
Citation: Thomson, A.J.; Rehn, J.A.;

Heatley, S.L.; Eadie, L.N.; Page, E.C.;

Schutz, C.; McClure, B.J.; Sutton, R.;

Dalla-Pozza, L.; Moore, A.S.; et al.

Reproducible Bioinformatics

Analysis Workflows for Detecting

IGH Gene Fusions in B-Cell Acute

Lymphoblastic Leukaemia Patients.

Cancers 2023, 15, 4731. https://

doi.org/10.3390/cancers15194731

Academic Editors: Giulia Marvaso

and Federico Mastroleo

Received: 15 September 2023

Accepted: 22 September 2023

Published: 26 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Reproducible Bioinformatics Analysis Workflows for
Detecting IGH Gene Fusions in B-Cell Acute Lymphoblastic
Leukaemia Patients
Ashlee J. Thomson 1,2,* , Jacqueline A. Rehn 1,2 , Susan L. Heatley 1,2,3 , Laura N. Eadie 1,2 , Elyse C. Page 1,2,
Caitlin Schutz 2, Barbara J. McClure 1,2 , Rosemary Sutton 4, Luciano Dalla-Pozza 5, Andrew S. Moore 6,7,
Matthew Greenwood 8,9, Rishi S. Kotecha 10,11,12 , Chun Y. Fong 13 , Agnes S. M. Yong 1,14,15,16,
David T. Yeung 1,2,17, James Breen 18,19,* and Deborah L. White 1,2,3,20

1 Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
jacqueline.rehn@sahmri.com (J.A.R.); sue.heatley@sahmri.com (S.L.H.); laura.eadie@sahmri.com (L.N.E.);
elyse.page@sahmri.com (E.C.P.); barb.mcclure@unisa.edu.au (B.J.M.);
agnes.yong@health.wa.gov.au (A.S.M.Y.); david.yeung@adelaide.edu.au (D.T.Y.);
deborah.white@sahmri.com (D.L.W.)

2 Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research
Institute (SAHMRI), Adelaide, SA 5000, Australia; caitlin.schutz@sahmri.com

3 Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC 3168, Australia
4 Molecular Diagnostics, Children’s Cancer Institute, Kensington, NSW 2750, Australia; rsutton@ccia.org.au
5 The Cancer Centre for Children, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;

luciano.dallapozza@health.nsw.gov.au
6 Oncology Service, Children’s Health Queensland Hospital and Health Service, Brisbane, QLD 4101, Australia;

andy.moore@health.qld.gov.au
7 Child Health Research Centre, The University of Queensland, Brisbane, QLD 4000, Australia
8 Department of Haematology and Transfusion Services, Royal North Shore Hospital,

Sydney, NSW 2065, Australia; matthew.greenwood@health.nsw.gov.au
9 Faculty of Health and Medicine, University of Sydney, Sydney, NSW 2006, Australia
10 Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s

Hospital, Perth, WA 6009, Australia; rishi.kotecha@health.wa.gov.au
11 Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute,

University of Western Australia, Perth, WA 6009, Australia
12 Curtin Medical School, Curtin University, Perth, WA 6845, Australia
13 Department of Clinical Haematology, Austin Health, Heidelberg, VIC 3083, Australia;

chun.fong@austin.org.au
14 South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
15 Division of Pathology & Laboratory, University of Western Australia Medical School,

Perth, WA 6009, Australia
16 Department of Haematology, Royal Perth Hospital, Perth, WA 6000, Australia
17 Haematology Department, Royal Adelaide Hospital and SA Pathology, Adelaide, SA 5000, Australia
18 Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, SA 5000, Australia
19 James Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
20 Australian Genomics Health Alliance (AGHA), The Murdoch Children’s Research Institute,

Parkville, VIC 3052, Australia
* Correspondence: ashlee.thomson@sahmri.com (A.J.T.); jimmy.breen@telethonkids.org.au (J.B.)

Simple Summary: B-cell acute lymphoblastic leukaemia (B-ALL) is a haematological malignancy
driven by diverse genomic alterations, the most common being gene fusions, which can be detected
via transcriptomic analysis. However, detecting gene fusions involving the Immunoglobulin Heavy
Chain (IGH) region can be challenging due to its hyper variability. Our aim was to develop a workflow
containing the algorithms FusionCatcher, Arriba, and STAR-Fusion, to achieve best-case sensitivity
for IGH gene fusion detection. We analysed 35 patient samples harbouring IGH gene fusions and
assessed the detection rates for each caller, before optimising the parameters to enhance sensitivity for
IGH fusions. FusionCatcher and Arriba outperformed STAR-Fusion; however, by adjusting specific
filtering parameters, we were able to improve STAR-Fusion’s performance. This analysis highlights
the importance of filtering optimization for IGH gene fusion events, offering alternative workflows
for difficult-to-detect high-risk B-ALL alterations.
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Abstract: B-cell acute lymphoblastic leukaemia (B-ALL) is characterised by diverse genomic alter-
ations, the most frequent being gene fusions detected via transcriptomic analysis (mRNA-seq). Due
to its hypervariable nature, gene fusions involving the Immunoglobulin Heavy Chain (IGH) locus
can be difficult to detect with standard gene fusion calling algorithms and significant computational
resources and analysis times are required. We aimed to optimize a gene fusion calling workflow to
achieve best-case sensitivity for IGH gene fusion detection. Using Nextflow, we developed a sim-
plified workflow containing the algorithms FusionCatcher, Arriba, and STAR-Fusion. We analysed
samples from 35 patients harbouring IGH fusions (IGH::CRLF2 n = 17, IGH::DUX4 n = 15, IGH::EPOR
n = 3) and assessed the detection rates for each caller, before optimizing the parameters to enhance
sensitivity for IGH fusions. Initial results showed that FusionCatcher and Arriba outperformed STAR-
Fusion (85–89% vs. 29% of IGH fusions reported). We found that extensive filtering in STAR-Fusion
hindered IGH reporting. By adjusting specific filtering steps (e.g., read support, fusion fragments
per million total reads), we achieved a 94% reporting rate for IGH fusions with STAR-Fusion. This
analysis highlights the importance of filtering optimization for IGH gene fusion events, offering
alternative workflows for difficult-to-detect high-risk B-ALL subtypes.

Keywords: B-cell acute lymphoblastic leukaemia; IGH; gene fusion; workflow

1. Introduction

B-cell acute lymphoblastic leukaemia (B-ALL) is a haematological malignancy that
results in the over-proliferation of lymphoblasts [1]. While it is primarily diagnosed in
children <5 years, younger patients tend to have a better prognosis than adolescents and
adults diagnosed with the disease [2–4]. A number of genomic alterations have been
identified as drivers of this disease, the most frequent being gene fusions secondary to
chromosomal rearrangements [5,6], making them potential targets for therapeutic interven-
tion and personalised medicine [6]. The accurate and rapid identification of these genomic
alterations is therefore a crucial aspect of B-ALL diagnosis and treatment [7].

Prior to the introduction of Next-Generation Sequencing (NGS) and transcriptomic
analysis, the detection of prognostically significant gene fusions with well-characterised
breakpoints was performed using diagnostic analysis, such as fluorescence in situ hybridi-
sation (FISH), reverse transcriptase polymerase chain reaction (RT-PCR) and G-banded
karyotyping [7–9]; however, these processes are time-intensive, expensive, and inade-
quate for detecting novel and cytogenetically cryptic rearrangements [10,11]. With the
implementation of transcriptome sequencing (mRNA-seq) and advanced bioinformatic
analysis techniques, it is now possible to identify most fusion transcripts, including cytoge-
netically cryptic transcripts known to confer prognostic significance in a more time- and
cost-effective manner [12,13].

Gene fusion detection via mRNA-seq involves identifying instances in which se-
quences from two distinct genes or genomic regions are combined, typically through
structural variations, such as chromosomal rearrangements or translocations (Figure 1A).
When sequencing reads are mapped to the reference genome, gene fusions are indicated by
the presence of spanning and chimeric junction reads, which extend across the breakpoints
in which the fusion occurs [8] (Figure 1B). To identify these transcripts, fusion calling
algorithms analyse the sequencing data to detect and characterise events. Once potential
fusion transcripts are identified, custom filters are applied to minimize the number of
false positives caused by read alignment errors or technical artifacts. The filtering criteria
implemented by fusion calling algorithms play a crucial role in reducing false positives.
These criteria are often tailored to the specific characteristics of fusion events, such as read
coverage, breakpoint sequence patterns, and the presence of discordant mate pairs. Some
of these strict filtering guidelines, however, can result in important driver mutations not
being reported. Additionally, evaluating highly repetitive and hypervariable regions of
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the genome, such as the immunoglobulin heavy (IGH) chain, remains a challenge for these
algorithms [14,15].
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Figure 1. (A) Schematic of a gene fusion event, in which two separate genes located on the same or
different chromosomes become juxtaposed, following a chromosomal rearrangement or translocation
event. (B) Fusion events can be identified through the alignment of paired-end mRNA-seq reads
to the reference genome, when each end of the paired read maps entirely to two different genomic
regions (Spanning) or when one end of the read overlaps the fusion breakpoint (Chimeric).

While relying on spanning reads and junction reads is adequate for confirming most
gene fusion events that occur at exon–exon boundaries, this is not the case for IGH fu-
sions. Located in the sub-telomeric region of chromosome 14q, IGH is responsible for
producing an individual’s highly variable repertoire of antibodies and comprises multi-
ple gene regions [16]. These gene regions undergo somatic recombination during early
B-cell differentiation, resulting in an IGH gene rearrangement [17,18]. The aberrant re-
combination of IGH can result in a gene or gene segment from another chromosomal
location being spliced upstream of an IGH enhancer, resulting in the upregulation of the
partner gene, which acts as an oncogenic driver. A consequence of this aberrant recom-
bination is the insertion of non-template nucleotides at fusion breakpoints [17]. These
additional non-template nucleotides, along with the limitations of short-read sequencing
technologies [15,16,19,20], often result in suboptimal read mapping across the IGH fusion
breakpoints, leading to the under-reporting of these fusions by standard diagnostic and
transcriptomic analysis methods.

IGH fusions also have a diverse range of partner genes [21–23]. Whilst the biological
significance and clinical implications vary depending on the partner gene, many IGH
fusions are indicative of a poor prognosis. In 2014, Russel et al. [4] successfully identified
14 different IGH partner genes, including CRLF2 and EPOR, across 75 B-ALL patients, all
of which were associated with high-risk subtypes. However, the partner gene remained
unknown for a further 84 patients who tested positive for an IGH translocation via FISH
probe. As a result of the increased detection sensitivity through the implementation of
mRNA-seq analysis, the number of successfully identified IGH partner genes has risen in
the intervening years to also include the cytogenetically cryptic DUX4 [2,5,24].
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The identification of gene fusions in patient samples in a time-efficient manner is
crucial for effective risk stratification and personalised treatment planning. Current mRNA-
seq analyses are time-consuming, at times exceeding 20 h to analyse one sample [25],
and require significant personnel, specialised expertise, and computational resources to
establish and execute them in a routine clinical context. In recent years, the Bioinformatics
and Clinical Genomics community has attempted to address these issues by using state-of-
the-art analysis workflow tools that can be implemented in routine sequencing and research
labs [26,27]. However the careful consideration of parameter and filtering selection may
still be required to achieve detection sensitivity to potential gene fusion events. In this
study, we developed a reproducible mRNA-seq analysis workflow to accurately identify
B-ALL gene fusions using the Nextflow workflow system [28]. We assessed the pipeline’s
accuracy, speed, and computational requirements when analysing the B-ALL patient
samples harbouring IGH fusions. By assessing these difficult-to-detect fusions through
mRNA-seq analyses, we aim to identify potential areas for improvement in sensitivity
and accuracy.

2. Materials and Methods

The RIGHT (Recovering IGH fusion Transcripts) workflow (Figure 2) was developed
using the workflow management executor Nextflow, version 21.10.6 [28]. Nextflow facili-
tates the parallel resolution of the implemented algorithms, namely STAR-Fusion, version
1.10.0 [24], Arriba, version 2.1.0 [25], and FusionCatcher, version 1.33 [29], thus optimising
the processing time and enabling reproducibility across distributed computing infrastruc-
tures. STAR-Fusion and Arriba are often used together owing to their high accuracy and
short execution times on both simulated and real data [24,25]. Adherence to the recom-
mended best practice for mRNA-seq data analysis involves employing at least two distinct
gene fusion calling algorithms, with intersected results for improved accuracy [25]. The
GRCh37 human reference genome [30,31] was used with the Ensemble reference transcript
annotation [32].
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Figure 2. Schematic of the RIGHT workflow. STAR-Fusion, Arriba and FusionCatcher algorithms
are all executed using the Nextflow system, taking an initial. csv sample manifest as input, which
contains directory links and file base names for paired-end RNA-seq FASTQ files. The config file
contains information regarding the resources requested, the scheduler used, e.g., Conda, Slurm,
and any container options, such as Docker or Singularity. Arriba and STAR-Fusion have different
formatting requirements for their alignment inputs, necessitating two separate STAR alignment runs.
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To evaluate the ability of the workflow to efficiently analyse IGH fusions, a subset of
35 Australian B-ALL patient samples that were referred to the South Australian Health
and Medical Research Institute (SAHMRI) (Adelaide, Australia) for genomic testing were
selected (Supplementary Table S1), all of which were confirmed to harbour IGH fusions
(IGH::CRLF2 n = 17, IGH::DUX4 n = 15, IGH::EPOR n = 3). These 3 gene fusions were chosen
as they are the most common IGH fusions seen at SAHMRI. IGH::CRLF2 fusions were con-
firmed via fluorescent in situ hybridization (FISH) using two separate break-apart probes,
a Vysis IGH dual colour probe (Abbott) and a CRLF2 dual colour probe (Cytocell). Gene
expression profiling was used to confirm IGH::DUX4 fusions, and the visual inspection of
BAM files in the Integrative Genomics Viewer (IGV) was needed to confirm the presence
of IGH::EPOR (Supplementary Data S1). We also analysed a second subset of 25 B-ALL
patient samples that contained non-IGH gene fusion events, and non-translocated samples
(Supplementary Table S9) as a control. These 60 samples were chosen from a previously
published cohort of 180 B-ALL patient samples [33] that represented a range of common
genomic lesions associated with ALL subtypes (EGA Accession: EGAS00001006460) [34].
The process of preparing libraries for mRNA sequencing was carried out using either the
TruSeq Stranded mRNA LT Kit (Illumina, CA, USA) or the Universal Plus mRNA-Seq
with NuQuant (Tecan, CA, USA). This was performed using 400 ng of total RNA, as per
the instructions provided by the manufacturers. Subsequently, the samples underwent
sequencing on either the Illumina HiSeq 2000 or NextSeq 500 platforms. The outcome of
this sequencing approach yielded paired-end (PE) reads with a length of 75 bases, and an
average read depth of 70 million reads.

To assess the sensitivity of the developed workflow, we processed the patient samples
using the default parameters for each algorithm (Supplementary Data S2). Given the
initial output files, we compared the reporting rates for IGH fusions for each caller and
determined that STAR-Fusion had the lowest reporting rate. We then assessed the output
files that STAR-Fusion produced following each stage of filtering to determine why the
number of reported IGH fusions was lower than the other callers. STAR-Fusion produces
intermediate output files during filtering comprising pre- and post-blast-filter files, listing
each gene fusion detected and whether they passed filtering or not. If they did not pass
filtering, the filtering step at which failure occurred was listed, and why. Given this, we
were able to trace each IGH fusion and determine which filtering steps failed. We were then
able to adjust the appropriate parameters in STAR-Fusion and process the samples again to
reassess the reporting rates (Supplementary Data S3). While we used the GRCh37 reference
genome, as this is currently the primary reference used at SAHMRI when analysing B-ALL
patient samples, this pipeline is also compatible with the newer reference genome, GRCh38.

3. Results
3.1. Using RIGHT to Detect IGH Gene Fusion Events

Initially, we processed the 35 patient samples through the RIGHT workflow using
the default parameters for each algorithm (Supplementary Data S2). Between the three
algorithms, all IGH fusions were detected (Figure 3 and Supplementary Table S2), with
74% being detected by at least two of the tools. Arriba and FusionCatcher significantly
outperformed STAR-Fusion, with the two tools successfully reporting all IGH::EPOR (n = 3)
fusions, while the cytogenetically cryptic IGH::DUX4 fusions (n = 15), which frequently
go undetected, were reported in 93% (n = 14) of samples by Arriba and in 80% (n = 12)
by FusionCatcher. In contrast, STAR-Fusion failed to detect any of the IGH::EPOR fusions
and only reported 33% (n = 5) of the IGH::DUX4 fusions. Of the 17 samples harbouring
IGH::CRLF2 fusions, FusionCatcher and Arriba reported 94% (n = 16) and 70% (n = 12),
respectively, while STAR-Fusion again underperformed with only 29% (n = 5) of the fusions
being detected.

A trade-off exists between high sensitivity and an increased number of overall pre-
dicted fusions, many of which are not clinically relevant or potential false positives. While
STAR-Fusion demonstrated lower sensitivity, this was balanced with fewer total predic-
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tions, an average of 12 fusions per sample, in contrast to FusionCatcher which reported an
average of 259 fusions per sample (Supplementary Table S3).
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Figure 3. The number of IGH fusion events reported by each algorithm using default parameters
(IGH::CRLF2 n = 17, IGH::DUX4 n = 15, IGH::EPOR n = 3).

3.2. Improving STAR-Fusions Performance when Detecting IGH Gene Fusions

An examination of the intermediary files generated by STAR-Fusion revealed that
33 of 35 IGH fusions were initially predicted, but most were subsequently excluded as they
did not meet one or more of the default filtering parameters. This included insufficient
junction read support and/or novel junction read support (nine samples for each criterion).
For example, one sample had a read support depth of 1298 spanning fragments, but no
junction reads, leading to exclusion from further filtering (Supplementary Table S4). To
evaluate the effect the default values for the minimum number of supporting reads had on
the overall fusion reporting rate, we decreased the values of these parameters and re-ran
STAR-Fusion (Figure 4, Supplementary Data S3 and Table S5).
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Figure 4. The number of IGH gene fusions reported by STAR-Fusion with the default parameter
values vs. the altered parameter values. Read Support includes novel junction support reads and
junction support reads, and FFPM is the fusion fragments per million reads.

The number of reported IGH::DUX4 fusions increased following the initial param-
eter changes, with an almost three-fold increase (n = 14) in reported fusions when both
the junction read and novel junction support read values were altered. The number of
IGH::CRLF2 fusions reported increased as well (n = 6), while IGH::EPOR fusions remained
undetected. The overall reporting rate increased from 29% using default values to 60%, still
lower than that of Arriba and FusionCatcher. Additionally, despite increasing sensitivity,
the total number of fusion events detected decreased compared to the default settings,
averaging 10 fusions per sample (Supplementary Table S6). It is unclear why this occurred.
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We attempted to trace the select fusion events reported when using default parameters that
were subsequently dropped when using altered parameters, but no pattern emerged.

STAR-Fusion implements an expression filter to normalise the number of RNA-seq
reads supporting a fusion breakpoint based on the overall sequencing depth, represented
as fusion fragments per million total mRNA-seq fragments (FFPM). By default, a candidate
fusion breakpoint must have an FFPM value greater than 0.1, equating to one supporting
read per 10 million mRNA-seq reads. We found that 10 candidate fusions were subsequently
rejected because of an FFPM value lower than 0.1. By reducing the minimum FFPM in
combination with the lowered minimum read support, the number of IGH::DUX4 fusions
reported stayed the same (n = 14) while the IGH::CRLF2 fusions increased (n = 12), with
STAR-Fusion also reporting all IGH::EPOR (n = 3), for an overall reporting rate of 82.9%
(n = 29) (Figure 4). We also observed a significant increase in the total number of fusion
events reported by STAR-Fusion, averaging 162.4 fusions per sample (Supplementary Table S6).
Despite resulting in more predicted fusions, these results were still significantly lower
than those of FusionCatcher, which reported almost 9100 total fusion events across the
35 samples, averaging nearly 260 fusions per sample, while Ariba also had more predicted
fusions, with an average of 48 per sample (Supplementary Table S3).

In addition to extensive parameter customization, STAR-Fusion offers pre-set parame-
ter bundles that are designed for maximum sensitivity. To assess the impact of these pre-set
bundles on IGH fusion reporting, we conducted two additional tests using these undocu-
mented parameter bundles (Figure 4, Supplementary Data S3 and Table S5). Surprisingly,
using the Max Sensitivity parameter bundle resulted in fewer IGH::CRLF2 and IGH::EPOR
fusions being detected than when individually reducing FFPM and read support thresholds.
We also observed a considerable increase in the total number of gene fusion events reported,
with a total of 44,801 reported, averaging 1280 per sample. When applying the Full Monty
parameter bundle, 94% of IGH fusions were detected, more than that achieved with any
other STAR-Fusion settings tested, but at the expense of a substantial increase in the total
number of fusion events reported, which amounted to 2,464,365, an average of 70,410 per
sample (Supplementary Table S6).

3.3. Runtime and Resources

The RIGHT workflow was run on a HPC cluster, comprising seven nodes, each node
running Intel(R) Xeon(R) Silver 4309Y CPU (@2.80 GHz) with 32 threads and 128 GB
of memory, with Ubuntu 20.04.5 LTS as its operating system. RIGHT offers a runtime
that is solely dependent on the slowest algorithm, by allowing all tools to be executed in
parallel and independently of each other. Among the algorithms used, Arriba demonstrated
the shortest runtime, averaging 15 min per sample (Tables 1 and S7) due to its one-pass
filtering technique and its ability to extract candidate reads during the alignment process.
FusionCatcher displayed the lengthiest average runtime of 2 h 39 min, while the default
STAR-Fusion averaged 55 min. Memory consumption was comparable between each
algorithm, with FusionCatcher using the least memory, with an average of 24.9 GB, while
STAR-Fusion and Arriba used slightly more memory, at 38 GB and 35.8 GB, respectively.
Finally, the modifications made to enhance STAR-Fusion’s sensitivity only marginally
increased its runtime and resource usage (Supplementary Table S8). At most, the average
runtime increased by 8 min per sample for the Full Monty parameter bundle, while the
average memory usage remained between 38.2–38.5 GB.

3.4. Ensemble Filtering Approaches to Identify IGH Fusions

The current recommended best practice for RNA-seq data analysis involves employing
a minimum of two different gene fusion calling algorithms and reporting the intersected
results [25]. We therefore compared the proportion of IGH fusions detected by multiple
callers using both the default STAR-fusion settings and the more sensitive Full Monty
setting (Figure 5).
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Table 1. The maximum, minimum and mean values for the time taken for each algorithm to run, and
the resident set size (RSS) required.

Time RSS (GB)

Max Mean Min Max Mean Min

Arriba 27 m 44 s 15 m 6 m 43 s 38.2 35.8 34.5
FusionCatcher 4 h 25 m 21 s 2 h 39 m 1 h 23 m 50 s 27.5 24.9 22.5

STAR-Fusion (Default) 1 h 38 m 6 s 55 m 27 m 37 s 39.2 38.3 37.5
Read Support 1 h 33 m 6 s 57 m 26 m 35 s 39.2 38.3 37.4

Read Support + FFPM 1 h 29 m 18 s 56 m 27 m 4 s 39.2 38.3 37.4
Max Sensitivity 2 h 11 m 36 s 1 h 3 m 26 m 21 s 39.2 38.3 37.5

Full Monty 2 h 11 s 1 h 3 m 26 m 52 s 39.2 38.5 37.4
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The default RIGHT workflow results in 74.3% (n = 26) of IGH gene fusion events being
reported by two or more callers, but this decreased to 28.6% (n = 10) when detected by all
three callers (Figure 5A). When using STAR-Fusion with the Full Monty bundle, the number
of gene fusion events detected by all algorithms increased to 71.4% (n = 25), with 97.1%
(n = 34) detected by at least two callers (Figure 5B). While this is a marked improvement,
the pipeline was still limited by the slowest-running algorithm, FusionCatcher. We then
compared this result to only the intersection of the two fastest algorithms, in a bid to
decrease the overall processing time. By using only Arriba and STAR-Fusion Full Monty,
we saw 85.3% (n = 29) of gene fusion events reported by both, while also decreasing the
average processing time by 1 h 36 min per sample. Given this, it can be argued that using
only Arriba and the optimised STAR-Fusion, and reporting the intersection of their results,
can lead to reduced processing times and improved reporting when compared to the initial
default pipeline, while still adhering to the current best practice. If the processing time is not
of concern, the use of all three callers is recommended; however, the combination of Arriba
and FusionCatcher is also a practical option, and results in 74.3% of fusions being detected
by both callers. Regardless of the combination of algorithms used, all IGH fusions present
in the samples are detected by at least one of the callers (Supplementary Tables S2 and S5).

To ensure that the STAR-Fusion parameter optimisation that was implemented to
improve the detection rate of IGH gene fusions did not affect the detection rate of non-
IGH gene fusion and non-translocated cases, we processed 25 samples through the de-
fault workflow and the optimised workflow. These samples represented a range of
B-ALL subtype defining alterations, including ETV6::RUNX1, BCR::ABL1, PAX5::JAK2,
KMT2A::AFF1 and EP300::ZNF384 gene fusions, as well as PAX5.P80R and IKZF1.N159Y
(Supplementary Table S9). For these 25 samples, all three algorithms with default param-
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eters, as well as the optimised STAR-Fusion, found all 19 expected gene fusion events
(Supplementary Table S10), and no pathogenic fusions were reported for samples that
did not harbour translocation events. To ensure no additional pathogenic gene fusion
events were reported when using the optimised STAR-Fusion parameters, we filtered the
results against an extensive list of known pathogenic translocation events seen in B-ALL
(Supplementary Table S11), and no additional pathogenic gene fusions were reported.

4. Discussion

The accurate and rapid identification of gene fusion events is crucial for assessing a
patient’s prognosis to facilitate efficient risk stratification and treatment. As there is no
single universally accepted gold standard tool for gene fusion detection, current transcrip-
tomic analysis approaches rely on the use of multiple algorithms and tools [8], resulting in
a time-consuming process that requires significant personnel and computational resources
to establish and execute in a routine clinical context. With this, we have provided a best-
case computational pipeline for detecting gene fusion events in B-ALL patient samples,
with a particular focus on those involving the hypervariable and highly repetitive IGH
locus, which are notoriously difficult to detect, using a combination of specific algorithms
and parameters.

The default parameters employed by standard gene fusion detection algorithms
generally demonstrate adequacy in identifying gene fusion events in B-ALL, as is shown
here when analysing patient samples that harbour translocation events involving distinct
exon-exon breakpoints (Supplementary Table S10). However, our research here has also
shown that IGH gene fusion events, owing to their highly variable nature, necessitate a
more refined and sensitive parameter set. Our findings demonstrate that by adjusting
merely three parameters, STAR-Fusion achieved a substantial enhancement in IGH fusion
detection (94%), surpassing both Arriba and FusionCatcher (85.7% and 88.6%, respectively).
This remarkable improvement can be attributed to the insufficiency of standard minimum
filtering parameters, which fail to exhibit the necessary sensitivity for detecting many of
these events due to the absence of distinct exon-exon breakpoints in IGH fusions. However,
the trade-off between sensitivity and specificity must be considered, as higher sensitivity
can also lead to an increase in prospective fusions, which would be unfeasible to manually
curate. Moreover, despite the potential value of identifying all gene fusion events in a given
patient sample, the number of clinically actionable fusions remains low [35], making it
crucial to strike a balance between filtering sensitivity and accuracy, so that prognostically
significant fusions are not missed and false positives are limited.

Reducing the time taken for disease classification is imperative when undertaking risk
assessment and personalised patient treatment planning. Ensemble detection approaches
using Nextflow allow tools to be run in parallel, reducing the overall processing time. As
seen here, Arriba had an average runtime of 15 min, STAR-Fusion’s runtime averaged
55 min, while FusionCatcher’s average runtime was 2 h 39 min. However, by parallelising
these processes, the time is only limited by the longest running algorithm. Even the changes
made to STAR-Fusion increased its average runtime by only 8 min. And yet, we showed
that it was possible to use only Arriba and the optimised STAR-Fusion and obtain a higher
reporting rate of IGH gene fusion events detected by at least two algorithms compared to
the default pipeline (85.3% vs. 74.3%) (Figure 5), while decreasing the processing time to
1 h per sample. While this time difference may seem negligible for an individual sample,
processing multiple samples simultaneously results in a substantial improvement.

The identification of gene fusion events, particularly high-risk IGH fusions, is critical
for B-ALL treatment and research, as they are often therapeutically targetable and frequently
associated with the development and progression of various subtypes of the disease.
Therefore, selecting the best-case parameters for a given algorithm, in order to achieve the
most clinically significant results, is of paramount importance. However, while manually
testing combinations of parameters, as seen here, can be time-consuming, machine learning
and deep learning algorithms are rapidly evolving and have the potential to provide a
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more efficient means of identifying biomarkers in multi-omics datasets for personalised
medicine [36,37]. Ultimately, future directions for precision medicine in B-ALL may involve
the use of machine learning to identify the specific diagnostic markers present in an
individual patient sample, and automatically select the optimal parameters for a given
diagnostic algorithm.

In the present study, while our findings show promising insights into the detection
of IGH gene fusions through bioinformatic analysis, it is imperative to address some
limitations that have potential implications for the interpretation of our results. The use
of short-read sequencing technology presents an acknowledged constraint. Short reads
have been shown to exhibit lower accuracy in comparison to long reads [38,39], potentially
impacting the sensitivity and specificity of IGH gene fusion detection. Additionally, the
rapidly evolving landscape of bioinformatics introduces the consideration of newer gene
fusion calling algorithms that might offer enhanced accuracy and sensitivity. The evaluation
and incorporation of such algorithms, specifically those that have been tailored for the
detection of difficult-to-identify gene fusions, warrant exploration to comprehensively
assess their performance in our context [40–42].

5. Conclusions

The accurate and rapid detection of gene fusions is vital for assessing prognosis and
guiding treatment in B-ALL. However, the lack of a universally accepted detection tool
necessitates using multiple algorithms, leading to a time-consuming process in clinical
practice. Our study showed that through curated parameter values for specific algorithms,
detecting gene fusions involving the hypervariable IGH locus can be improved when
compared to default values. However, balancing sensitivity and specificity is crucial to
avoid a disproportionate number of fusions that are not clinically relevant. By using an
ensemble detection approach and Nextflow, the workflow manager, we increased the
detection rate of IGH fusions and significantly reduced the processing time. With the use of
optimised algorithms determined through machine learning, the future holds promise for
the efficient identification of biomarkers and parameter selection in personalised medicine
for B-ALL.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers15194731/s1, Data S1: Identification of IGH::EPOR gene fusions.
IGH::EPOR fusions were confirmed through inspection of the sequencing reads in the BAM using
IGV (Integrative Genomics Viewer); Data S2: The default commands used to run the standard
pipeline; Data S3: The default and altered values for the parameters used for each test of STAR-
Fusion; Table S1: Patient information, clinical information and reported genomic alterations for
patients in the study cohort; Table S2: IGH gene fusion events reported by each caller in the default
pipeline; Table S3: Total number of gene fusion events reported by each caller in the default pipeline;
Table S4: Read counts for IGH gene fusions reported by the default pipeline and the additional
STAR-Fusion parameters; Table S5: IGH gene fusion events reported by STAR-Fusion following each
parameter change, compared to the default STAR-Fusion parameters; Table S6: Total number of
gene fusion events reported by STAR-Fusion following each parameter change, compared to the
default STAR-Fusion parameters; Table S7: Resources and processing time for the default pipeline;
Table S8: Resources and processing time for the alternate STAR-Fusion parameters; Table S9: Patient
information, clinical information and reported genomic alterations for control patients in the study
cohort; Table S10: Gene fusion events reported by each caller in the default and altered pipeline;
Table S11: White list of known B-ALL pathogenic gene fusion events used to filter reported events
found using he optimised STAR-Fusion parameters.
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