exposure to antibiotics with anaerobic spectrum at 195 

baseline being inversely correlated with anaerobe abundance in all three compartments (Figure S4B). To 196 

explore the effects of antibiotics and steroids over time, we employed mixed linear regression models using 197 

longitudinal samples. In all three compartments, the receipt of anaerobic spectrum antibiotics was associated 198 

with a progressive decrease in obligate anaerobe abundance, without significant effects on pathogen 199 

abundance (Table S2). Notably, antibiotic exposure quantified by the NAT score was also significantly linked to 200 

a reduction in anaerobe abundance and an increase in pathogen abundance within the gut microbiota. 201 

Steroids were associated with decrease in anaerobes in the lungs, but not with changes in abundance of other 202 

microbes in other compartments.   203 

 204 

https://sciwheel.com/work/citation?ids=767444&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14818913,12262621&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Microbial communities in each compartment form distinct clusters of diversity and composition. 205 

We next examined the microbial communities independent of clinical variables to capture important 206 

features directly from microbiome data. To understand microbial heterogeneity within compartments, we 207 

leveraged two complementary unsupervised clustering approaches: i) Dirichlet Multinomial Mixture (DMM) 208 

models for 16S data in each compartment (“bacterial DMM clusters”) and for Nanopore metagenomic data in 209 

the lung compartment18, and ii) weighted Similarity Network Fusion (SNF)19 clusters for combined bacterial 210 

(16S) and fungal (ITS) data within each compartment (“bacterial-fungal SNF clusters”).  211 

By bacterial DMM clusters, a three-class model offered optimal classification in each compartment, with 212 

striking differences in alpha diversity and composition between clusters (Figure 3A). Cluster 1 in each 213 

compartment had high Shannon index in the range of healthy controls (referred to as High-Diversity cluster), 214 

cluster 3 had low Shannon index (Low-Diversity cluster), and cluster 2 had intermediate diversity (Intermediate-215 

Diversity cluster). Low-diversity clusters had markedly higher abundance of pathogens and lower abundance of 216 

anaerobes (Figure 3B-C). In cross-compartment comparisons, DMM cluster membership was strongly 217 

associated between oral and lung communities (odds ratio of membership in the Low-Diversity cluster in both 218 

compartments 9.74, 95% confidence interval [5.61-17.29], p<0.0001), whereas lung and gut clusters were less 219 

strongly associated although statistically significant (p=0.015, Figure 3D). In longitudinal analyses, cluster 220 

membership showed relative stability for all compartments, with most samples assigned to Low-Diversity 221 

cluster at baseline being assigned to Low-Diversity in the middle interval as well (77% of oral, 80% of lung, and 222 

78% of gut samples, respectively, Figure S5). Nanopore DMM clustering in 130 available lung samples also 223 

showed optimal fit with three total clusters (data not shown). Bacterial-Fungal SNF clustering revealed distinct 224 

communities in each compartment, with a notable cluster in lung samples (cluster 1) with high pathogen 225 

abundance and C. albicans dominance (near 100% of fungal sequences abundance) (Figure S6). Thus, our 226 

unsupervised clustering approaches captured broad differences in meta-communities that were not specific to 227 

individual taxa. We next examined how these microbial communities related to host responses and clinical 228 

outcomes.  229 

 230 

Lung microbiota correlate with systemic host responses.  231 

https://sciwheel.com/work/citation?ids=105718&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15076273&pre=&suf=&sa=0&dbf=0
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We examined host-microbiota interactions with two independent approaches, a microbiota- and a host-232 

centric approach. In the microbiota-centric approach, we correlated the top 20 abundant taxa in each 233 

compartment with systemic (plasma) and lung-specific (ETA/BALF supernatants) host response biomarkers. 234 

We found several significant correlations (Figure S7A-C), with typical pathogens (e.g. Klebsiella, Escherichia-235 

Shigella, Staphylococcus genera in the lung compartment) positively correlating with plasma inflammatory 236 

biomarkers (such as sTNFR1 and IL-6 levels), whereas typical oral commensals (e.g. Rothia, Streptococcus, 237 

Prevotella etc.) inversely correlated with plasma sTNFR1 or sRAGE. In cluster comparisons, the bacterial 238 

DMM Low-Diversity cluster in the lungs was significantly associated with higher plasma sTNFR1, sRAGE and 239 

procalcitonin levels (Figure S7D), whereas the Nanopore DMM Low-Diversity cluster was also significantly 240 

associated with higher regional (IL-6 and sRAGE) and systemic biomarkers of injury and inflammation (plasma 241 

IL-6, sTNFR1, sRAGE, Ang-2 and Pentraxin-3, Figure S7E). 242 

In the host-centric approach, we applied a widely validated framework of host-response subphenotypes 243 

based on plasma biomarkers.7,20 With a validated 4-biomarker parsimonious model (using sTNFR1, Ang2, 244 

procalcitonin and bicarbonate levels),20 we classified individuals at baseline into a hyperinflammatory (22.9%) 245 

vs. a hypoinflammatory (77.1%) subphenotype. We found no significant relationship between host 246 

subphenotypes and DMM microbiota clusters in any compartment (Figure S7G), but hyperinflammatory 247 

patients had higher pathogen abundance in lung communities (p=0.04). To further investigate this association, 248 

we stratified patients by pneumonia diagnosis. We discovered that hyperinflammatory patients without 249 

pneumonia had higher pathogen abundance in lung samples compared to hypo-inflammatory patients 250 

(p=0.018, Figure S7H). These notable associations between lung pathogen abundance and the 251 

hyperinflammatory subphenotype imply that systemic subphenotypes might stem, at least in part, from 252 

undiagnosed pneumonia or respiratory dysbiosis.  253 

 254 

Lung microbiota clusters predict survival independent of clinical variables and host responses.  255 

Comparisons of microbial communities between survivors and non-survivors at 60-days post-ICU 256 

admission showed highly significant differences in alpha diversity in the lungs (p<0.0001), as well as higher 257 

obligate anaerobe and lower pathogen abundance in both oral and lung samples (all p<0.002, Figure S8A-C), 258 

https://sciwheel.com/work/citation?ids=12208454,7657922&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12208454&pre=&suf=&sa=0&dbf=0
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but no differences in gut profiles. Additionally, analyses of lung samples stratified by whether they exhibited 259 

gut-origin taxa enrichment (defined as >30% relative abundance) showed markedly worse survival for patients 260 

with gut-origin taxa enrichment (p<0.0001, Figure S2E-F).  261 

Analyses by bacterial DMM clusters provided further insights with regards to the prognostic value of 262 

each compartment. In both oral and lung compartments, the Low-Diversity clusters were associated with worse 263 

60-day survival in Kaplan-Meier curve analyses, whereas gut clusters had no survival impact (Figure 4A-C). 264 

Notably, the prognostic effects of the Low-Diversity bacterial DMM cluster in the lungs remained significant 265 

after adjustment for age, sex, history of COPD, immunosuppression, severity of illness by SOFA scores and 266 

host-response subphenotypes (adjusted Hazards Ratio-HR= 2.51 [1.26-4.98], p=0.008). Similarly, survival 267 

analysis by the bacterial-fungal SNF lung clusters showed that cluster 1, which had high pathogen and C. 268 

albicans abundance, also independently predicted worse survival (adjusted HR=2.04 [1.45-2.86], p<0.0001, 269 

Figure 4E). The other bacterial-fungal SNF oral and gut clusters did not impact survival (Figure 4D,F). Thus, 270 

we found evidence that lung microbiota dysbiosis predicted survival beyond the information provided by clinical 271 

predictors, commonly used organ dysfunction indices, and biological subphenotyping.  272 

 273 

Derivation of a dysbiosis index and external validation in patients with COVID-19.  274 

Motivated by the robust, independent prognostic impact of microbiota clusters on patient survival, we 275 

next sought to construct predictive models to classify bacterial profiles into the corresponding DMM clusters 276 

within each compartment. Such predictive models could serve as dysbiosis indices beyond the derivation 277 

cohort with our DMM analysis. We used probabilistic graphical modeling (PGM) to predict the DMM clusters in 278 

each compartment based on the abundance of the top 50 taxa and the corresponding Shannon index. By 279 

splitting the dataset in training and testing subsets (80% and 20% of data points, respectively), we developed 280 

separate multinomial regression models for DMM cluster predictions in each compartment (i.e. compartment-281 

specific Dysbiosis Index), which showed accuracy of 0.76, 0.86 and 0.75 for oral, lung and gut clusters, 282 

respectively. We verified that patients classified in the low diversity clusters by the Dysbiosis Index for the oral 283 

and lung compartments had worse survival, similarly to the DMM-derived clusters.  284 
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We next applied the derived Dysbiosis Indices to two independent cohorts of hospitalized patients with 285 

COVID-19 pneumonia. In the UPMC-COVID cohort of patients with COVID-19 ARDS on IMV (n=49), the Lung 286 

Dysbiosis Index classified ETA samples into three clusters with significant differences in Shannon index and 287 

bacterial load by qPCR (Figure 5A), but no difference in ETA SARS-CoV-2 viral load by qPCR or 60-day 288 

survival (data not shown). Patients assigned to the low diversity cluster at baseline had higher plasma levels of 289 

sTNFR1 and Ang-2 compared to the high diversity cluster (p<0.05, Figure 5B). By individual taxa abundance, 290 

oral commensals (e.g. Prevotella, Veillonella or Streptococcus) were inversely correlated with plasma sTNFR1 291 

and Ang-2, whereas Klebsiella abundance was positively correlated (all p<0.05), corroborating the findings of 292 

the cluster analyses relating lung microbiota with prognostically adverse higher levels of systemic biomarkers 293 

of inflammation and endothelial injury.  294 

 In the MGH-COVID cohort (n=97), we performed metagenomic sequencing in longitudinal lung (ETA for 295 

patients on IMV or expectorated sputum in spontaneously breathing patients) and gut (stool) samples obtained 296 

upon enrollment and then daily up to day 4. We found no significant changes over time in Shannon Index and 297 

anaerobe/pathogen abundance in either compartment on serial samples through day 4. We classified baseline 298 

lung and gut samples by our Dysbiosis Index models, which showed significant differences in Shannon index, 299 

anaerobe and pathogen abundance in each compartment (Figure 5C-D). Importantly, the low diversity cluster 300 

in the lung compartment was strongly associated with COVID-19 pneumonia severity (odds ratio 8.77 [1.75-301 

67.74], Figure 5E-F), as classified by oxygen support requirements, whereas gut clusters were not. Thus, 302 

application of the Dysbiosis Indices to lung and gut samples of patients with COVID-19 provided similar 303 

findings to the ones obtained in the UPMC-ARF derivation cohort, supporting the predictive value of lung 304 

microbiota profiling.  305 

 306 

Discussion: 307 

We conducted a longitudinal, integrative assessment of host-microbiota interactions in a large cohort of 308 

ARF patients across three body sites (the oral cavity, lungs, and gut) and up to three time-points in the ICU. 309 

These analyses offered insights into the temporal relationships between patient-level factors, therapeutic 310 

interventions, microbial communities and patient-centered outcomes, which has not been possible in previous 311 
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smaller scale investigations.21 The progressive dysbiosis of microbial communities observed in all three body 312 

compartments highlights the impact of critical illness on the global microbiota. We found reduced alpha 313 

diversity and deviation in composition compared to healthy controls at the onset of IMV, with further reduction 314 

in diversity and alterations in composition for patients supported on ventilators over time. Unsupervised 315 

analyses of microbiota composition revealed distinct communities in all three body compartments, yet the lung 316 

microbiome emerged as the strongest independent predictor of important clinical outcomes. We developed 317 

parsimonious models for dysbiosis classifications in each compartment and found that lung dysbiosis was 318 

significantly associated with host-response profiles and clinical severity in patients with COVID-19.  319 

The large sample size and granular clinical data in our derivation cohort allowed for detailed 320 

investigation of the relationships between patient-/treatment-related factors with the composition of microbiota. 321 

Clinical diagnoses (e.g., ARDS or pneumonia) and comorbidities explained variation in diversity and 322 

composition at baseline. We detected significant associations between systemic steroid exposure and lung 323 

microbiota composition, a novel finding that warrants validation in other cohorts. Despite the self-evident 324 

biological plausibility of antibiotic pressures on altering the microbiomes of critically ill patients, empirical 325 

evidence to date has been limited.22–24 Here we modeled antibiotic exposure thoroughly with different 326 

methodologies from prior studies focused on cystic fibrosis or pneumonia,16,17,25 and studied antibiotic effects 327 

on longitudinal communities and features of dysbiosis. We found that the NAT score and a simple categorical 328 

classification with regards to anaerobic spectrum coverage captured important effects on longitudinal 329 

composition. Recent epidemiologic and molecular evidence supports disruptive effects of anti-anaerobic 330 

antibiotics in gut microbial communities.24,26 Our data are consistent with the idea that anaerobe-targeting 331 

antibiotics are associated with anaerobic bacteria depletion in the respiratory and the intestinal tracts, and 332 

furthermore our study suggests that such depletion is associated with worse clinical outcome. Therefore, our 333 

results highlight the importance of rational use of anti-anaerobic antibiotics as directed by proper clinical 334 

indications, because such antibiotics can have important yet under-recognized adverse clinical implications.  335 

The biogeography of the intubated respiratory tract has been the focus of extensive investigation for 336 

prevention of secondary ventilator-associated pneumonia (VAP).27,28 Oropharyngeal decontamination with 337 
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chlorhexidine rinses or the more aggressive selective digestive decontamination (SDD) of the gastrointestinal 338 

tract have been studied for reducing bacterial burden in probable source compartments that seed the LRT 339 

microbiota. While both decontamination approaches are supported by randomized clinical trial evidence 340 

showing efficacy in VAP prevention29,30, both approaches also have associated safety concerns,31,32 leading tto 341 

limited uptake of SDD worldwide. Indiscriminate application of chlorhexidine rinses in all patients on IMV may 342 

also deplete commensal organisms from the URT and reduce colonization resistance against pathogens. We 343 

found significant correlations between oral-origin commensal taxa abundance in URT and LRT samples, such 344 

as Prevotella, with prognostically favorable, lower levels of plasma inflammatory biomarkers, which may 345 

indicate favorable regulation of innate immunity by such taxa.33–35 Our comparative analyses between 346 

compartments showed much higher oral-lung than lung-gut similarity, suggesting that the oral cavity serves as 347 

the primary source of microbial seeding for the lungs. However, we found that a small subset of patients had 348 

enrichment for gut-origin commensal or pathogenic organisms in their LRT, which could not be fully accounted 349 

for by URT colonization with similar taxa. Such patients with gut-origin bacteria enrichment in their lungs 350 

(8.1%) had much worse survival than the rest of the cohort, and may represent a subset of patients in whom 351 

gut-to-lung bacterial translocation may have occurred.36,37 Wider availability of BAL samples to investigate the 352 

alveolar spaces more closely can provide more evidence into the question of gut-to-lung translocation, but our 353 

non-invasive ETA samples showed that such translocation, if present, affects a small subset of patients at least 354 

within the first week of IMV. Therefore, efforts focused on preventing dysbiosis and pathogen colonization in 355 

the URT-to-LRT ecosystem may offer higher biological plausibility for measurable benefits in clinical trials.   356 

Unsupervised clustering revealed distinct microbial communities within and across body compartments. 357 

Low-diversity bacterial clusters were enriched with pathogens and depleted in anaerobes in all three 358 

compartments. Membership in the low-diversity cluster was strongly associated between the oral and lung 359 

compartment, suggesting shared patterns of dysbiosis. The overall stability of longitudinal cluster membership 360 

indicated that specific microbial profiles may persist throughout critical illness, influencing the disease 361 

trajectory. Integration of fungal sequencing data further enhanced our view of the microbial communities, 362 

revealing patients who had a “double-hit” of bacterial pathogen enrichment and C.albicans dominance in their 363 

communities. We have recently shown that C.albicans abundance in the LRT correlates with systemic 364 
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inflammation and predicts adverse outcome in patients with ARF on IMV.13 With the current expanded dataset, 365 

we demonstrate that integration of bacterial and fungal data can identify patient subpopulations with inter-366 

kingdom dysbiosis, who may require different interventions to address both bacterial and fungal dysbiosis.  367 

Survival analyses based on microbiota clusters revealed two significant and novel findings. First, in this 368 

comparison of microbiota from three distinct body compartment microbiota for predicting survival in critically ill 369 

patients, the lung microbiome emerged as the most powerful predictor compared to oral or gut microbiota. 370 

Perhaps this finding should not be surprising when studying patients who required IMV for ARF. We had 371 

previously shown that baseline lung microbiota profiles were predictive of survival.3 We now expand analyses 372 

to three compartments up to three time points during IMV and show that lung microbiota carry the most 373 

predictive signal for survival, both at baseline and also in follow-up samples. Thus, our comparative 374 

assessment of microbiota across body compartments highlights the clinical relevance of lung microbiota 375 

analysis in critical illness and the need for dedicated sampling of the LRT.38 Second, the prognostic value of 376 

lung microbiota clusters was independent not only from clinical predictors and validated organ dysfunction 377 

metrics, such as the SOFA score, but also from the systemic host-response subphenotypes. Extensive 378 

evidence has established the prognostic value and generalizability of plasma biomarker-based subphenotyping 379 

of patients with ARF.8,39 Our adjusted Cox proportional hazards models revealed significant hazards ratios for 380 

the Low-Diversity lung cluster, when analyzed using both the bacterial DMM and bacterial-fungal SNF 381 

methods. Beyond the significant taxa-biomarker associations we observed, the survival analyses demonstrated 382 

that lung microbiota may influence patient outcome in ways that are not captured by current host-response 383 

subphenotyping approaches. An integrative, host- and lung microbiome-aware subphenotyping framework may 384 

thus augment our ability to better prognosticate and target therapeutic interventions in ARF.  385 

Our study has several limitations. First, we mainly focused on bacterial and fungal components of the 386 

microbiome, and thus could not assess the role of the virome, especially with regards to respiratory RNA 387 

viruses. The consistent pattern of results relating elements of the bacterial microbiome to host response and 388 

illness severity in the COVID-19 cohorts supports the generalizability of our findings, although we could not 389 

investigate contributions from individual viruses. The observational nature of our study prevents us from 390 
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establishing causality between the microbiome and clinical outcomes, which could be addressed by future 391 

interventional studies or animal modeling with microbiome manipulation. Longitudinal sample availability was 392 

limited by informative censoring, as patients with rapid decline and early death or those with rapid improvement 393 

and liberation from IMV would not contribute follow-up samples in the middle and late intervals. We aimed to 394 

mitigate some of these right censoring biases with mixed linear regression models, but our longitudinal 395 

analysis findings should be interpreted with caution and considered as applicable to patients who remain on 396 

IMV for the first 1-2 weeks of critical illness. For patient safety and practical purposes of subject participation in 397 

our observational research study, we relied on non-invasive biospecimens (ETA) for LRT microbiota profiling, 398 

as opposed to reference standard BAL.38 Our non-invasive approach allowed us to enroll a large cohort of LRT 399 

specimens, follow serial samples over time, and is congruent with clinical practice guidelines for VAP 400 

diagnosis.40 However, we may have missed important microbiota variability closer to the alveolar space, 401 

including a stronger signal of gut-to-lung microbiota translocation.37 Finally, we had a smaller effective sample 402 

size for gut microbiota analysis, which may have limited our ability to identify prognostic variation within the gut 403 

compartment.  404 

In conclusion, our study provides novel insights into the predictive value of microbiota clusters derived 405 

from different body compartments in critically ill patients. The lung microbiome emerged as the most powerful 406 

predictor of survival, surpassing the oral and gut microbiota. These findings emphasize the clinical relevance of 407 

investigating the lung microbiota and highlight its potential as a prognostic marker in critical illness. Moreover, 408 

our study underscores the importance of considering organ-specific microbial communities in critical care 409 

settings and expands our understanding of the microbiome's role in determining patient outcomes. Further 410 

research in this area has the potential to shape clinical decision-making and facilitate the development of 411 

personalized medicine strategies for critically ill patients.   412 

https://sciwheel.com/work/citation?ids=15313714&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1645738&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14397743&pre=&suf=&sa=0&dbf=0


18 

 

Online Methods  413 

UPMC-ARF cohort: Following admission to the ICU and obtaining informed consent from patients or their 414 

legally authorized representatives (IRB protocol STUDY19050099), we collected baseline research 415 

biospecimens within 72hrs from intubation. We collected blood for separation of plasma, oropharyngeal (oral) 416 

swabs to profile upper respiratory tract (URT) microbiota, endotracheal aspirates (ETA) for LRT (lung) 417 

microbiota and host biomarker measurements, and rectal swabs or stool samples for gut microbiota analyses. 418 

We also captured leftover bronchoalveolar lavage fluid (BALF) from clinically indicated bronchoscopies, when 419 

available. We repeated research biospecimen sampling between days 3-6 (middle interval) and days 7-12 (late 420 

interval) post enrollment for subjects who remained in the ICU. No patients in the UPMC-ARF cohort were 421 

known to be infected by SARS-CoV-2 at the time of enrollment.  422 

UPMC-COVID cohort: Following admission to the ICU and obtaining informed consent from patients or their 423 

legally authorized representatives (IRB protocol STUDY19050099), we collected baseline research 424 

biospecimens (ETA and blood) within 72hrs from intubation. We repeated research biospecimen sampling 425 

between days 3-6 (middle interval) and days 7-12 (late interval) post enrollment for subjects who remained in 426 

the ICU, as per the UPMC-ARF protocol. All patients were known to be infected by positive SARS-CoV-2 427 

qPCR prior to enrollment.  428 

MGH-COVID cohort: From April 2020 to May 2021, we prospectively enrolled 97 hospitalized patients aged 429 

≥18 years with confirmed COVID-19 at the Massachusetts General Hospital to a longitudinal COVID-19 430 

disease surveillance study.15 Patients were categorized as having severe COVID-19 if they required admission 431 

to the intensive care unit with acute respiratory failure (the need for oxygen supplementation ≥15 liters per 432 

minute (LPM), non-invasive positive pressure ventilation, or mechanical ventilation) or other organ failure (such 433 

as shock requiring vasopressors). Otherwise, they were categorized as having moderate COVID-19. 434 

Expectorated sputum, ETA or fresh stool was collected and refrigerated at 4℃ until aliquoting/freezing at -435 

80℃ (typically within 4 hours of collection) from adult patients enrolled in the prospective biospecimen 436 

collection study. Participants were able to provide samples as frequently as once daily for up to four days, as 437 

well as declining donation on any given day (while remaining in the study).  438 

https://sciwheel.com/work/citation?ids=15345479&pre=&suf=&sa=0&dbf=0


19 

 

Healthy Controls: To contextualize the findings on microbiota from critically-ill patients with what is expected for 439 

the healthy respiratory and gastrointestinal tract, we also included data from 24 healthy volunteers who had 440 

contributed URT and LRT microbiome data in a previously published cohort (Lung HIV Microbiome Project - 441 

STUDY19060243),41 as well as stool from 15 healthy donors for fecal microbiota transplantation.11 We 442 

designated these healthy volunteers as Healthy Controls.  443 

Clinical data recording: A consensus committee reviewed clinical and radiographic data and performed 444 

retrospective classifications of the etiology and severity of acute respiratory failure without knowledge of 445 

microbiome sequencing or biomarker data. We retrospectively classified subjects as having ARDS per 446 

established criteria (Berlin definition), being at risk for ARDS because of the presence of direct (pneumonia or 447 

aspiration) or indirect (e.g., extrapulmonary sepsis or acute pancreatitis) lung-injury risk factors although 448 

lacking ARDS diagnostic criteria, having acute respiratory failure without risk factors for ARDS, or having 449 

acute-on-chronic respiratory failure. We followed patients prospectively for cumulative mortality and ventilator-450 

free days (VFDs) at 30 days, as well as survival up to 60 days from intubation. 451 

We systematically reviewed administered antibiotic therapies since hospital admission and recorded the 452 

antibiotic exposure for each subject according to the following three metrics:  453 

1. Anaerobic coverage (yes/no): whether antibiotics with anaerobic coverage were given on the day of 454 

sampling.  455 

2. The Antibiotic Exposure score by Zhao et al 16: a numerical scale with antibiotic weighting based on 456 

dosing duration, timing of administration relative to sample collection and antibiotic type and route of 457 

administration. We utilized the convex increasing weighting scheme and modeled the antibiotic 458 

exposure from hospital admission until day of sampling.  459 

3. The Narrow Antibiotic Treatment (NAT) score developed for community-acquired pneumonia treatment 460 

studies 17,25. We calculated the daily NAT score from -5 days from sampling to post 10 days after 461 

sampling on day 1.  462 

 463 

Research Sample Collection 464 
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Within the first 48 hours of intubation (baseline time-point), we collected a posterior oropharyngeal 465 

(oral) swab via gentle swabbing the posterior oropharynx next to the endotracheal tube with a cotton tip swab 466 

for 5 secs, and an endotracheal aspirate (ETA) via suctioning secretions from the endotracheal tube with the 467 

in-line suction catheter and without breaking seal in the ventilatory circuit.1,4 Rectal swabs were collected 468 

according to a standard operating procedure (i.e., placing the patient in a lateral position, inserting the cotton 469 

tip of the swab into the rectal canal, and rotating the swab gently for 5 s), unless clinical reasons precluded 470 

movement of the patient (e.g., severe hemodynamic or respiratory instability). Stool samples were collected 471 

when available, either by taking a small sample from an expelled bowel movement (before cleaning of the 472 

patient and disposal of the stool) or from a fecal management system (rectal tube) placed for management of 473 

diarrhea and liquid stool collection. We also collected simultaneous blood samples for centrifugation and 474 

separation of plasma, which was stored in -80C until conduct of experiments. For patients who remained 475 

intubated in the ICU, we collected follow-up samples at a middle time-point (days 3-6) and a late follow-up 476 

interval (days 7-11 post-intubation). 477 

For Healthy Controls, an oral wash and BAL sample were collected with a standardized protocol.41 478 

Subjects were asked to fast and refrain from smoking for at least 12hrs before sample collection. Oral washes 479 

were performed by having participants gargle with 10 ml sterile 0.9% saline immediately before bronchoscopy. 480 

BAL was performed according to standardized procedures developed to minimize oral contamination. 481 

Participants gargled with an antiseptic mouthwash (Listerine) immediately before topical anesthesia. The 482 

bronchoscope was then inserted through the mouth and advanced to a wedge position quickly and without use 483 

of suction. BAL was performed in the right middle lobe or lingula up to a maximum of 300 ml 0.9% saline. 484 

Healthy donors of stool for fecal microbiota transplant collected a stool sample in a specialized container and 485 

brought the stool sample on the day of collection to the processing lab.  486 

 487 

Laboratory Analyses 488 

Microbiome assays in UPMC cohorts: From oral swabs, ETAs, left over BALF, rectal swabs and stool samples, 489 

we extracted genomic DNA and performed quantitative PCR (qPCR) of the V3-V4 region of the 16S rRNA 490 

gene to obtain the number of gene copies per sample, as a surrogate for bacterial load. From a separate 491 
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aliquot of extracted DNA from oral swabs, ETA, rectal swabs and stool samples, we performed amplicon 492 

sequencing for bacterial DNA (16S-Seq of the V4 hypervariable region) and fungal DNA (ITS) on the Illumina 493 

MiSeq platform. 3,42 We used extensive experimental negative controls in all processing steps to rule out 494 

contamination, as well as mock microbial community positive controls (Zymo) to ensure target amplification 495 

success. We processed derived 16S sequences with a custom Mothur-based pipeline and performed analyses 496 

at genus level. From a random subset of 130 available ETA samples, we performed metagenomic Nanopore 497 

sequencing (following human DNA depletion) with a rapid PCR barcoding kit (SQK-RPB004) on the MinION 498 

device (Oxford Nanopore Technologies-ONT, Oxford, UK) for five hours.43,44 We analyzed microbial 499 

metagenomic sequences with the EPI2ME platform (ONT) and the “What’s In My Pot” [WIMP] workflow to 500 

quantify abundance of microbial species.45 We filtered FASTQ files with a mean quality (q-score) below a 501 

minimum threshold of 7.  502 

Host-response assays: We measured 10 plasma biomarkers of tissue injury and inflammation with custom 503 

Luminex multi-analyte panels from plasma samples and ETA supernatants, when available. Specifically, we 504 

used a 10-plex Luminex panel (R&D Systems, Minneapolis, MI, United States) to measure interleukin(IL)-6, IL-505 

8, IL-10, soluble tumor necrosis factor receptor 1 (sTNFR1), suppressor of tumorigenicity-2 (ST2), fractalkine, 506 

soluble receptor of advanced glycation end-products (sRAGE), angiopoietin-2, procalcitonin and pentraxin-3.7  507 

Microbiome assays in MGH-COVID cohort: Samples were extracted and sequenced at Baylor College of 508 

Medicine according to their standard established platforms. DNA was prepared for sequencing using the 509 

Illumina Nextera XT DNA library preparation kit. All libraries were sequenced with a target of 3GB output at 510 

2x150bp read length using the Illumina NovaSeq platform, as previously described.15  511 

 512 

Quantification and statistical analysis. 513 

We performed non-parametric comparisons for continuous (described as median and interquartile 514 

range – IQR) and categorical variables between clinical groups (Wilcoxon and Fisher’s exact tests, 515 

respectively). For microbial community profiling, we included samples that produced >300 high quality 516 

microbial reads for both 16S-Seq and Nanopore sequencing. We performed alpha diversity (Shannon index) 517 

calculations for each available sample, and then conducted between group comparisons of alpha diversity with 518 
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non-parametric tests to draw inferences on systematic differences of alpha diversity between groups as a 519 

measure of relative community fitness.1 We conducted beta diversity analyses (Manhattan distances, analyzed 520 

via permutation analysis of variance and visualized via principal coordinates analyses) with the R vegan and 521 

mia packages.46 We examined for differentially abundant taxa between groups following centered log-ratio 522 

(CLR) transformations with the limma package to fit weighted linear regression models, perform tests based on 523 

an empirical Bayes moderated t-statistic and obtain False Discovery Ratio corrected p-values.  524 

We then examined the discovered bacterial taxa at genus level and classified them by two different 525 

classification schemes with clinical relevance12:  526 

A. By oxygen requirements for bacterial metabolism:  527 

1. Obligate aerobes (referred to throughout as aerobes): bacteria that require oxygen to grow 528 

and survive, as they use oxygen as final electron acceptor in their respiratory chain.  529 

2. Obligative anaerobes (referred to throughout as anaerobes): bacteria that are unable to 530 

grow in the presence of oxygen, as they are unable to use oxygen as a final electron 531 

acceptor and are killed in the presence of oxygen.  532 

3. Facultative anaerobes: bacteria that can grow in the presence or absence of oxygen. They 533 

can use both aerobic and anaerobic respiration, depending on the availability of oxygen in 534 

their environment, switching from aerobic to anaerobic metabolism.  535 

4. Microaerophiles: bacteria that require a low level of oxygen to grow and survive, as they can 536 

grow at oxygen concentrations lower than those required by obligate aerobes but higher 537 

than those tolerated by obligate anaerobes.  538 

5. Variable: genera that included both aerobes and anaerobes and could not be classified 539 

further with confidence.  540 

6. Unclassifiable: taxa that were not classified at the genus or family level with confidence to 541 

allow assessment of their metabolic needs.  542 

B. By pathogenicity for LRT infections:  543 

1. Common respiratory pathogens: bacteria considered to be typical pathogens when isolated 544 

in LRT microbiologic cultures.  545 
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2. Oral-origin commensal bacteria: bacterial taxa that have been characterized as typical 546 

members of the lung microbiome in health and originate from the oral cavity.  547 

3. Other: taxa with unclear clinical significance that do not fall into categories B1 or B2 above.  548 

To agnostically examine our samples for distinct clusters of microbial composition (“metacommunities”), 549 

we applied unsupervised Dirichlet multinomial models (DMMs) with Laplace approximations18 to define the 550 

optimal number of clusters in our dataset, and then examined for associations with clinical parameters and 551 

outcomes. To synthesize bacterial and fungal data within each compartment, as well as bacterial profiles 552 

across different compartments, we used the weighted Similarity Network Fusion function.19 We classified 553 

subjects into a hyper- vs. hypo-inflammatory subphenotype based on predictions from a parsimonious logistic 554 

regression model utilizing plasma levels of sTNFR1, Ang-2 and procalcitonin (research biomarkers measured 555 

with Luminex panel), as well as serum bicarbonate levels measured during clinical care.  556 

We followed patients prospectively and constructed Kaplan-Meier curves and Cox-proportional hazard 557 

models for 60-day survival, adjusted for the predictors of age and sex, as well as plausible confounders of 558 

microbiome associations diagnosis based on our findings (history of COPD, history of Immunosuppression), 559 

severity of illness as per the SOFA score, and host-response subphenotypes. To examine for the impact of 560 

mechanical ventilation, steroids and antibiotics pressure on longitudinal microbiota profiles, we constructed 561 

mixed regression models with random patient intercepts and adjusted for the number of days post-intubation 562 

that each sample was taken (as a proxy for the exposure to the hyperoxic environment of the ventilator) and 563 

the antibiotic exposure and steroids metrics by the day of sampling. We performed all statistical analyses in R 564 

v.4.2.0.47 565 

Following derivation of the DMM clusters in each compartment of the UPMC-ARF cohort and 566 

demonstration of significant associations with patient outcomes, we proceeded to develop multinominal logistic 567 

regression models for prediction of classification of bacterial 16S profiles from new samples into predicted 568 

cluster assignments. We considered these new classification models as a Dysbiosis Index for each 569 

compartment. To develop these models in each compartment (oral, lung and gut), we used probabilistic 570 

graphical modeling (PGM)48 by considering the 50 most abundant taxa in each compartment along with the 571 

Shannon Index. We divided the samples of each compartment into two random subsets: 80% of data points for 572 
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training and 20% for testing. The training set was used to generate a PGM using the FCI-MAX algorithm with 573 

Alpha of 0.1 to examine which variables (50 taxa abundance and Shannon Index) were associated with the 574 

cluster assignments in each compartment. The variables that appeared in the Markov blanket of the DMM 575 

cluster assignment variable were used to create a multinomial logistic regression (MLR) model to predict the 576 

cluster assignment of future samples. The MLR model equations were written as follows for the different 577 

cluster assignments (Low, Intermediate and High Diversity): 578 

Model equations 579 

 580 

ln	(!(#$%&'(&)*+%&)
!(-*./0*1&'2*%3)

) = 	𝑏45 + 𝑏44. 𝑓4 +⋯+ 𝑏4$. 𝑓$  Equation 1 581 

 582 

ln	( !(6780*1&'*%3)
!(-*./0*1&'2*%3)

) = 	𝑏95 + 𝑏94. 𝑓4 +⋯+ 𝑏9$. 𝑓$ Equation 2 583 

 584 

𝑓:	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	585 

𝑏1	&	𝑏2	𝑎𝑟𝑒	𝑚𝑜𝑑𝑒𝑙	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠		586 

 587 

By rewriting the equations, we get the following: 588 
!(#$%&'(&)*+%&)

!(-*./0*1&'2*%3)
=	𝑒(:!";:!!.=!;⋯;:!#.=#) Equation 3 589 

 590 
!(6780*1&'*%3)

!(-*./0*1&'2*%3)
= 𝑒(:$";:$!.=!;⋯;:$#.=#)	 Equation 4 591 

 592 

We rewrote the names of the model parameters as : 593 

𝑃(𝐻𝑖𝑔ℎ𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) = 𝑃(𝐻) 594 

𝑃(𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒) = 𝑃(𝐼) 595 

𝑃(𝐿𝑜𝑤𝐷𝑖𝑣𝑒𝑟𝑖𝑡𝑦) = 𝑃(𝐿) 596 

𝑒(:!";:!!.=!;⋯;:!#.=#) = X 597 

𝑒(:$";:$!.=!;⋯;:$#.=#)= Y 598 

 599 

We know that 𝑃(𝐻) 	+ 	𝑃(𝐼) 	+ 	𝑃(𝐿) 	= 	1 Equation 5  600 

Then 𝑃(𝐻) 	= 	1 − 	𝑃(𝐼) − 	𝑃(𝐿)  Equation 6 601 

 602 

From Equation 3 and 4  603 

 604 

𝑃(𝐼) 	= 	𝑋	𝑃(𝐻)	605 

𝑃(𝐻) 	= 	𝑃(𝐿)𝑌 	606 

 607 

Substituting in Equation 6 608 

 609 
!(6)

?
=	1	–	X		!(6)

?
–	P(L)		610 

	!(6)
?
+ 𝑋	 !(6)

?
+ 𝑃(𝐿) = 1		611 
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	𝑃(𝐿) N4
?
+	@

?
+ 1O = 1	612 

	613 

𝑃(𝐿) P1 + 𝑋 + 𝑌𝑌 Q = 1	614 

𝑃(𝐿) = P 𝑌
1 + 𝑋 + 𝑌Q	615 

𝑃(𝐻) = P 1
1 + 𝑋 + 𝑌Q	616 

𝑃(𝐼) = P 𝑋
1 + 𝑋 + 𝑌Q	617 

 618 

The predicted cluster is the one with the highest probability. For example, if 𝑚𝑎𝑥(𝑃(𝐻), 𝑃(𝐼), 𝑃(𝐿)) 	= 	𝑃(𝐼), 619 

then the predicted cluster is 𝑃(𝐼) 620 

 621 

The Intercepts and co-efficients for the MLR models for each compartment are provided below.  622 

Oral 

𝑓 𝑏4 𝑏9 

Intercept  8.124887 13.323657 

ShannonIndex  -1.57054 -2.79173 

Actinomyces 0.4883585 0.1975639 

Capnocytophaga 0.1550266 -0.2497556 

Fusobacterium 0.04705918 -0.49428753 

Granulicatella 0.03521261 -0.22396119 

Leptotrichia -0.5982385 -0.6815710 

Parvimonas -0.8593016 -0.6830944 

Porphyromonas -0.7968399 -0.4426564 

Prevotellaceae_uncl -0.3983984 -1.9055700 

Stomatobaculum -0.5966283 -1.3445377 

 623 

Lung 

𝑓 𝑏4 𝑏9 

Intercept  6.091456 13.161966 

ShannonIndex -2.235179 -3.955922 

Streptococcus 0.08810083 -0.30461314 

Veillonella 0.27052525 0.04224102 

Peptostreptococcus -0.02538055 0.50470722 

Porphyromonas -0.520896 -1.387346 

Selenomonas -0.5639481 -1.2279826 

Alloprevotella -0.4193465 -1.0781599 

Leptotrichia -0.09918638 -1.16197619 

Neisseriaceae_uncl -0.430702 -1.654160 

 624 

Gut 

𝑓 𝑏4 𝑏9 

Intercept  -0.7901505 4.5913451 

ShannonIndex 2.104042 -1.017060 

Atopobium 1.0404839 0.1382178 

Streptococcus -0.1680732 0.2080845 
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Enterococcus -0.04209851 0.38397607 

Faecalibacterium -0.8249428 -0.9945793 

Fenollaria 0.4178598 -0.5862931 

Alistipes -1.3291409 -0.6846156 

Lachnospiraceae_uncl -1.1289312 -0.7073528 

 625 
We tested the MLR model using three datasets: The 20% testing set for estimating model accuracy, and the 626 

ALIR-COVID samples and the MGH-COVID samples for examining associations between the Dysbiosis Index 627 

with clinical variables and endpoints.  628 

Applications of the MLR models (Dysbiosis Index) in the three compartments showed the following accuracy 629 

statistics (95% confidence intervals) for prediction of the DMM clusters:  630 

Oral Dysbiosis Index: 0.76 (0.65-0.85) 631 

Lung Dysbiosis Index: 0.86 (0.76-0.93) 632 

Gut Dysbiosis Index: 0.75 (0.60-0.86) 633 

  634 
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Table 1: Baseline characteristics of enrolled mechanically ventilated patients in the UPMC-ARF cohort, 673 

stratified by 60-day mortality. We compared continuous variables with non-parametric Wilcoxon tests and 674 

categorical variables with Fisher’s exact tests between the three groups. Statistically significant differences 675 

(p<0.05) are highlighted in bold.  676 

 677  
All Survivors Non-Survivors p 

N 479 350 129 
 

Age, years (median [IQR]) 59.6 [46.7, 68.7] 57.1 [44.1, 67.1] 65.3 [55.8, 72.2] <0.01 

Men, n (%) 256 (54.4) 180 (52.6) 76 (58.9) 0.26 

Whites, n (%) 425 (90.2) 307 (89.8) 118 (91.5) 0.67 

BMI (median [IQR]) 29.4 [25.5, 36.0] 29.6 [25.5, 35.7] 28.6 [25.3, 36.6] 0.98 

COPD, n (%) 104 (22.1) 75 (21.9) 29 (22.5) 1.00 

Diabetes, n (%) 168 (35.7) 122 (35.7) 46 (35.7) 1.00 

Alcohol use, n (%) 84 (17.9) 60 (17.5) 24 (18.9) 0.84 

Immunosuppression, n (%) 105 (22.3) 71 (20.8) 34 (26.4) 0.24 

ARDS, n (%) 117 (25.2) 81 (24.0) 36 (28.1) 0.23 

WBC (median [IQR]) 12.0 [8.7, 16.8] 11.4 [8.1, 15.8] 14.4 [10.1, 18.7] <0.01 

Creatinine (median [IQR]) 1.2 [0.8, 2.3] 1.1 [0.8, 2.0] 1.6 [0.9, 2.5] 0.01 

Plateau Pressure (median [IQR]) 20.0 [16.0, 25.0] 19.0 [16.0, 24.0] 22.0 [18.0, 27.0] <0.01 

PaO2:FiO2 ratio (median [IQR]) 164.0 [117.0, 206.0] 168.0 [121.5, 211.0] 157.0 [108.0, 205.0] 0.04 

SOFA scores (median [IQR]) 6.0 [4.0, 9.0] 6.0 [4.0, 8.0] 8.0 [5.0, 10.0] <0.01 

LIPS score (median [IQR]) 5.5 [4.0, 6.5] 5.0 [4.0, 6.5] 6.0 [5.0, 7.5] <0.01 

Hypoinflammatory subphenotype, n (%) 344 (75.6) 254 (77.4) 90 (70.9) 0.18 

VFD (median [IQR]) 22.0 [13.0, 25.0] 23.0 [20.0, 25.2] 0.0 [0.0, 19.0] <0.01 

 678 

Abbreviations: IQR: Interquartile Range; BMI: body mass index; COPD: chronic obstructive pulmonary 679 

disease, LIPS: lung injury prediction score; WBC: white blood cell count; PaO2: partial pressure of arterial 680 

oxygen; FiO2: Fractional inhaled concentration of oxygen; SOFA: sequential organ failure assessment; VFD: 681 

ventilator free days; ARDS: acute respiratory distress syndrome. 682 

 683 

  684 
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Figures:  685 

Figure 1. Ecological features of dysbiosis in three body compartments in critically ill patients. A. 686 

Samples from critically ill patients had significantly lower alpha diversity (Shannon index) compared to 687 

corresponding healthy control samples in each compartment (p<0.001), with further decline of Shannon index 688 

over time in longitudinal samples (p<0.001). B. Baseline samples from critically ill patients had markedly 689 

significant differences in beta diversity from healthy controls (permutational analysis of variance [permanova] 690 

p-values <0.001). C-E. Taxonomic composition comparisons with the limma package showed high effect sizes 691 

and significance thresholds (threshold of log2-fold-change [logFC] of centered-log-transformed [CLR] 692 

abundances >1.5; Benjamini-Hochberg adjusted p-value<0.05) showed depletion for multiple commensal taxa 693 

in critically ill patients samples, with significant enrichment for Staphylococcus in oral and lung samples, and 694 

Anaerococcus and Enterococcus in gut samples (significant taxa shown in red in the volcano plots). F. Lung 695 

samples had lower bacterial burden compared to oral and gut samples by 16S qPCR (all p<0.001). G. Oral 696 

and lung samples had higher compositional similarity (Bray-Curtis indices) compared to lung and gut samples 697 

in the baseline and middle interval (p<0.001). H-I: Taxonomic comparisons between compartments revealed 698 

that no specific taxa were systematically different between oral and lung microbiota (H), whereas in gut-lung 699 

comparisons, lung communities were enriched for typical respiratory commensals (e.g. Rothia, Veillonella, 700 

Streptococcus) and gut communities for gut commensals (e.g. Bacteroides, Lachnoclostridium, 701 

Lachnospiraceae) (I). 702 
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 705 

  706 



32 

 

Figure 2: Longitudinal analysis of bacterial composition showed a progressive loss of obligate 707 

anaerobes in oral and lung communities as well as enrichment for recognized respiratory pathogens in 708 

all three compartments. Top Panels (A-B): Relative abundance barplots for oral, lung and gut samples with 709 

classification of bacterial genera by oxygen requirement into obligate anaerobes (anaerobes), aerobes, 710 

facultative anaerobes, microaerophiles, genera of variable oxygen requirement and unclassifiable. 711 

Comparisons of relative abundance for the three main categories of bacteria (obligate anaerobes, aerobes and 712 

facultative anaerobes) by follow-up interval (baseline, middle and late). Data in boxplots (B) are represented as 713 

individual values with median values and interquartile range depicted by the boxplots with comparisons 714 

between intervals by non-parametric tests. Bottom Panels (C-D): Relative abundance barplots for oral, lung 715 

and gut (F) samples with classification of bacterial genera by plausible pathogenicity into oral commensals, 716 

recognized respiratory pathogens and “other” category. Comparisons of relative abundance for these 717 

categories of bacteria by follow-up interval (baseline, middle and late) in boxplots (D). 718 
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Figure 3: Unsupervised clustering approaches revealed differences in bacterial alpha diversity and 720 

composition in three body compartments of critically ill patients. Panels A-D demonstrate bacterial 721 

Dirichlet Multinomial Mixture (DMM) modeling results for each compartment separately. DMM clusters had 722 

significant differences in alpha diversity (A) and composition (obligate anaerobe abundance in shown in panel 723 

B and pathogen abundance shown in panel C), with cluster 3 in each compartment showing very low Shannon 724 

Index and enrichment for pathogens (Low-Diversity cluster). Oral and lung cluster assignments were strongly 725 

associated (Odds ratio for assignment to the Low-Diversity cluster: 9.74 (5.61-17.29), p<0.0001), whereas lung 726 

and gut cluster assignments were less strongly but significantly associated (panel D).  727 

 728 
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Figure 4: Lung bacterial and bacterial-fungal clusters strongly predicted 60-day survival independent 731 

of clinical predictors, organ dysfunction severity and host-response subphenotypes. A-C: Kaplan-Meier 732 

curves for 60-day survival from intubation stratified by oral (A), lung (B) and gut (C) bacterial DMM clusters. 733 

The Low-Diversity lung DMM cluster was independently predictive of worse survival (adjusted Hazard Ratio = 734 

2.51 (1.26-4.98), p=0.008), following adjustment for age, sex, history of COPD, immunosuppression, severity 735 

of illness by sequential organ failure assessment (SOFA) scores and host-response subphenotypes. The Lung 736 

bacterial-fungal SNF cluster with high pathogen and C. albicans abundance (cluster 1) was independently 737 

predictive of worse survival (D), whereas the oral and gut bacterial-fungal SNF clusters (D, F) did not impact 738 

survival.  739 

 740 

 741 
 742 
  743 
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Figure 5: Lung and Gut Microbiota Associations with COVID-19 Severity in Two Independent Cohorts. 744 

A. Application of the dysbiosis index in lung (ETA) microbiota profiles in the UPMC-COVID cohort classified 745 

subjects in three clusters, with significant differences in Shannon index and bacterial load by 16S qPCR. B. 746 

The low diversity cluster in lung samples from UPMC-COVID subjects was significantly associated with higher 747 

plasma levels of sTNFR1 and Ang-2. C-D. Application of the dysbiosis index models in lung (sputum or ETA) 748 

and gut (stool) samples in the MGH-COVID cohort classified subjects in three clusters, with significant 749 

differences in Shannon index and anaerobe abundance between clusters. E-F: Cluster assignments in the 750 

MGH cohort were strongly associated with clinical severity for lung samples only. Membership in the Low-751 

Diversity cluster in the lungs was associated with an odds ratio of 8.77 (1.75-61.74) for severe disease (black 752 

belt connecting the Low-Diversity cluster and Severe Disease perimetric zones in the chord diagram). Gut 753 

clusters were not significantly associated with clinical severity of COVID-19 pneumonia.  754 
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