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Simple Summary: Melanoma is the most dangerous type of skin cancer worldwide. Early detection
of melanoma is crucial for better outcomes, but this often can be challenging. This research explores
the use of artificial intelligence (AI) techniques combined with non-invasive imaging methods to
improve melanoma detection. The authors aim to evaluate the current state of AI-based techniques
using tools including dermoscopy, optical coherence tomography (OCT), and reflectance confocal
microscopy (RCM). The findings demonstrate that several AI algorithms perform as well as or better
than dermatologists in detecting melanoma, particularly in the analysis of dermoscopy images.
This research highlights the potential of AI to enhance diagnostic accuracy, leading to improved
patient outcomes. Further studies are needed to address limitations and ensure the reliability and
effectiveness of AI-based techniques.

Abstract: Background: Melanoma, the deadliest form of skin cancer, poses a significant public health
challenge worldwide. Early detection is crucial for improved patient outcomes. Non-invasive skin
imaging techniques allow for improved diagnostic accuracy; however, their use is often limited due
to the need for skilled practitioners trained to interpret images in a standardized fashion. Recent
innovations in artificial intelligence (AI)-based techniques for skin lesion image interpretation show
potential for the use of AI in the early detection of melanoma. Objective: The aim of this study was to
evaluate the current state of AI-based techniques used in combination with non-invasive diagnostic
imaging modalities including reflectance confocal microscopy (RCM), optical coherence tomography
(OCT), and dermoscopy. We also aimed to determine whether the application of AI-based techniques
can lead to improved diagnostic accuracy of melanoma. Methods: A systematic search was conducted
via the Medline/PubMed, Cochrane, and Embase databases for eligible publications between 2018
and 2022. Screening methods adhered to the 2020 version of the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines. Included studies utilized AI-based algorithms
for melanoma detection and directly addressed the review objectives. Results: We retrieved 40 papers
amongst the three databases. All studies directly comparing the performance of AI-based techniques
with dermatologists reported the superior or equivalent performance of AI-based techniques in
improving the detection of melanoma. In studies directly comparing algorithm performance on
dermoscopy images to dermatologists, AI-based algorithms achieved a higher ROC (>80%) in the
detection of melanoma. In these comparative studies using dermoscopic images, the mean algorithm
sensitivity was 83.01% and the mean algorithm specificity was 85.58%. Studies evaluating machine
learning in conjunction with OCT boasted accuracy of 95%, while studies evaluating RCM reported a
mean accuracy rate of 82.72%. Conclusions: Our results demonstrate the robust potential of AI-based
techniques to improve diagnostic accuracy and patient outcomes through the early identification of
melanoma. Further studies are needed to assess the generalizability of these AI-based techniques
across different populations and skin types, improve standardization in image processing, and further
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compare the performance of AI-based techniques with board-certified dermatologists to evaluate
clinical applicability.

Keywords: melanoma; artificial intelligence; deep learning; dermoscopy; optical coherence tomography;
reflectance confocal microscopy; neural network; non-invasive imaging; in vivo imaging; early detection

1. Introduction

It has been well established that the detection of late-stage melanoma is associated
with poorer, potentially fatal outcomes. Early detection of melanoma is crucial to prevent
mortality and reduce unnecessary invasive procedures including surgical biopsy [1]. The
use of in vivo diagnostic imaging modalities to aid in the earlier detection of this deadly
skin cancer has shown significant efficacy, particularly with techniques such as reflectance
confocal microscopy (RCM), optical coherence tomography (OCT), and dermoscopy [2].
RCM uses a diode laser to provide high-resolution images in horizontal sections at the
cellular level as deep as the papillary dermis, while OCT uses near-infrared light to capture
microscopic images up to 2 mm below the skin’s surface (Figures 1 and 2) [2,3]. Dermoscopy
utilizes a dermatoscope with polarized or non-polarized light to visualize patterns and
microstructures in the epidermis and superficial dermis (Figure 3) [4].
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Figure 1. Reflectance confocal microscopy mosaic of melanoma in situ taken at the depth of the 
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and a non-specific pattern. There is the presence of pleomorphic atypical melanocytes (round and 
dendritic types) with visible dark nuclei and bright cytoplasm, as well as bundles of atypical mela-
nocytes characteristic for melanoma. Image size: 1 mm × 1 mm. 

Figure 1. Reflectance confocal microscopy mosaic of melanoma in situ taken at the depth of the
dermal–epidermal junction. Findings include an atypical ringed pattern with non-edged papillae
and a non-specific pattern. There is the presence of pleomorphic atypical melanocytes (round
and dendritic types) with visible dark nuclei and bright cytoplasm, as well as bundles of atypical
melanocytes characteristic for melanoma. Image size: 1 mm × 1 mm.
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mains largely unrealized. High-quality and accurate algorithms rely on a balanced dataset 
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the differences in algorithm development and image quality.  

Figure 2. Reflectance confocal microscopy mosaic of melanoma in situ taken at depth of the epidermis.
There is an irregular cobblestone pattern, the presence of folliculotropism, and pleomorphic pagetoid
cells (dendritic and round types) with numerosity greater than 10 per square millimeter. Image size:
1 mm × 1 mm.
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Figure 3. Dermoscopy of melanoma in situ demonstrating an asymmetric reticular pattern, atypical
thickened network, and blue-white structures. Due to the anatomical location of the lesion (on
the temple), there is the presence of perifollicular hyperpigmentation, rhomboid structures, and
effacement. Scale bar in the image represents 1 cm.
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Despite the advantages of these non-invasive imaging modalities, the application of
them requires substantial training and expertise, thus leading to variable results in diag-
nostic accuracy. Further, the quality of images may affect the interpretation and diagnostic
time, calling for an unbiased and automated recognition process [5]. Artificial intelligence
(AI)-based techniques have been developed to analyze images obtained by these imaging
modalities, with the aim of automating the diagnostic process while providing objectivity
and consistency in results. The use of AI-based techniques for the analysis of non-invasive
dermatologic imaging modalities has the potential to revolutionize the way in which skin
cancers are detected and diagnosed. Studies have demonstrated that machine learning
algorithms have the potential to minimize the number of artifacts that need to be reviewed,
speed up the diagnostic process, and reduce the number of clinic visits for patients [6].
While the use of AI in medical image recognition has grown tremendously over the past
several years, its potential in the dermatological evaluation of skin cancers remains largely
unrealized. High-quality and accurate algorithms rely on a balanced dataset with a high
diversity of inputs to allow for precise and accurate diagnoses [7]. Thus, different studies
exploring the use of machine learning-based technologies in the analysis of non-invasive
dermatologic imaging modalities may show variations in results based on the differences
in algorithm development and image quality.

Furthermore, the multitude of AI-based techniques used to analyze dermatological im-
ages can complicate clinical decision-making without clear guidelines. It can be challenging
to determine the feasibility of AI in clinical practice, as well as the role of machine learning,
convolutional neural networks, and deep learning in these techniques. Additionally, it is im-
portant to consider the limitations of AI. While it has the potential to revolutionize the field,
it can also be biased depending on the datasets and training process. For instance, datasets
used to train AI models may be primarily composed of fairer skin tones, which can result
in less accurate diagnoses for patients with darker skin tones [8]. Skin tones can affect the
results and output based on AI model training, making it crucial to ensure that the datasets
used to train these models are diverse and representative of the patient population [9]. It
is also crucial to compare the diagnostic accuracy of different models trained on diverse
datasets to accurately assess their potential for clinical use. An imbalanced dataset during
neural network training can lead to uneven performance in the analysis of non-invasive
dermatologic imaging modalities using machine learning algorithms [10,11]. Therefore,
ethical considerations and guidance from the Food and Drug Administration (FDA) are
necessary to ensure the safe and effective implementation of AI-based techniques in clinical
settings. These considerations highlight the importance of comprehensively evaluating
the current literature on the use of AI-based techniques to thoroughly understand the
potential for AI in the non-invasive diagnosis of melanoma. This review aims to address
these concerns and provides a better understanding of the current state of the field, with a
goal of guiding the development of future research supporting the implementation of these
techniques into clinical tools.

In this review, we seek to analyze and describe the current state of AI in non-invasive
skin cancer detection and summarize the outcomes of various algorithms. This review
provides a comprehensive analysis of the current state of AI in non-invasive skin cancer
detection, highlights the clinical implications of various algorithms, and identifies areas of
future research. Given the potential of these techniques to improve patient outcomes and
reduce unnecessary invasive procedures, understanding the current state of the field is of
paramount importance.

2. Materials and Methods
2.1. Literature Search Strategy

A literature search of PubMed/Medline, Embase, and Cochrane was used to search
for papers published from 2018 to 2023, analyzing the use of AI-based techniques applied
to images of malignant melanoma produced from reflectance confocal microscopy, op-
tical coherence tomography, and dermoscopy. The PRISMA guidelines were followed
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during data extraction, analysis, and reporting. The following search terms were used:
“melanoma”, “neural network”, “diagnosis or detection”, “carcinoma”, “lesion or growth
or cancer or neoplasm or tumor or malignant or metastatic”, “computer systems”, “skin
cancer detection”, “digital pathology”, “machine or deep learning”, “algorithms”, “artifi-
cial intelligence”, “skin cancers”, “diagnostic techniques and procedures”, “dermoscopy”,
“reflectance confocal microscopy”, and “optical coherence tomography”.

2.2. Study Eligibility and Selection

The study followed the Preferred Reporting Items for Systematic Reviews and Meta-
analyses (PRISMA) guidelines, the protocol was registered in the OSF database (registration
number: osf-registrations-z8tve-v1), and the search results were sorted, screened, and
manually assessed by two independent authors (R.H.P. and E.F.) Any discrepancies in
study selection and inclusion criteria were resolved through the input of a third reviewer
(J.L.) Only original, peer-reviewed research articles in the English language were selected
for review. Studies that directly compared human experts or histopathology with the AI-
based evaluation of non-invasive imaging for melanoma detection (dermoscopy, reflectance
confocal microscopy, and optical tomography) were part of the inclusion criteria. Studies
that did not directly diagnose melanoma, did not evaluate the use of AI-based approaches
with RCM, OCT, and dermoscopy, involved commentary/editorials on the subject of AI-
based approaches, and discussed models for lesion segmentation without classification
were excluded from the review. Finally, studies that did not evaluate diagnostic accuracy,
AUC, or sensitivity/specificity rates for the early detection of melanoma using AI-based
techniques were excluded (Figure 4).

From the selected articles, the following information was collected and analyzed:
general information regarding the paper (authors, publication year, and origin), the pur-
pose/objective of the work, non-invasive imaging modality, evaluation metric (diagnostic
accuracy, area under the curve, sensitivity and specificity rates), and AI methodology.

2.3. Study Analysis and Performance Metrics

The evaluation of the performance of AI-based approaches applied in combination
with reflectance confocal microscopy, optical coherence tomography, and dermoscopy for
the detection of melanoma was a critical aspect of this systematic review. The selection and
extraction of appropriate performance metrics from the reviewed papers was crucial to
accurately assess the diagnostic accuracy of the evaluated approaches. The three primary
performance metrics chosen for this study were accuracy, sensitivity, and specificity. Ac-
curacy is a widely used classification performance measure that indicates the percentage
of accurately classified skin lesions, which is the ratio between the total number of cor-
rectly classified lesions and the overall number of examined lesions. However, accuracy
may not be an appropriate metric when there is an imbalance in the distribution of target
classes in the dataset. Therefore, sensitivity and specificity, which are unaffected by class
imbalance, were also considered in this study. Sensitivity is a measure of the proportion of
true positive cases, i.e., the number of cases correctly identified as melanoma, in relation to
the total number of actual melanoma cases in the dataset. Specificity, on the other hand,
measures the proportion of true negative cases, i.e., the number of cases correctly identified
as non-melanoma, in relation to the total number of actual non-melanoma cases in the
dataset. The mean sensitivity and specificity of papers comparing AI-based techniques
with dermatologist performance was calculated in this study. For studies evaluating OCT
and RCM, accuracy rates were studied due to the mutual availability of this metric in the
reviewed papers.
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Other performance metrics, such as the area under the curve (AUC), positive predic-
tive value (PPV), and negative predictive value (NPV), were also reported and discussed,
when available. AUC is a commonly used performance metric that provides a comprehen-
sive evaluation of the performance of a classification model across all possible decision
thresholds. PPV and NPV are metrics that indicate the proportion of positive and negative
cases, respectively, that are correctly identified by the model. The performance metrics were
used to analyze and compare the diagnostic accuracy of the evaluated AI-based approaches.
The analysis of these metrics allowed for a comprehensive evaluation of the effectiveness of
AI-based approaches in the detection of melanoma, as well as the identification of potential
areas for improvement and future research.

3. Results

After initial screening, a total of 287 articles were assessed for eligibility. The PRISMA
flow diagram summarizing the identification of studies is shown in Figure 1. Following
a careful evaluation of their titles and abstracts, 40 articles were ultimately included in
this systematic review. Most of the articles applied AI-based approaches to dermoscopic
images (n = 37), followed by optical coherence tomography images (n = 1) and reflectance
confocal microscopy images (n = 2) (Tables 1–3).
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Table 1. Review of AI-based techniques for dermoscopy image analysis.

Paper Title Authors Objective AI Technique Dataset Diagnostic Accuracy Rate

Computer Aided Diagnosis of Melanoma
Using Deep Neural Networks and Game

Theory: Application on Dermoscopic
Images of Skin Lesions

Foahom Gouabou
et al. [12]

Development of a novel deep
learning ensemble method for

computer aided diagnosis
of melanoma

Deep Learning
Ensemble Method ISIC 2018 AUROC = 0.93 for melanoma,

BACC = 86%

Results of the 2016 International Skin
Imaging Collaboration International
Symposium on Biomedical Imaging

challenge: Comparison of the accuracy of
computer algorithms to dermatologists for

the diagnosis of melanoma from
dermoscopic images

Marchetti et al. [13]

Comparison of melanoma
diagnostic accuracy of computer

algorithms to dermatologists
using dermoscopic images

Deep Learning ISIC 2016
ROC of the top fusion

algorithm = 0.86, mean ROC of
dermatologists = 0.71. (p = 0.001)

Computer algorithms show potential for
improving dermatologists’ accuracy to

diagnose cutaneous melanoma: Results of
the International Skin Imaging

Collaboration 2017

Marchetti et al. [14]
Potential for improving

dermatologists’ accuracy to
diagnose cutaneous melanoma

Deep Learning ISIC 2017

ROC of top-ranked computer
algorithm = 0.87, ROC of

dermatologists and
residents = 0.66 (p < 0.001),

dermatologists overall
sensitivity = 76.0%, algorithm

had superior specificity
(85.0% vs. 72.6%, p = 0.001)

Lesion identification and malignancy
prediction from clinical
dermatological images

Xia et al. [15]

Two-stage approach that
identifies all lesions in an image,

estimates their likelihood of
malignancy, and generates an

image-level likelihood for
high-level screening

Deep Learning ISIC 2018

AUC of 0.959 based on
dermoscopic images, which was
augmented to an AUC of 0.961

using ISIC2018

An improved transformer network for skin
cancer classification Xin et al. [16]

Establishment of an improved
transformer network named

SkinTrans

Vision Transformer
(VIT) HAM10000 Accuracy = 94.3%

Skin Cancer Diagnosis Based on
Neutrosophic Features with a Deep

Neural Network
Singh et al. [17]

Computer-aided diagnosis
system for the classification of a

malignant lesion, where the
acquired image is primarily

pre-processed using
novel methods

Deep Learning PH2, ISIC 2017, ISIC
2018, and ISIC 2019

PH2 = 99.50%,
ISIC 2017 = 99.33%,

ISIC 2018 = 98.56%, and
ISIC 2019 = 98.04%
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Table 1. Cont.

Paper Title Authors Objective AI Technique Dataset Diagnostic Accuracy Rate

SCDNet: A Deep Learning-Based
Framework for the Multiclassification of
Skin Cancer Using Dermoscopy Images

Naeem et al. [18]

Novel framework for the
multiclassification of skin cancer

types such as melanoma,
melanocytic nevi, basal cell

carcinoma, and benign keratosis

Deep Learning ISIC 2019 Accuracy = 92.18%

Cancer-Net SCa: tailored deep neural
network designs for detection of skin cancer

from dermoscopy images
Lee et al. [19]

Deep neural network designs
tailored for melanoma detection

from dermoscopy images
Deep Learning ISIC 2018 Sensitivity of 92.8%, PPV of

78.5%, and NPV of 91.2%

On the Automatic Detection and
Classification of Skin Cancer Using Deep

Transfer Learning
Fraiwan et al. [20]

Applicability of raw deep
transfer learning in classifying

images of skin lesions into seven
possible categories

Deep Learning HAM10000
71% sensitivity (i.e., recall) but

43.1% precision. Highest
reported accuracy rate = 76.7%

Computational Intelligence-Based
Melanoma Detection and Classification

Using Dermoscopic Images
Vaiyapuri et al. [21]

Develops a novel computational
intelligence-based melanoma
detection and classification

technique using dermoscopic
images (CIMDC-DIs)

Computational
Intelligence (CI) and
Deep Learning (DL)

ISIC 2016, 2017, 2020 Maximum accuracy of 97.50%

Efficacy of a Deep Learning Convolutional
Neural Network System for Melanoma

Diagnosis in a Hospital Population

Martin-Gonzalez
et al. [22]

Deep learning-based tool to
differentiate between benign skin
lesions versus melanoma in the

hospital setting

Deep Learning 232 dermoscopic
images

AUC = 0.813, sensitivity of 0.691,
specificity of 0.802, and accuracy

of 0.776

Deep Learning-Based Classification for
Melanoma Detection Using XceptionNet Lu et al. [23]

Automatic method for diagnosis
of skin cancer from
dermoscopy images

Deep Learning HAM10000

Accuracy rate of 100% for the
detection of melanoma,

sensitivity rate of 94.05%, and
precision rate of 97.07%

Melanoma Classification Using a Novel
Deep Convolutional Neural Network with

Dermoscopic Images
Kaur et al. [24]

Proposed a lightweight and less
complex DCNN than other
state-of-the-art methods to

classify melanoma skin cancer
with high efficiency

Deep Learning ISIC 2016, ISIC 2017,
and ISIC 2020

ISIC 2016 = 81.41%,
ISIC 2017 = 88.23%, and

ISIC 2020 = 90.42%

A Computer-Aided Diagnosis System Using
Deep Learning for Multiclass Skin

Lesion Classification
Arshad et al. [25]

Series-based new automated
framework for multiclass skin

lesion classification
Deep Learning HAM10000 Accuracy = 91.7%
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Table 1. Cont.

Paper Title Authors Objective AI Technique Dataset Diagnostic Accuracy Rate

ZooME: Efficient Melanoma Detection
Using Zoom-in Attention and Metadata

Embedding Deep Neural Network
Xing et al. [26]

Zoom-in Attention and Metadata
Embedding (ZooME) melanoma

detection network
Deep Learning ISIC 2020

92.23% AUC score, 84.59%
accuracy, 85.95% sensitivity, and

84.63% specificity

AI outperformed every dermatologist in
dermoscopic melanoma diagnosis, using an

optimized deep-CNN architecture with
custom mini-batch logic and loss function

Pham et al. [27]

Method for improving melanoma
prediction on an imbalanced

dataset by reconstructed
appropriate CNN architecture

and optimized algorithms

Deep Learning 17,302 dermoscopic
images

AUC of 94.4%, sensitivity of
85.0%, and specificity of 95.0%

Computer-Aided Diagnosis Algorithm for
Classification of Malignant Melanoma Using

Deep Neural Networks
Kim et al. [28]

Tumor lesion segmentation
model and a classification model

of malignant melanoma
Deep Learning ISIC 2017

Classification accuracy of
malignant melanoma

reached 80.06%

Skin cancer detection from dermoscopic
images using deep learning and fuzzy

k-means clustering
Nawaz et al. [29]

Fully automated method for
segmenting skin melanoma at its

earliest stage by employing a
deep learning-based approach,

namely faster region-based
convolutional neural networks

(RCNN) along with fuzzy
k-means clustering (FKM)

DL-based approach ISIC 2016, ISIC 2017,
and PH2

ISIC 2016 = 95.40,
ISIC 2017 = 93.1, and

PH2 = 95.6%

A novel melanoma prediction model for
imbalanced data using optimized

SqueezeNet by bald eagle
search optimization

Sayed et al. [30]
New model for the classification
of skin lesions as either normal

or melanoma
Deep Learning ISIC 2020

Accuracy of 98.37%, specificity of
96.47%, sensitivity of 100%,

f-score of 98.40%, and area under
the curve of 99%

Ensemble Method of Convolutional Neural
Networks with Directed Acyclic Graph
Using Dermoscopic Images: Melanoma

Detection Application

Foahom Gouabou
et al. [31]

Novel ensemble scheme of
convolutional neural networks

(CNNs), inspired by
decomposition and ensemble

methods, to improve the
performance of the CAD system

CAD/CNN ISIC 2018 Best balanced accuracy = (76.6%)

Developing a Recognition System for
Diagnosing Melanoma Skin Lesions Using

Artificial Intelligence Algorithms
Alsaade et al. [32]

Development of feature-based
and deep learning-based systems

for melanoma classification

Deep learning and
traditional artificial

intelligence machine
learning algorithms

PH2, ISIC 2018 Accuracy = PH2 (97.50%) and
ISIC 2018 (98.35%)
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Table 1. Cont.

Paper Title Authors Objective AI Technique Dataset Diagnostic Accuracy Rate

Automated multi-class classification of skin
lesions through deep convolutional neural

network with dermoscopic images
Iqbal et al. [33]

Develop, implement, and
calibrate an advanced deep

learning model in the context of
automated multiclass

classification of skin lesions

Deep Convolutional
Neural Network
(DCNN) Model

ISIC-2017, ISIC-2018,
and ISIC-2019

AUROC = 0.964, 94% precision,
93% sensitivity, and 91%

specificity in ISIC-17

Melanoma diagnosis using deep learning
techniques on dermatoscopic images Jojoa Acosta et al. [34] Two-stage DL-based method Deep Learning ISIC 2017

Overall accuracy (0.904),
sensitivity (0.820), and

specificity (0.925)

A new deep learning approach integrated
with clinical data for the dermoscopic

differentiation of early melanomas from
atypical nevi

Tognetti et al. [35]

Deep convolutional neural
network (DCNN) model able to
support dermatologists in the

classification and management of
atypical melanocytic skin

lesions (aMSL)

Deep Convolutional
Neural Network

(DCNN)

630 dermoscopic
images

AUC = 90.3%, SE = 86.5%, and
SP = 73.6%

Deep learning-level melanoma detection by
interpretable machine learning and imaging

biomarker cues
Gareau et al. [36]

Transparent machine learning
technology (i.e., not deep
learning) to discriminate
melanomas from nevi in

dermoscopy images and an
interface for sensory

cue integration

Transparent Machine
Learning 349 images AUROC was 0.71 ± 0.07,

Sens = 98%, Spec = 36%

Effective Melanoma Recognition Using Deep
Convolutional Neural Network with

Covariance Discriminant Loss
Guo et al. [37]

Melanoma recognition method
using deep convolutional neural

network with covariance
discriminant loss in
dermoscopy images

Deep Learning ISIC 2018 Sensitivity = 0.942 and 0.917

Deep Convolutional Neural Network for
Melanoma Detection using

Dermoscopy Images
R K et al. [38]

Propose a deep convolutional
neural network for automated

melanoma detection that is
scalable to accommodate a

variety of hardware and
software constraints

Deep Learning 2150 dermosocpic
images

Accuracy = 82.95%,
sensitivity = 82.99%, and

specificity = 83.89%
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Table 1. Cont.

Paper Title Authors Objective AI Technique Dataset Diagnostic Accuracy Rate

Dermoscopic diagnostic performance of
Japanese dermatologists for skin tumors
differs by patient origin: A deep learning

convolutional nmeural network closes
the gap

Minagawa et al. [39]

Compared the performance of 30
Japanese dermatologists with

that of a DNN for the
dermoscopic diagnosis of

International Skin Imaging
Collaboration (ISIC) and Shinshu

(Japanese only) datasets to
classify malignant melanoma,
melanocytic nevus, basal cell

carcinoma, and benign keratosis
on non-volar skin

Deep Learning ISIC and Shinsu
(Japanese) dataset

Specificity of the DNN at the
dermatologists’ mean sensitivity
value = 0.962; Shinshu set = 1.00

DePicT Melanoma Deep-CLASS: a deep
convolutional neural networks approach to

classify skin lesion images
Nasiri et al. [40]

Approach to classify skin lesions
using deep learning for early
detection of melanoma in a

case-based reasoning
(CBR) system

Deep Learning ISIC Archive Accuracy = 0.77

Melanoma recognition by a deep learning
convolutional neural

network—Performance in different
melanoma subtypes and localisations

Winkler et al. [41]

Investigated the diagnostic
performance of a CNN with
approval for the European

market across different
melanoma localizations

and subtypes

Deep Learning

6 dermoscopic
image sets (each set

included 30
melanomas and 100

benign lesions of
related localisations
and morphology)

Sensitivities > 93.3%,
specificities > 65%, receiver

operating characteristic–area
under the curve

(ROC-AUC) > 0.926

Detection of Malignant Melanoma Using
Artificial Intelligence: An Observational

Study of Diagnostic Accuracy
Phillips et al. [42]

Evaluated the accuracy of an AI
neural network (Deep Ensemble

for Recognition of Melanoma
(DERM)) to identify malignant

melanoma from
dermoscopic images

DERM 7102 dermoscopic
images

ROC (AUC) of 0.93 (95%
confidence interval: 0.92–0.94),

and sensitivity and specificity of
85.0% and 85.3%

Deep neural networks are superior to
dermatologists in melanoma

image classification
Brinker et al. [43]

Automated dermoscopic
melanoma image classification
compared with dermatologists

Deep Learning
4204 biopsy-proven

images of
melanoma and nevi

Trained CNN achieved higher
sensitivity of 82.3%

(95% CI: 78.3–85.7%) and higher
specificity of 77.9%

(95% CI: 73.8–81.8%)
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Table 1. Cont.

Paper Title Authors Objective AI Technique Dataset Diagnostic Accuracy Rate

Deep learning outperformed 136 of
157 dermatologists in a head-to-head

dermoscopic melanoma image
classification task

Brinker et al. [44]

Performance of a deep learning
algorithm trained by open-source
images exclusively is compared

to a large number of
dermatologists covering all levels

within the clinical hierarchy

Deep Learning

12,378 open-source
dermoscopic images

(training set),
100 images

for comparison

At mean sensitivity of 74.1%, the
CNN exhibited mean specificity
of 86.5% (range 70.8–91.3%). At
mean specificity of 60%, mean

sensitivity of 87.5% (range
80–95%) was achieved by

our algorithm

Deep Learning and Handcrafted Method
Fusion: Higher Diagnostic Accuracy for

Melanoma Dermoscopy Images
Hagerty et al. [45]

Approach that combines
conventional image processing

with deep learning by fusing the
features from the

individual techniques

Deep Learning ISIC AUC of 0.87, classification
accuracy of 0.94

Man against machine: diagnostic
performance of a deep learning

convolutional neural network for
dermoscopic melanoma recognition in

comparison to 58 dermatologists

Haenssle et al. [46]

Compared a CNN’s diagnostic
performance with a large

international group of
58 dermatologists

Deep Learning 100 dermoscopic
images

CNN ROC AUC was greater
than the mean ROC area of

dermatologists (0.86 versus 0.79,
p < 0.01)

Skin Lesion Analysis towards Melanoma
Detection Using Deep Learning Network Li et al. [47]

Proposed two deep learning
methods to address three main

tasks emerging in the area of skin
lesion image processing

Deep Learning ISIC 2017 Highest accuracy = 0.912
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Table 2. Review of AI-based techniques for optical coherence tomography image analysis.

Paper Title Authors Objective AI Technique Dataset Diagnostic Accuracy
Rate

Identification of Cancerous Skin
Lesions Using Vibrational Optical

Coherence Tomography (VOCT): Use
of VOCT in Conjunction with

Machine Learning to Diagnose Skin
Cancer Remotely Using Telemedicine

Silver FH
et al. [48]

Used VOCT and machine
learning to evaluate the

specificity and sensitivity
of differentiating normal

skin from skin cancers

Conventional
Machine
Learning

80 images Sensitivity = 83.3%,
specificity = 77.8%

Table 3. Review of AI-based techniques for reflectance confocal microscopy image analysis.

Paper Title Authors Objective AI Technique Dataset Diagnostic Accuracy
Rate

Convolutional Neural Network
Approach to Classify Skin Lesions

Using Reflectance
Confocal Microscopy

Wodzinski
et al. [49]

CNN-based approach to
classify skin lesions using
the reflectance confocal

microscopy
(RCM) mosaics

CNN 429 RCM
mosaics

Test set classification
accuracy = 87%

Semantic segmentation of reflectance
confocal microscopy mosaics of

pigmented lesions using weak labels

D’Alonzo
et al. [50]

Development of a weakly
supervised machine

learning model to
perform semantic
segmentation of

architectural patterns
encountered in
RCM mosaics

Deep Learning 157 RCM
mosaics

Trained DNN achieved
an average AUC of 0.969;
Dice coefficient = 0.778

3.1. Artificial Intelligence-Based Approaches Applied to Dermoscopic Images

Deep learning has gained significant attention in the field of dermatology, particularly
in the analysis of dermoscopy images. Dermoscopic images of melanoma have been widely
used in the development and evaluation of deep learning-based models. The majority of
articles in our review trained their algorithms on publicly available datasets of dermoscopic
images of melanoma that were confirmed by either histopathology, follow-up examination,
expert consensus, or confirmation by in vivo confocal microscopy. A summary of these
publicly available datasets is shown in Table 4.

Table 4. Summary of publicly available datasets for dermoscopic images of melanoma.

Dataset Total Dermoscopic Images

International Skin Imaging Collaboration (ISIC 2016) 1279

International Skin Imaging Collaboration (ISIC 2017) 2600

International Skin Imaging Collaboration (ISIC 2018) 11,527

International Skin Imaging Collaboration (ISIC 2019) 33,569

International Skin Imaging Collaboration (ISIC 2020) 44,108

PH2 200

Human Against Machine with 10,000 training images (HAM10000) 10,015

Foahom Gouabou et al. presented a deep learning ensemble method to obtain the ac-
curate computer-assisted diagnosis (CAD) of melanoma [12]. This was undertaken through
the evaluation of 1113 dermoscopic images of melanoma lesions extracted from a public
dataset. The proposed framework achieved an area under the receiver operating curve (AU-
ROC) of 0.93 for melanoma detection and outperformed similar existing methods within
this task. Furthermore, this study also evaluated the decision-making process between the
algorithm versus a trained dermatologist in distinguishing between benign keratosis and
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melanoma. The algorithm demonstrated enhanced efficiency and accuracy in diagnosing
challenging-to-classify pigmented lesions for the task (p = 0.90 for melanoma), while also
offering a transparent and unbiased decision-making process. Marchetti et al. presented
one of the earliest studies, in 2016, comparing the diagnostic accuracy of dermoscopic
melanoma images using deep learning algorithms with dermatologists [13]. This study
uniquely used five individual methods to combine individual automated predictions into
“fusion” algorithms. Notably, the top fusion model outperformed eight experienced derma-
tologists. The average sensitivity and specificity of dermatologists in accurate classification
(benign lesions vs. malignant) was 82% and 59%, respectively. The study found that the
best fusion computer algorithm achieved a remarkable ROC area of 0.86, demonstrating a
significant improvement over the mean ROC area of 0.71 observed among the eight readers
in classification (p = 0.001).

Subsequently, in 2020, Marchetti et al. proposed a similar study in which the best
performing algorithm considerably outperformed eight dermatologists and nine dermatol-
ogy trainees (p < 0.001) [14]. Xia et al. proposed a two-stage approach that identifies all
lesions in an image, estimates their likelihood of malignancy, and generates an image-level
likelihood for high-level screening [15]. This strategy led to an AUC of 0.959 based on
dermoscopic images, which was augmented to an AUC of 0.961 using a publicly available
dataset from ISIC 2018. This two-stage model demonstrated satisfactory performance and
could be used in a PCP triage for dermatology at scale for images concerning malignancy as
a complete end-to-end system. Xin et al. proposed a novel transformer network, SkinTrans,
which demonstrated 94.1% accuracy on a clinical dataset of 1113 melanoma dermoscopic
images, performing better than traditional CNN models [16].

In a larger study utilizing several publicly available datasets, Singh et al. applied
a segmentation model to four public datasets, PH2, ISIC 2017, ISIC 2018, and ISIC 2019,
yielding an accuracy score of 99.50%, 99.33%, 98.56%, and 98.04%, respectively [17]. The
proposed method had a significantly higher score in sensitivity and specificity in the field
of the diagnosis of melanoma lesions. In comparison, Kaur et al. proposed an automated
melanoma classifier based on a deep convolutional neural network to accurately classify
benign vs. malignant melanoma. Images were obtained from the ISIC 2016, ISIC 2017, and
ISIC 2020 datasets, for which the proposed DCNN classifier achieved accuracy rates of
81.41%, 88.23%, and 90.42%, respectively [24]. This model demonstrated favorable perfor-
mance in comparison with other neural networks, while offering an advanced framework
for the automation of the diagnostic process.

Naeem et al. proposed a deep learning-based framework for the multiclassification
of skin cancer using dermoscopic images [18]. For melanoma, the training set included
3166 images with a validation set of 452 images and a testing set of 904 images. This system
achieved better performance as compared to four pre-trained classifiers, with accuracy of
92.18% for the classification of melanoma. It achieved an AUC of 0.9833, recall of 99.9%,
precision of 92.21%, an f1-score of 91.37%, and accuracy of 92.21%. Lee et al. introduced a
suite of deep neural network designs tailored to melanoma detection from dermoscopy
images [19]. This study produced sensitivity of 92.8%, a PPV of 78.5%, and an NPV of
91.2%. This model allows for the use of a pre-screening tool in the diagnostic process of
melanoma while providing a fine balance between computational efficiency and accuracy.
Fraiwan et al. utilized the HAM1000 dataset of dermoscopic images to classify melanoma
vs. non-melanoma skin cancers [20]. The melanoma class was detected with 71% sensitivity
(i.e., recall) but 43.1% precision. The highest reported accuracy rate from this study was
76.7%.

Further, Martin-Gonzalez et al. developed a deep learning-based tool to differentiate
between benign skin lesions and melanoma in the hospital setting [22]. This was based
on a dataset of 232 dermoscopic images, which were analyzed by the system. The nevus
group had a significantly lower mean diagnostic threshold (27.12 ± 35.44%) compared
to the melanoma group (72.50 ± 34.03%), with a p-value of less than 0.001. The area
under the ROC curve was 0.813. Sensitivity of 0.691, specificity of 0.802, and accuracy
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of 0.776 were achieved at a diagnostic threshold of 67.33%. Of note, this study did not
incorporate the use of public databases. Lu et al. proposed a deep learning-based classi-
fication system for melanoma detection using dermoscopic images from the HAM10000
dataset [23]. This method offered an accuracy rate of 100% for the detection of melanoma,
a sensitivity rate of 94.05%, and a precision rate of 97.07%. Vaiyapuri et al. developed a
novel computational intelligence-based melanoma detection and classification approach
using dermoscopic images with maximum accuracy of 97.50% [21]. Arshad et al. similarly
used the HAM10000 database to apply an automated framework for multiclass skin lesion
classification, obtaining an accuracy rate of 91.7% [25].

Xing et al. proposed a novel Zoom-in Attention and Metadata Embedding (ZooME)
melanoma detection network and applied this to the ISIC 2020 dataset composed of 33,126
dermoscopy images [26]. This model achieved a 92.23% AUC score, 84.59% accuracy,
85.95% sensitivity, and 84.63% specificity. Thus, this model uniquely demonstrates a benefit
in the extraction and utilization of unique pathological information from dermatoscopic
images and in embedding various patient demographics for better prediction. Pham
et al. introduced a novel technique that enhances melanoma prediction on an imbalanced
dataset through a reconstructed CNN architecture and optimized algorithms [27]. The
training dataset, consisting of 17,302 melanoma and nevus images, is the largest dataset
utilized in this context. A comprehensive comparison was conducted between the model’s
performance and that of 157 dermatologists from 12 university hospitals in Germany, all
based on the same dataset. The findings revealed that the proposed approach outperformed
all 157 dermatologists and demonstrated superior performance to the state-of-the-art
method, achieving an impressive area under the curve of 94.4%, sensitivity of 85.0%, and
specificity of 95.0%.

Another deep learning-based approach, proposed by Nawaz et al., evaluated on three
standard datasets (ISBI 2016, ISIC 2017, and PH2), demonstrated that the presented method
outperformed current approaches [29]. This method achieved average accuracy of 95.40,
93.1, and 95.6% on the ISIC 2016, ISIC 2017, and PH2 datasets, respectively, highlighting
its robustness in skin lesion recognition and segmentation. This approach combines faster
region-based convolutional neural networks (RCNN) with fuzzy k-means clustering (FKM),
allowing for considerable improvements in melanoma detection even in the presence of
image artifacts such as hair, blood vessels, lighting variations, and noise. In their work,
Kim et al. introduced a publicly available deep learning algorithm for the classification of
malignant melanoma. The proposed approach leveraged skin lesion images and expert
labeling outcomes obtained from convolutional neural networks [28]. The U-Net model
employed achieved a notable Dice similarity coefficient of 81.1% when compared to the
expert labeling results. Moreover, the algorithm demonstrated high classification accuracy
of 80.06% for malignant melanoma cases. These findings highlight the effectiveness of the
proposed approach in accurately identifying and classifying malignant melanoma.

To overcome the problem of class imbalance in datasets, Sayed et al. proposed a
new model for the classification of skin lesions using ISIC 2020 [30]. This study utilized
a hybrid version of a convolutional neural network architecture and bald eagle search
(BES) optimization to solve this issue. This deep network model for the prediction of
melanoma skin cancer used fewer parameters and achieved overall accuracy of 98.37%,
with specificity of 96.47%, sensitivity of 100%, an f-score of 98.40%, and an area under the
curve of 99%. These findings demonstrated that the proposed model was both robust and
efficient, outperforming VGG19, GoogleNet, and ResNet50.

Moreover, Foahom-Gouabou et al. proposed an ensemble of convolutional neural
networks (CNNs) with a directed acyclic graph to aggregate binary CNNs, resulting in
the best balanced accuracy (76.6%) among multiclass CNNs and other related works on
the ISIC 2018 public dataset [31]. This method is noteworthy for its hierarchical workflow,
which promotes transparency in the decision-making process and, as a result, simplifies the
interpretation for dermatologists. Alsaade et al. aimed to develop a system for the diagnosis
of skin cancer using deep learning and traditional AI machine learning algorithms [32].
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The system was evaluated on dermoscopy images from two datasets, PH2 and ISIC 2018.
The proposed method outperformed state-of-the-art methods for both datasets, with the
artificial neural network (ANN) model achieving the highest accuracy of 97.50% for PH2
and 98.35% for ISIC 2018 compared to the convolutional neural network (CNN) model.

Two papers developed similar models based on the ISIC 2017 dataset. Iqbal et al.
developed a deep learning model for the automated multiclass classification of skin lesions
using dermoscopic images from ISIC databases [33]. The proposed deep convolutional
neural network (DCNN) approach outperformed state-of-the-art algorithms, achieving
94% precision, 93% sensitivity, and 91% specificity in ISIC-2017 with a 0.964 AUROC.
This proposed approach provides a feasible way to automate and expedite the skin le-
sion classification task, potentially saving effort, time, and human lives. Similarly, Acosta
et al. developed a deep learning-based approach that involves a two-stage process using
mask and region-based convolutional neural networks (CNNs) and a ResNet152 struc-
ture for lesion classification [34]. The model achieved an accuracy and balanced accu-
racy increase of 3.66% and 9.96%, respectively, compared to the best results reported
in the 2017 International Symposium on Biomedical Imaging Challenge dataset. This
model boasts an excellent balance between overall accuracy (0.904), sensitivity (0.820), and
specificity (0.925).

In 2017, Tognetti et al. aimed to develop a deep convolutional neural network, called
iDCNN_aMSL, to support dermatologists in the differentiation of early melanoma from
atypical nevi using dermoscopic images and clinical data [35]. The model was compared to
the intuitive diagnoses of dermatologists with different experience levels and achieved the
best accuracy, reducing the ratio of inappropriate excision. This model achieved an area
under the curve of 90.3%, sensitivity of 86.5%, and specificity of 73.6% compared to the
intuitive diagnoses of dermatologists (sensitivity of 77% and specificity of 61.4%), and it
can provide valuable assistance to dermatologists in making informed medical decisions
that can help to reduce the number of unnecessary excisions. Guo et al. proposed a deep
convolutional neural network trained with both cross-entropy and covariance discriminant
loss [37]. This approach improves the model outputs and extracted features simultaneously,
and a new embedding loss is designed to separate the features of melanoma and non-
melanoma images more effectively. The proposed method achieved sensitivity of 0.942
and 0.917 on the ISBI 2018 Skin Lesion Analysis dataset, demonstrating its efficacy in
melanoma recognition.

R K et al. also presented a deep convolutional neural network for automated melanoma
detection that can adapt to different hardware and software limitations [38]. The network
was trained on dermoscopic skin images from open sources and achieved high average
values for accuracy, sensitivity, and specificity of 82.95%, 82.99%, and 83.89%, respectively,
when tested on a dataset of 2150 images. Minagawa et al. compared the performance
of 30 Japanese dermatologists with a deep neural network (DNN) for the dermoscopic
diagnosis of skin tumors in different datasets [39]. Interestingly, the study found that
the dermatologists’ sensitivity for malignancy prediction was significantly higher for the
Shinshu dataset (Japanese only) compared to the ISIC dataset (predominately fair-skinned),
and the DNN had higher specificity than the human readers. The study suggests that a
DNN may help to improve the diagnostic performance for skin tumors in patients with
different skin types and may be more effective at identifying malignant features after initial
screening by dermatologists.

Further, Nasiri et al. presented an approach for the early detection of melanoma using
deep learning in a case-based reasoning (CBR) system [40]. The system, called DePicT
Melanoma Deep-CLASS, utilizes a convolutional neural network (CNN) composed of
sixteen layers to classify skin lesions as benign or malignant melanoma. The efficiency of
this system was demonstrated using the ISIC Archive dataset and the proposed method
was shown to be effective in malignancy detection, with validation on 1796 dermoscopy
images. Winkler et al. aimed to investigate the diagnostic performance of a deep learning
convolutional neural network (CNN) for melanoma diagnosis across different melanoma
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localizations and subtypes [41]. Each set included 30 melanomas and 100 benign lesions of
related localizations and morphology. The study found that the CNN showed high-level
performance in superficial spreading melanomas, nodular melanomas, and lentigo maligna
melanomas and facial solar lentigines/seborrhoeic keratoses/nevi. In acrolentiginous
melanomas, the CNN’s sensitivity was lower, but high specificity was noted.

Phillips et al. conducted a study with the aim of assessing the accuracy of a neural net-
work called Deep Ensemble for Recognition of Melanoma (DERM) in detecting malignant
melanoma from dermoscopic images of pigmented skin lesions [42]. The DERM model
was trained and tested using a dataset consisting of 7102 dermoscopic images encompass-
ing both melanoma and benign lesions. The findings revealed that DERM achieved an
impressive area under the ROC curve (AUC) of 0.93, along with sensitivity of 85.0% and
specificity of 85.3%. Additionally, the study conducted a comprehensive meta-analysis that
examined the accuracy of naked-eye examination, with or without dermoscopy, performed
by specialist and general physicians. The meta-analysis demonstrated that primary care
physicians achieved an AUC of 0.83, with sensitivity of 79.9% and specificity of 70.9%, while
dermatologists achieved an AUC of 0.91, with sensitivity of 87.5% and specificity of 81.4%.
The study suggests that DERM has the potential to be used as a decision support tool in
primary care by providing dermatologist-grade recommendations on melanoma likelihood.
Following their previous work, the same research group conducted a subsequent study
to evaluate the accuracy of an artificial intelligence algorithm in detecting melanoma in
dermoscopic images of skin lesions captured using smartphones and digital single-lens
reflex (DSLR) cameras [51]. The algorithm achieved an impressive area under the receiver
operator characteristic (ROC) curve of 91.8% when compared to histopathological diagnosis.
Notably, at 100% sensitivity, the algorithm achieved specificity of 64.8%, while clinicians
achieved specificity of 69.9%.

Several studies have gone beyond the traditional binary perspective, presented by
Brinker et al., Haenssle et al., and Marchetti et al., in an effort to undertake multiclass
classification tasks [43,44,46]. In 2019, Brinker et al. compared the diagnostic accuracy
of a deep convolutional neural network (CNN) with that of dermatologists in the clas-
sification of melanoma and nevi images [43]. A total of 804 dermoscopic images were
presented to nine dermatologists, and the CNN achieved higher sensitivity and specificity
in lesion classification than the dermatologists. The study concluded that automated der-
moscopic melanoma image classification was significantly superior to both junior and
board-certified dermatologists. Subsequently, Brinker et al. trained another deep learn-
ing algorithm on open-source images, which outperformed 136 of 157 dermatologists in
classifying dermoscopic melanoma images [44]. The algorithm was measured in terms of
sensitivity, specificity, and receiver operating characteristics and achieved higher scores
than dermatologists of all levels of experience.

Similarly, in a 2020 study by Marchetti et al., computer algorithms from an international
melanoma detection challenge outperformed eight dermatologists and nine dermatology
residents in diagnosing melanoma from dermoscopy images, with an area under the re-
ceiver operating characteristic curve of 0.87 compared to 0.74 and 0.66, respectively [14].
The algorithm had superior specificity at the dermatologists’ overall sensitivity, and the im-
putation of algorithm classifications increased the dermatologists’ sensitivity and specificity.
Although the study’s artificial setting lacked the full spectrum of skin lesions and clinical
metadata, the results suggest that deep neural networks have the potential to improve
human performance in skin lesion classification.

In one of the earliest studies that uniquely provided additional clinical information
to dermatologists within the reader study, Haenssle et al. compared the diagnostic perfor-
mance of a deep learning convolutional neural network (CNN) for dermoscopic melanoma
recognition to that of 58 dermatologists, including 30 experts [46]. The CNN had higher
specificity than the dermatologists at their respective sensitivity and achieved a greater
area under the curve (AUC) for receiver operating characteristics (ROC) than the dermatol-
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ogists. The study suggests that dermatologists may benefit from assistance by a CNN’s
image classification.

Hagerty et al. proposed a unique fusion approach of conventional image processing
and deep learning to diagnose melanoma dermoscopy images [45]. The fusion technique
combines three handcrafted, biologically inspired image processing modules and one clini-
cal information module with a ResNet50 deep learning network. Using logistic regression
to ensemble the scores from both processing arms, the fusion technique achieved classifica-
tion accuracy of 0.94, compared to 0.87 for the deep learning classifier alone and 0.90 for the
conventional image processing classifier alone. The study suggests the further investigation
and development of fusion techniques for melanoma diagnosis. Li et al. proposed two
separate deep learning methods to address the challenges in the accurate recognition of
melanoma in dermoscopy images [47]. The methods included lesion segmentation, lesion
dermoscopic feature extraction, and lesion classification tasks. The proposed deep learning
frameworks achieved promising accuracy of 0.753 for task 1, 0.848 for task 2, and 0.912 for
task 3 on the ISIC 2017 dataset. This study suggests that the reliable automatic detection
of skin tumors using deep learning networks can increase the accuracy and efficiency
of pathologists.

In contrast with the majority of studies in this section, Gareau et al. developed a trans-
parent machine learning technology to differentiate melanoma from nevi in dermoscopy
images, and an interface for sensory cue integration [36]. The interpretable machine learn-
ing algorithm outperformed the leading deep learning approach 75% of the time. In lieu of
using a deep learning-based approach, this study aimed to provide a transparent approach
that results in greater medical accountability and confidence than a CNN.

3.2. Artificial Intelligence-Based Approaches to Analysis of Reflectance Confocal Microscopy
(RCM) Images

Reflectance confocal microscopy (RCM) has emerged as a valuable tool in dermatology
for the diagnosis of skin tumors, including melanoma and non-melanoma skin cancers,
as well as for the interpretation and management of inflammatory and infectious skin
diseases [52]. This technique allows for the real-time in vivo visualization of the epidermis
to the papillary dermis, with comparable resolution to histology [53]. By allowing the
dermatologist to essentially perform a “virtual biopsy” of skin lesions, it can aid in reducing
unnecessary invasive procedures and skin biopsies [54]. RCM can increase the specificity
and sensitivity of diagnosis in most skin cancers, guide biopsy in suspicious lesions, and
aid in mapping the margins of large tumors for proper surgical excision [52]. It can also be
used to follow the clinical and therapeutic evolution of skin diseases.

Despite its benefits, the subjectivity of this method and the reliance on user interpreta-
tion create the potential for variations in diagnosis [52]. This opens up an opportunity for
AI in allowing for the better delineation of the dermal–epidermal junction in RCM images,
while also expediting the diagnostic process and aiding the novice, untrained user. By
providing an objective analysis, AI applied to RCM images can allow for a reduction in
human error, improvement in diagnostic accuracy, and enhancement in the efficiency and
reliability of diagnoses. In 2019, Wodzinski et al. proposed a convolutional neural network
approach to classify skin lesions using reflectance confocal microscopy (RCM) mosaics [49].
The dataset consisted of 429 RCM mosaics and was divided into three classes: melanoma,
basal cell carcinoma, and benign naevi. The test set classification achieved higher accuracy
as compared to medical, confocal users. This classification system provides a useful tool
for the early, non-invasive detection of melanoma. In 2021, D’ Alonzo presented a weakly
supervised machine learning model for the segmentation of RCM mosaics into “benign”
and “aspecific” regions [50]. By using a deep neural network, the trained model achieved
an average area under the curve of 0.969 and a Dice coefficient of 0.778, showing the feasi-
bility of the spatial localization of aspecific regions in RCM images, making the diagnostics
decision model more interpretable to clinicians.
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3.3. Artificial Intelligence-Based Approaches Applied to Optical Coherence Tomography (OCT) Images

Optical coherence tomography (OCT) is an interferometric imaging method, originally
used for optical imaging, that has since been translated to cutaneous evaluations. This
imaging method provides real-time views of the superficial layers of the skin [55]. It
uses an infrared broadband light source to provide a view into the skin up to a depth of
1–2 mm, with a resolution between 15 and 3 µm depending on the system used [55]. OCT
can be used to evaluate non-melanoma skin cancers, inflammatory diseases, and parasitic
infestations, as well as for the investigation of nails [56]. OCT provides a quick and useful
diagnostic imaging technique that can be used alone or in combination with other non-
invasive imaging tools like dermoscopy, high-frequency ultrasound, and confocal laser
scan microscopy [57].

While OCT has been utilized as an imaging modality for the diagnosis of basal cell car-
cinoma and other keratinocyte carcinomas, its use in the diagnosis of malignant melanoma
remains under investigation. Initial studies have shown that OCT can detect the diagnostic
features of melanoma, such as epidermal psoriasiform hyperplasia, melanocytic nests, and
vertical icicle-shaped structures, and may be useful in the preoperative risk stratification
of patients with melanoma [58]. However, while OCT shows promise in the diagnosis of
malignant melanoma, its sensitivity and specificity as a standalone diagnostic tool are not
yet convincing [59]. Angiographic OCT shows potential in the diagnosis and staging of
melanoma, as it can detect early changes in vessel morphology from dysplastic nevi to
melanoma [60]. Although traditional OCT has not yet been applied to AI-assisted diagnosis
for melanoma, a similar protocol using vibrational OCT was described in one paper in our
systematic search. While traditional OCT uses near-infrared light to create detailed, high-
resolution images of biological tissues, vibrational OCT combines traditional OCT with a
mechanical vibration stimulus to measure the vibrational properties of tissue structures,
providing additional information about tissue composition and function. This technique
can be used to image and differentiate between certain tissue features, such as the pres-
ence of collagen or elastin. This added feature can be useful in distinguishing melanoma
from benign moles. Thus, while traditional OCT provides high-resolution images and
an evaluation of the thickness and structure of melanoma lesions, vibrational OCT may
offer additional information that can aid in the differentiation between melanoma and
benign nevi.

In 2022, Silver et al. explored the use of vibrational optical coherence tomography
(VOCT) along with machine learning to differentiate between normal skin and different skin
cancers non-invasively [48]. The results demonstrated that machine learning, along with
the height and location of the VOCT mechanovibrational peaks, can be used to differentiate
between normal skin and different cancerous lesions, including melanoma, with sensitivity
and specificity rates of 83.3% and 77.8% [48].

4. Discussion

To the best of our knowledge, this systematic review obtained the largest number
of recent studies (n = 40) published regarding the application of AI-based models to the
non-invasive imaging of melanoma. The vast majority of these studies applied a deep
learning-based model on dermoscopic images, as research involving AI-based OCT and
RCM for the early detection of melanoma continues to develop. These non-invasive
modalities differ significantly in the diagnostic information that they offer and the technical
requirements for their handling, including the type of features, image size, and necessary
preprocessing. Current state-of-the-art work in the field of AI-based melanoma detection
primarily involves the application of deep learning models to dermoscopic images. The
unique contribution of our review lies in its comprehensive analysis of recent studies and
its emphasis on the potential of AI for early melanoma detection using three of the major
non-invasive imaging modalities.

The main question addressed by our review is whether the application of AI-based
models to the non-invasive imaging of melanoma is feasible, efficient, and beneficial
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compared to modern day standards, and whether this application provides for the early
detection of melanoma. Consequently, this systematic review sought to address this gap by
emphasizing the potential of deep learning techniques for early melanoma detection and
the importance of further research efforts in this area. Since the development of these deep
learning models and the datasets used for their training differ, a direct comparison between
them was impractical. Hence, our discussion focused on the clinical utility of these results
and established the groundwork for future studies of AI development for the evaluation
of melanoma.

4.1. Clinical Utility and Perceptions of AI in Dermatology

Among the 40 studies included within this systematic review, all showed robust perfor-
mance in melanoma identification through AI-based algorithms. The majority of the studies
were based on dermoscopic image sets as OCT and RCM datasets have not yet been widely
applied to AI due to the lack of many public datasets for these categories. Studies within the
dermoscopic image category primarily utilized deep learning; however, some papers applied
a fusion method or conventional machine learning to datasets [13,45]. In studies directly
comparing algorithm performance on dermoscopy images to dermatologists, AI-based
algorithms achieved a higher ROC (>80%) in the detection of melanoma [27,39,43,44,46]. In
these comparative studies using dermoscopic images, the mean algorithm sensitivity was
83.01% and the mean algorithm specificity was 85.58%. Thus, these comparative studies
indicate the great potential that AI holds in diagnosis based on dermoscopic images of
melanoma. While AI-based clinical OCT has shown promising results in the diagnosis
of keratinocyte carcinomas, its use in the diagnosis of malignant melanoma is still in its
infancy. AI-based algorithms have not yet been applied to traditional OCT; however, the
potential of using vibrational optical coherence tomography (VOCT) with machine learning
to improve the accuracy of melanoma diagnosis remains promising [48]. Studies evalu-
ating the use of AI on RCM images of melanoma have also shown promising results in
improving the accuracy and efficiency of diagnosis and allowing for the potential reduction
of unnecessary biopsies [49,50]. AI also has the potential to increase the accuracy and
reproducibility of results. These advances can have significant implications for patients, as
well as clinicians, by providing earlier, non-invasive detection of melanoma and other skin
cancers, leading to better outcomes and reduced healthcare costs [61].

The use of AI within the medical field continues to rapidly grow. Within the field
of dermatology, where the early diagnosis and treatment of melanoma is key, AI can be
greatly beneficial in addressing various diagnostic barriers. In one study seeking to explore
how patients view AI and perceive its use in skin cancer screening, patients appeared
to be receptive to the use of AI for skin cancer screening under the condition that the
physician–patient relationship was preserved [62]. Given the need for heterogenous clinical
and photographic data to expand the potential for AI, understanding patients’ perceptions
of this tool is essential.

In our review, most papers reviewing dermoscopic images for AI-assisted diagnosis of
melanoma utilized the International Skin Imaging Collaboration (ISIC) publicly available
dataset. Although this robust dataset has a large number of dermoscopic images, it mainly
encompasses data on lesions from light-skinned patients in the western world (United
States, Europe, and Australia), with reduced representation of skin lesions from Asian or
other darker-skinned populations [11]. Thus, the future development of public datasets or
clinical collection of dermoscopic images should focus on expanding datasets to include
images from all skin tones in order to develop more powerful algorithms that can be reliably
applied to all ethnicities. Achieving diverse datasets that are representative of skin lesions
seen in clinical practice across the world can also help to realize the full potential of AI in
countries that may not have easy access to dermatological care.

The future integration of AI into clinical platforms can aid in reaching populations
such as rural communities, which already suffer from disparities in melanoma incidence
and higher mortality in certain parts of the U.S. [63,64]. By combining these techniques
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with dermoscopy and visual inspection, the diagnosis of melanoma can be made more
efficient and accessible in areas where dermatologists are not readily available.

4.2. Ethical Implications

The integration of AI in dermatology necessitates the consideration of ethical, legal,
and patient privacy issues [65]. Although the use of AI could potentially be helpful in
various areas of a traditional dermatology practice, ranging from triaging patients to
allowing for the use of non-invasive diagnosis or aiding in the early detection of skin cancer,
its potential flaws must be recognized and taken into account. As many AI models have
been trained mainly on European or East Asian populations, the relative lack of training on
darker skin pigmentation may limit the overall diagnostic accuracy [8]. Imbalanced datasets
may thus be susceptible to outputting incorrect results and could result in theoretical
consequences for both the physician and patient if treatment or skin surgery is undertaken
without a supplemental diagnosis [27]. On the contrary, AI-based algorithms may also be
susceptible to false negatives, as demonstrated through our review, where the sensitivity
and specificity are not 100%. Thus, it may be important to notify and educate patients about
AI and its use in their diagnosis if undertaken. The potential flaws of AI also emphasize
its role in serving as a supplement or diagnostic aid in the clinic, and not as a replacement
for board-certified dermatologists. As AI continues to grow beyond medicine, it may be
necessary to launch future public health educational campaigns to educate patients about
its use and impact on their medical care.

4.3. Limitations

As many of the papers evaluated AI-based algorithms on different datasets, a direct
comparison of the efficacy of the various methods was not feasible. Further, a meta-analysis
of these studies was not plausible due to the variability in performance metrics among
studies. The QUADAS-2 tool, which is typically used to analyze diagnostic accuracy
studies, could not be applied due to incomplete information about certain domains in
the reviewed papers. Additionally, while deep learning was the primary algorithm used,
differences in image processing and reporting standards can make it difficult to draw
definitive conclusions. The consideration of methodological improvements for future
studies should include establishing standardized reporting and evaluation methods and
considering diverse datasets. Various factors can enhance the reproducibility for future
datasets. This includes the sharing of code, models, and image datasets. The challenges of
new and emerging data can be addressed by continuously updating and expanding the
datasets used for training and validation, including diverse images representing various
skin types and populations.

Moreover, the generalizability of these algorithms poses an important issue. The
majority of studies focused on patients with fairer skin types; thus, the translation of the
studies’ findings to darker skin or patients with other skin variations may be a challenge.
To overcome this issue, future studies should aim to include diverse datasets representing
a wide range of skin tones and ethnicities. Artifacts such as the presence of hair in the
image or skin texture differences can impact the accuracy of AI-based algorithms and
need to be considered when implementing them in clinical practice. Image quality is
another important factor to consider when implementing AI-based algorithms in clinical
practice. Differences in image acquisition and quality, such as zoom level, focus, lighting, or
surgical ink markings, can introduce additional bias and impact the accuracy of AI-based
algorithms. These issues must be addressed and overcome to realize the full potential of
AI-based techniques for the early detection of melanoma. By expanding the diversity of
datasets, the power and reliability of AI-based algorithms can be improved, ensuring their
applicability across different populations and clinical settings.

It is also important to note that our systematic review may be subject to publication
bias. Studies that report favorable results for AI-based algorithms are more likely to be
published, while studies with lower accuracy rates or higher false positives or negatives
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may be less likely to be reported. Lastly, studies directly comparing AI-based algorithms to
dermatologists or comparing OCT and RCM with AI application were found to be limited
due to the early stages of these techniques. In summary, while our review highlights the
potential of AI in dermatology, it is important to recognize and address these limitations
before implementing AI-based algorithms in clinical practice. Further research is needed to
better understand the risks of potential biases and limitations of these techniques and to
develop standardized reporting and evaluation methods for consistent and reliable results.

5. Conclusions

Our systematic review of 40 recent studies highlights the great potential of AI-based
models for the non-invasive imaging of melanoma. The vast majority of the studies utilized
deep learning models on dermoscopic images, demonstrating either the equal or superior
performance of AI-based algorithms in detecting melanoma when compared to existing
methods. Comparative studies of algorithm performance on dermoscopy images versus
dermatologists revealed a higher ROC (>80%) for AI-based algorithms, with mean sensi-
tivity of 83.01% and mean specificity of 85.58%. While the use of AI in clinical OCT for
malignant melanoma diagnosis is still in its infancy, studies evaluating the use of AI on
RCM images of melanoma have shown promising results in improving diagnosis accu-
racy and efficiency, allowing for the potential reduction of unnecessary biopsies. Studies
evaluating machine learning in conjunction with OCT yielded accuracy of 95%, while
studies evaluating RCM demonstrated a mean accuracy rate of 82.72%. The integration
of AI into clinical platforms can have a significant impact on areas with disparities in
melanoma incidence and higher mortality rates, such as rural communities or developing
countries. However, ethical, legal, and patient privacy issues related to the use of AI must
be considered before clinical integration. To date, this is the first review to synthesize the
outcomes of the AI-trained analysis of melanoma detection using non-invasive imaging
modalities. The information synthesized herein will aid in the future generation of AI-based
diagnostic tools for melanoma while allowing for algorithm optimization. Further research
should expand the datasets to include images from all skin tones and ethnicities, to develop
more powerful, reliable, and clinically applicable algorithms. Our findings underscore the
importance of continued efforts in the development and evaluation of AI-based techniques
for the early detection of melanoma.
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10. Kassem, M.A.; Hosny, K.M.; Damaševičius, R.; Eltoukhy, M.M. Machine Learning and Deep Learning Methods for Skin Lesion
Classification and Diagnosis: A Systematic Review. Diagnostics 2021, 11, 1390. [CrossRef]

11. Haggenmüller, S.; Maron, R.C.; Hekler, A.; Utikal, J.S.; Barata, C.; Barnhill, R.L.; Beltraminelli, H.; Berking, C.; Betz-Stablein, B.;
Blum, A.; et al. Skin cancer classification via convolutional neural networks: Systematic review of studies involving human
experts. Eur. J. Cancer 2021, 156, 202–216. [CrossRef]

12. Gouabou, A.C.F.; Collenne, J.; Monnier, J.; Iguernaissi, R.; Damoiseaux, J.-L.; Moudafi, A.; Merad, D. Computer Aided Diagnosis
of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions. Int. J. Mol.
Sci. 2022, 23, 13838. [CrossRef]

13. Marchetti, M.A.; Codella, N.C.; Dusza, S.W.; Gutman, D.A.; Helba, B.; Kalloo, A.; Mishra, N.; Carrera, C.; Celebi, M.E.; DeFazio,
J.L.; et al. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge:
Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.
J. Am. Acad. Dermatol. 2018, 78, 270–277.e1. [CrossRef]

14. Marchetti, M.A.; Liopyris, K.; Dusza, S.W.; Codella, N.C.; Gutman, D.A.; Helba, B.; Kalloo, A.; Halpern, A.C.; Soyer, H.P.;
Curiel-Lewandrowski, C.; et al. Computer algorithms show potential for improving dermatologists’ accuracy to diagnose
cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. J. Am. Acad. Dermatol. 2020, 82, 622–627.
[CrossRef]

15. Xia, M.; Kheterpal, M.K.; Wong, S.C.; Park, C.; Ratliff, W.; Carin, L.; Henao, R. Lesion identification and malignancy prediction
from clinical dermatological images. Sci. Rep. 2022, 12, 15836. [CrossRef]

16. Xin, C.; Liu, Z.; Zhao, K.; Miao, L.; Ma, Y.; Zhu, X.; Zhou, Q.; Wang, S.; Li, L.; Yang, F.; et al. An improved transformer network for
skin cancer classification. Comput. Biol. Med. 2022, 149, 105939. [CrossRef]

17. Singh, S.K.; Abolghasemi, V.; Anisi, M.H. Skin Cancer Diagnosis Based on Neutrosophic Features with a Deep Neural Network.
Sensors 2022, 22, 6261. [CrossRef]

18. Naeem, A.; Anees, T.; Fiza, M.; Naqvi, R.A.; Lee, S.-W. SCDNet: A Deep Learning-Based Framework for the Multiclassification of
Skin Cancer Using Dermoscopy Images. Sensors 2022, 22, 5652. [CrossRef]

19. Lee, J.R.H.; Pavlova, M.; Famouri, M.; Wong, A. Cancer-Net SCa: Tailored deep neural network designs for detection of skin
cancer from dermoscopy images. BMC Med. Imaging 2022, 22, 143. [CrossRef]

20. Fraiwan, M.; Faouri, E. On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning. Sensors
2022, 22, 4963. [CrossRef]

21. Vaiyapuri, T.; Balaji, P.; Alaskar, H.; Sbai, Z. Computational Intelligence-Based Melanoma Detection and Classification Using
Dermoscopic Images. Comput. Intell. Neurosci. 2022, 2022, 2370190. [CrossRef]

22. Martin-Gonzalez, M.; Azcarraga, C.; Martin-Gil, A.; Carpena-Torres, C.; Jaen, P. Efficacy of a Deep Learning Convolutional Neural
Network System for Melanoma Diagnosis in a Hospital Population. Int. J. Environ. Res. Public Health 2022, 19, 3892. [CrossRef]

23. Lu, X.; Zadeh, Y.A.F.A. Deep Learning-Based Classification for Melanoma Detection Using XceptionNet. J. Health Eng. 2022,
2022, 2196096. [CrossRef]

24. Kaur, R.; GholamHosseini, H.; Sinha, R.; Lindén, M. Melanoma Classification Using a Novel Deep Convolutional Neural Network
with Dermoscopic Images. Sensors 2022, 22, 1134. [CrossRef]

25. Arshad, M.; Khan, M.A.; Tariq, U.; Armghan, A.; Alenezi, F.; Javed, M.Y.; Aslam, S.M.; Kadry, S. A Computer-Aided Diagnosis
System Using Deep Learning for Multiclass Skin Lesion Classification. Comput. Intell. Neurosci. 2021, 2021, 9619079. [CrossRef]

26. Xing, X.; Song, P.; Zhang, K.; Yang, F.; Dong, Y. ZooME: Efficient Melanoma Detection Using Zoom-in Attention and Metadata
Embedding Deep Neural Network. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 2021, 4041–4044. [CrossRef]

27. Pham, T.-C.; Luong, C.-M.; Hoang, V.-D.; Doucet, A. AI outperformed every dermatologist in dermoscopic melanoma diagnosis,
using an optimized deep-CNN architecture with custom mini-batch logic and loss function. Sci. Rep. 2021, 11, 17485. [CrossRef]

28. Kim, C.-I.; Hwang, S.-M.; Park, E.-B.; Won, C.-H.; Lee, J.-H. Computer-Aided Diagnosis Algorithm for Classification of Malignant
Melanoma Using Deep Neural Networks. Sensors 2021, 21, 5551. [CrossRef]

29. Nawaz, M.; Mehmood, Z.; Nazir, T.; Naqvi, R.A.; Rehman, A.; Iqbal, M.; Saba, T. Skin cancer detection from dermoscopic images
using deep learning and fuzzy k-means clustering. Microsc. Res. Tech. 2022, 85, 339–351. [CrossRef]

https://doi.org/10.2196/18091
https://doi.org/10.1186/s13000-021-01085-4
https://doi.org/10.1038/s41746-021-00544-y
https://doi.org/10.2196/34896
https://doi.org/10.1126/sciadv.abq6147
https://doi.org/10.3390/diagnostics11081390
https://doi.org/10.1016/j.ejca.2021.06.049
https://doi.org/10.3390/ijms232213838
https://doi.org/10.1016/j.jaad.2017.08.016
https://doi.org/10.1016/j.jaad.2019.07.016
https://doi.org/10.1038/s41598-022-20168-w
https://doi.org/10.1016/j.compbiomed.2022.105939
https://doi.org/10.3390/s22166261
https://doi.org/10.3390/s22155652
https://doi.org/10.1186/s12880-022-00871-w
https://doi.org/10.3390/s22134963
https://doi.org/10.1155/2022/2370190
https://doi.org/10.3390/ijerph19073892
https://doi.org/10.1155/2022/2196096
https://doi.org/10.3390/s22031134
https://doi.org/10.1155/2021/9619079
https://doi.org/10.1109/embc46164.2021.9630452
https://doi.org/10.1038/s41598-021-96707-8
https://doi.org/10.3390/s21165551
https://doi.org/10.1002/jemt.23908


Cancers 2023, 15, 4694 24 of 25

30. Sayed, G.I.; Soliman, M.M.; Hassanien, A.E. A novel melanoma prediction model for imbalanced data using optimized SqueezeNet
by bald eagle search optimization. Comput. Biol. Med. 2021, 136, 104712. [CrossRef]

31. Gouabou, A.C.F.; Damoiseaux, J.-L.; Monnier, J.; Iguernaissi, R.; Moudafi, A.; Merad, D. Ensemble Method of Convolutional
Neural Networks with Directed Acyclic Graph Using Dermoscopic Images: Melanoma Detection Application. Sensors 2021,
21, 3999. [CrossRef]

32. Alsaade, F.W.; Aldhyani, T.H.H.; Al-Adhaileh, M.H. Developing a Recognition System for Diagnosing Melanoma Skin Lesions
Using Artificial Intelligence Algorithms. Comput. Math. Methods Med. 2021, 2021, 9998379. [CrossRef] [PubMed]

33. Iqbal, I.; Younus, M.; Walayat, K.; Kakar, M.U.; Ma, J. Automated multi-class classification of skin lesions through deep
convolutional neural network with dermoscopic images. Comput. Med. Imaging Graph. 2021, 88, 101843. [CrossRef]

34. Jojoa Acosta, M.F.; Caballero Tovar, L.Y.; Garcia-Zapirain, M.B.; Percybrooks, W.S. Melanoma diagnosis using deep learning
techniques on dermatoscopic images. BMC Med. Imaging 2021, 21, 6. [CrossRef]

35. Tognetti, L.; Bonechi, S.; Andreini, P.; Bianchini, M.; Scarselli, F.; Cevenini, G.; Moscarella, E.; Farnetani, F.; Longo, C.; Lallas, A.;
et al. A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from
atypical nevi. J. Dermatol. Sci. 2021, 101, 115–122. [CrossRef] [PubMed]

36. Gareau, D.S.; Browning, J.; Da Rosa, J.C.; Suarez-Farinas, M.; Lish, S.; Zong, A.M.; Firester, B.; Vrattos, C.; Renert-Yuval, Y.;
Gamboa, M.; et al. Deep learning-level melanoma detection by interpretable machine learning and imaging biomarker cues.
J. Biomed. Opt. 2020, 25, 112906. [CrossRef] [PubMed]

37. Guo, L.; Xie, G.; Xu, X.; Ren, J. Effective Melanoma Recognition Using Deep Convolutional Neural Network with Covariance
Discriminant Loss. Sensors 2020, 20, 5786. [CrossRef]

38. Kaur, R.; GholamHosseini, H.; Sinha, R. Deep Convolutional Neural Network for Melanoma Detection using Dermoscopy Images.
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 2020, 1524–1527. [CrossRef]

39. Minagawa, A.; Koga, H.; Sano, T.; Matsunaga, K.; Teshima, Y.; Hamada, A.; Houjou, Y.; Okuyama, R. Dermoscopic diagnostic
performance of Japanese dermatologists for skin tumors differs by patient origin: A deep learning convolutional neural network
closes the gap. J. Dermatol. 2021, 48, 232–236. [CrossRef]

40. Nasiri, S.; Helsper, J.; Jung, M.; Fathi, M. DePicT Melanoma Deep-CLASS: A deep convolutional neural networks approach to
classify skin lesion images. BMC Bioinform. 2020, 21, 84. [CrossRef]

41. Winkler, J.K.; Sies, K.; Fink, C.; Toberer, F.; Enk, A.; Deinlein, T.; Hofmann-Wellenhof, R.; Thomas, L.; Lallas, A.; Blum, A.; et al.
Melanoma recognition by a deep learning convolutional neural network—Performance in different melanoma subtypes and
localisations. Eur. J. Cancer 2020, 127, 21–29. [CrossRef]

42. Phillips, M.; Greenhalgh, J.; Marsden, H.; Palamaras, I. Detection of Malignant Melanoma Using Artificial Intelligence: An
Observational Study of Diagnostic Accuracy. Dermatol. Pract. Concept. 2019, 10, e2020011. [CrossRef] [PubMed]

43. Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C.; Haferkamp, S.; Hauschild, A.; Weichenthal, M.; Klode, J.; Schadendorf, D.;
Holland-Letz, T.; et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 2019,
119, 11–17. [CrossRef] [PubMed]

44. Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Holland-
Letz, T.; et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification
task. Eur. J. Cancer 2019, 113, 47–54. [CrossRef] [PubMed]

45. Hagerty, J.R.; Stanley, R.J.; Almubarak, H.A.; Lama, N.; Kasmi, R.; Guo, P.; Drugge, R.J.; Rabinovitz, H.S.; Oliviero, M.; Stoecker,
W.V. Deep Learning and Handcrafted Method Fusion: Higher Diagnostic Accuracy for Melanoma Dermoscopy Images. IEEE J.
Biomed. Health Inform. 2019, 23, 1385–1391. [CrossRef]

46. Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al.
Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma
recognition in comparison to 58 dermatologists. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 1836–1842. [CrossRef]

47. Li, Y.; Shen, L. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network. Sensors 2018, 18, 556. [CrossRef]
48. Silver, F.H.; Mesica, A.; Gonzalez-Mercedes, M.; Deshmukh, T. Identification of Cancerous Skin Lesions Using Vibrational Optical

Coherence Tomography (VOCT): Use of VOCT in Conjunction with Machine Learning to Diagnose Skin Cancer Remotely Using
Telemedicine. Cancers 2022, 15, 156. [CrossRef]

49. Wodzinski, M.; Skalski, A.; Witkowski, A.; Pellacani, G.; Ludzik, J. Convolutional Neural Network Approach to Classify Skin
Lesions Using Reflectance Confocal Microscopy. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 4754–4757. [CrossRef]

50. D’alonzo, M.; Bozkurt, A.; Alessi-Fox, C.; Gill, M.; Brooks, D.H.; Rajadhyaksha, M.; Kose, K.; Dy, J.G. Semantic segmentation of
reflectance confocal microscopy mosaics of pigmented lesions using weak labels. Sci. Rep. 2021, 11, 3679. [CrossRef]

51. Phillips, M.; Marsden, H.; Jaffe, W.; Matin, R.N.; Wali, G.N.; Greenhalgh, J.; McGrath, E.; James, R.; Ladoyanni, E.; Bewley, A.;
et al. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. JAMA Netw.
Open 2019, 2, e1913436. [CrossRef]

52. Levine, A.; Markowitz, O. Introduction to reflectance confocal microscopy and its use in clinical practice. JAAD Case Rep. 2018, 4,
1014–1023. [CrossRef] [PubMed]

53. González, S.; Gilaberte-Calzada, Y. In vivo reflectance-mode confocal microscopy in clinical dermatology and cosmetology. Int. J.
Cosmet. Sci. 2008, 30, 1–17. [CrossRef] [PubMed]

https://doi.org/10.1016/j.compbiomed.2021.104712
https://doi.org/10.3390/s21123999
https://doi.org/10.1155/2021/9998379
https://www.ncbi.nlm.nih.gov/pubmed/34055044
https://doi.org/10.1016/j.compmedimag.2020.101843
https://doi.org/10.1186/s12880-020-00534-8
https://doi.org/10.1016/j.jdermsci.2020.11.009
https://www.ncbi.nlm.nih.gov/pubmed/33358096
https://doi.org/10.1117/1.JBO.25.11.112906
https://www.ncbi.nlm.nih.gov/pubmed/33247560
https://doi.org/10.3390/s20205786
https://doi.org/10.1109/embc44109.2020.9175391
https://doi.org/10.1111/1346-8138.15640
https://doi.org/10.1186/s12859-020-3351-y
https://doi.org/10.1016/j.ejca.2019.11.020
https://doi.org/10.5826/dpc.1001a11
https://www.ncbi.nlm.nih.gov/pubmed/31921498
https://doi.org/10.1016/j.ejca.2019.05.023
https://www.ncbi.nlm.nih.gov/pubmed/31401469
https://doi.org/10.1016/j.ejca.2019.04.001
https://www.ncbi.nlm.nih.gov/pubmed/30981091
https://doi.org/10.1109/JBHI.2019.2891049
https://doi.org/10.1093/annonc/mdy166
https://doi.org/10.3390/s18020556
https://doi.org/10.3390/cancers15010156
https://doi.org/10.1109/embc.2019.8856731
https://doi.org/10.1038/s41598-021-82969-9
https://doi.org/10.1001/jamanetworkopen.2019.13436
https://doi.org/10.1016/j.jdcr.2018.09.019
https://www.ncbi.nlm.nih.gov/pubmed/30456275
https://doi.org/10.1111/j.1468-2494.2008.00406.x
https://www.ncbi.nlm.nih.gov/pubmed/18377626


Cancers 2023, 15, 4694 25 of 25

54. Narayanamurthy, V.; Padmapriya, P.; Noorasafrin, A.; Pooja, B.; Hema, K.; Khan, A.Y.F.; Nithyakalyani, K.; Samsuri, F. Skin
cancer detection using non-invasive techniques. RSC Adv. 2018, 8, 28095–28130. [CrossRef] [PubMed]

55. Sattler, E.; Kästle, R.; Welzel, J. Optical coherence tomography in dermatology. J. Biomed. Opt. 2013, 18, 061224. [CrossRef]
56. Mogensen, M.; Thrane, L.; Jørgensen, T.M.; Andersen, P.E.; Jemec, G.B.E. OCT imaging of skin cancer and other dermatological

diseases. J. Biophotonics 2009, 2, 442–451. [CrossRef]
57. Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical Coherence Tomography: An Emerging Technology for Biomedical

Imaging and Optical Biopsy. Neoplasia 2000, 2, 9–25. [CrossRef]
58. Wan, B.; Ganier, C.; Du-Harpur, X.; Harun, N.; Watt, F.; Patalay, R.; Lynch, M.D. Applications and future directions for optical

coherence tomography in dermatology. Br. J. Dermatol. 2021, 184, 1014–1022. [CrossRef]
59. Xiong, Y.-Q.; Mo, Y.; Wen, Y.-Q.; Cheng, M.-J.; Huo, S.-T.; Chen, X.-J.; Chen, Q. Optical coherence tomography for the diagnosis of

malignant skin tumors: A meta-analysis. J. Biomed. Opt. 2018, 23, 1–10. [CrossRef]
60. Schuh, S.; Holmes, J.; Ulrich, M.; Themstrup, L.; Jemec, G.B.E.; De Carvalho, N.; Pellacani, G.; Welzel, J. Imaging Blood Vessel

Morphology in Skin: Dynamic Optical Coherence Tomography as a Novel Potential Diagnostic Tool in Dermatology. Dermatol.
Ther. 2017, 7, 187–202. [CrossRef]

61. Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 2019, 20, 1366–1379.
[CrossRef]

62. Nelson, C.A.; Pérez-Chada, L.M.; Creadore, A.; Li, S.J.; Lo, K.; Manjaly, P.; Pournamdari, A.B.; Tkachenko, E.; Barbieri, J.S.;
Ko, J.M.; et al. Patient Perspectives on the Use of Artificial Intelligence for Skin Cancer Screening: A Qualitative Study. JAMA
Dermatol. 2020, 156, 501–512. [CrossRef] [PubMed]

63. Willingham, M.L.J.; Spencer, S.Y.; Lum, C.A.; Sanchez, J.M.N.; Burnett, T.; Shepherd, J.; Cassel, K. The potential of using artificial
intelligence to improve skin cancer diagnoses in Hawai‘i’s multiethnic population. Melanoma Res. 2021, 31, 504–514. [CrossRef]

64. Shellenberger, R.A.; Johnson, T.M.; Fayyaz, F.; Swamy, B.; Albright, J.; Geller, A.C. Disparities in melanoma incidence and
mortality in rural versus urban Michigan. Cancer Rep. 2023, 6, e1713. [CrossRef] [PubMed]

65. De, A.; Sarda, A.; Gupta, S.; Das, S. Use of artificial intelligence in dermatology. Indian J. Dermatol. 2020, 65, 352–357. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1039/C8RA04164D
https://www.ncbi.nlm.nih.gov/pubmed/35542700
https://doi.org/10.1117/1.JBO.18.6.061224
https://doi.org/10.1002/jbio.200910020
https://doi.org/10.1038/sj.neo.7900071
https://doi.org/10.1111/bjd.19553
https://doi.org/10.1117/1.JBO.23.2.020902
https://doi.org/10.1007/s13555-017-0175-4
https://doi.org/10.1080/15384047.2019.1640032
https://doi.org/10.1001/jamadermatol.2019.5014
https://www.ncbi.nlm.nih.gov/pubmed/32159733
https://doi.org/10.1097/CMR.0000000000000779
https://doi.org/10.1002/cnr2.1713
https://www.ncbi.nlm.nih.gov/pubmed/36241187
https://doi.org/10.4103/ijd.IJD_418_20
https://www.ncbi.nlm.nih.gov/pubmed/33165383

	Introduction 
	Materials and Methods 
	Literature Search Strategy 
	Study Eligibility and Selection 
	Study Analysis and Performance Metrics 

	Results 
	Artificial Intelligence-Based Approaches Applied to Dermoscopic Images 
	Artificial Intelligence-Based Approaches to Analysis of Reflectance Confocal Microscopy (RCM) Images 
	Artificial Intelligence-Based Approaches Applied to Optical Coherence Tomography (OCT) Images 

	Discussion 
	Clinical Utility and Perceptions of AI in Dermatology 
	Ethical Implications 
	Limitations 

	Conclusions 
	References

