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Abstract: In the past years, consumers have increased their interest in buying healthier food products,
rejecting those products with more additives and giving preference to the fresh ones. Moreover,
the current environmental situation has made society more aware of the importance of reducing
the production of plastic and food waste. In this way and considering the food industry’s need to
reduce food spoilage along the food chain, edible coatings have been considered eco-friendly food
packaging that can replace traditional plastic packaging, providing an improvement in the product’s
shelf life. Edible coatings are thin layers applied straight onto the food material’s surface that are
made of biopolymers that usually incorporate other elements, such as nanoparticles or essential
oils, to improve their physicochemical properties. These materials must provide a barrier that can
prevent the passage of water vapor and other gasses, microbial growth, moisture loss, and oxidation
so shelf life can be extended. The aim of this review was to compile the current data available to give
a global vision of the formulation process and the different ways to improve the characteristics of the
coats applied to both fruits and vegetables. In this way, the suitability of compounds in by-products
produced in the food industry chain were also considered for edible coating production.

Keywords: edible coating; shelf life; biopolymers; food waste; fruits; vegetables; by-products

1. Introduction

In recent decades, consumers have become more worried about their food habits,
rejecting products with additives and giving preference to fresh ones [1]. Furthermore,
society has increased its concern about the environment, leading to an increased interest
in reducing plastic consumption and food waste. The food industry has been struggling
with the loss of food quality and quantity, especially of perishable products, between the
harvest and consumption steps of the chain [1,2]. The losses are mainly related to food
spoilage caused by microbial contamination, molecules oxidation, and sensory character-
istics deterioration [3,4]. These effects affect the safety of food products, threaten human
health, and have a negative impact on consumer acceptance [4]. Considering the demands
of both consumers and industry, edible coatings have been introduced as one alternative
food packaging to replace plastic packaging and the synthetic preservatives traditionally
incorporated to prolong the shelf life of different food products.

Edible coatings are thin layers applied directly on the food material’s surface. Food
packaging is qualified as “edible” if it is an integral part of a food that may be eaten with
it [5]. This material preserves and maximizes food quality, being widely used as a posthar-
vest practice, especially in perishable products such as fruits and vegetables (F&V). Edible
coatings protect food products from microbial contaminants, increase shelf life, decrease
deterioration effects, and reduce lipid oxidation and moisture loss [1]. As with any other
food-film production, edible coating formulation must consider different parameters, such
as barrier properties (oxygen and carbon dioxide permeability), optical properties (they
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must be transparent and colorless), and sensory characteristics (they must be flavorless,
tasteless, and odorless) [6]. Edible coatings can also enhance the sensory product attributes,
like appearance and biochemical, physicochemical, and microbial stability. The nontoxicity
and safety of this material and the low processing cost and the feasibility make edible coat-
ings a good plastic-packaging alternative [5]. It must be noted that coatings do not always
provide the proper attributes. Sometimes, the mechanical characteristics, poor transparency,
or the lack of antimicrobial and oxidation resistance leads to the production of unsuitable
films. Nevertheless, coatings are carriers for food additives like antimicrobials and antioxi-
dants to improve both functional and physicochemical properties [3,4]. Moreover, edible
coatings are considered environmentally friendly since they replace plastic packaging and
reduce food waste by increasing the shelf-life storage of food products [1,6]. To produce
edible coatings, various formulations can be used by engaging different structural com-
pounds [6]. Thus, edible coatings can be classified into three groups, considering the nature
of their elements: hydrocolloids (polysaccharides and comprising proteins), lipids, and
blends of these compounds [7]. Furthermore, the usage of food industry by-products to
produce biopolymers for edible coatings has already been considered [5]. This circular
economy thinking strategy leads to reducing food waste, lowering the environmental
impact of the food industry.

Fruits and vegetables (F&Vs) are products composed of vitamins, dietary fiber, phy-
tochemicals, antioxidants, and minerals, whose consumption is linked to different health
benefits such as the maintenance of human body immunity and the reduction in the risk of
cardiovascular and cancer diseases, being fundamental for human nutrition [8–11]. F&Vs
are widely consumed but problematic to manage along the supply chain since they are
living tissues whose metabolic processes, such as CO2 production and O2 consumption
during respiration, continue after harvest. Moreover, F&Vs have a high water content,
so they are considered highly perishable products [8–12]. Postharvest deterioration can
be minimized by controlling respiration rate, ethylene production, moisture loss, and
microbial load. Both optimal storage conditions and postharvest technologies are needed
to guarantee their storage stability and shelf-life extension [8]. F&Vs are products likely to
be infected by Gram+ and Gram− bacteria, fungi, yeast, and molds because of the physio-
logical and compositional changes occurring in the supply chain, making these products
suitable substrates for microbial growth [10]. According to data, the main physico-chemical
parameters affecting microbial spoilage of F&Vs are pH, temperature, and water activity
(aw). Fruit pH is under 4.5, which promotes fungi growth (pH range between 3 and 8).
Instead, vegetables have a pH range of between 4.8 and 6.5, allowing both fungi and
bacteria growth [10]. The storage temperature recommended for F&Vs is between 0 and
5 ◦C since high temperatures accelerate the respiration process while low temperatures
inhibit or delay microbial growth [10]. Nevertheless, psychotropic bacteria and fungi and
chilling injuries must also be considered [10]. Finally, the liquid water available is a crucial
factor for microbial growth (aw between 0.97 and 1.00), even when harsh environmental
conditions are applied. F&Vs have an aw between 0.95 and 0.99 and are susceptible to
microbial spoilage; however, reducing the water content is not an option [10].

F&V physicochemical characteristics lead to high product losses in the supply chain.
Different studies have been carried out recently about food loss and waste (FLW). Food loss
is the reduction in the quality or quantity of food that takes place in the chain, excluding
retail, food service providers, and consumers, because of the decisions and actions of
food suppliers. Food waste is the reduction in the quality or quantity of food resulting
from decisions and actions by retailers, food services, and consumers [12]. According to
different data, more than 20% of F&V production is lost or wasted [13], and 3–18% of the
F&V loss occurs in the processing steps because of human errors, poor management, and
technical failures [12]. In developing economies, food loss is linked to the postharvest and
processing level, while developed economies are characterized by losing food at the retail
and consumer level, being considered food waste [13]. Considering that the population
is expected to reach 9.1 billion people by 2050, F&V stability and shelf-life extension have
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become issues for the food industry and society since increasing production cannot be
the only solution to fulfill the demand [13]. Both stability and shelf life are linked to food
quality and safety, being essential parameters for the food industry that affect the sensorial
quality of the products [8]. Thus, food packaging is one key factor to prevent F&V waste,
which takes place during the supply chain and once F&Vs are stored by consumers. Edible
coatings may be a suitable alternative to traditional plastic food packaging since they can
enhance the shelf life of F&Vs by reducing their respiration rate and loss of water and
protecting them from physical damage and microbial spoilage, preventing postharvest
loss [14]. In this review, the edible coating is presented as an alternative pathway to
preserve fruits and vegetables, considering the environmental issues of current plastic
packaging and the need for change in the food industry to decrease food waste. Moreover,
a general vision of the present approaches is given, including the different procedures of
edible coating production and the bioactive compounds incorporated into biopolymers
used for this packaging.

2. Edible Coatings’ Contextualization

Edible coatings are biopolymer-based layers applied on the food surface that act
as primary packaging and are considered a sustainable novel food packaging. Edible
coatings are usually a mixture of film and additives [15]. Biopolymers are usually the main
component of edible coatings and can be made from proteins, polysaccharides, or lipids.
On the one hand, proteins and polysaccharides are excellent barriers against oxygen, lipids,
and aromas but have moderate mechanical properties and high water permeability. On the
other hand, lipids can be used as cohesive biomaterials; thanks to their characteristics, when
transition temperature is achieved, they provide desirable gloss and an effective barrier for
water loss [5]. To obtain a coating with better physicochemical properties, mixtures can be
formulated. Moreover, different elements such as essential oils (EOs), bio-nanocomposites,
and inorganic nanoparticles (NPs) can be incorporated into the mixture so the functional
and physicochemical properties can be improved [5].

2.1. Film Formation and Application of Coat

There are different procedures for film formation, casting and extrusion being the
methods most used. The casting method is a wet process used in the laboratory and
in pilot scale. Casting is a three-step process: first, the biopolymer is solubilized in a
solvent; then, the solution is cast in a mold; and finally, the cast solution is dried. Films
formed by the casting method are characterized by their better particle–particle interaction,
which leads to a more homogeneous film. This method has a low cost and does not need
specialized equipment. Meanwhile, it has some drawbacks such as limited forms (only
sheets and tubes are allowed), the potential trapping of toxic solvent inside the polymer, the
protein denaturation because of the solvent, and the long time needed for the drying of the
solvent [1]. On the other hand, the extrusion method, also known as the dry process, is a
procedure that achieves better physicochemical properties and is widely used at industrial
scale. It starts with the mixture of the film components and after it is compressed. The
main advantages of this procedure are the short time and low energy consumption of
the process, the better mechanical and optical properties of the film, the minimum usage
of solvents, and the wide range of forms that can be obtained. Nevertheless, polymers
must be of low moisture and tolerant to high temperatures for this method, and the cost
and maintenance of the equipment are high [1]. Moreover, the application method of the
coat directly affects the quality of the coating. Until now, dipping, spraying, and vacuum
impregnation (Figure 1) are methods that have been developed.
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Figure 1. Schematic representation of the processes used for the coating application on fruits and
vegetables. (A): dipping; (B): spraying; (C): vacuum impregnation.

Dipping: the product is immersed in the coating solution for 30 s–5 min, and then,
the excess solution is drained. This method guarantees the application of the coat on all
surfaces, even if they are rough [14].

Spraying: the droplet-form coating solution is homogeneously sprayed on the product
surface [14]. Moreover, the solution surface is increased because of the droplets’ forma-
tion [1].

Vacuum impregnation: this method follows the dipping procedure but adds pressure,
allowing the vacuum state [14].

2.2. Principle Macromolecules Used for the Edible Coating Formulation
2.2.1. Polysaccharides

Polysaccharide-based coatings are characterized by their efficient O2 barrier because
of their well-ordered hydrogen-bonded structure, their colorless and oil-free appearance,
and their minimum caloric content, being suitable for the surface application on F&Vs.
However, the moisture barrier capacity is limited by their hydrophilic nature [16], so
blending with other compounds has also been considered. The polysaccharides most used
are chitosan, starch, alginate, pectin, and cellulose, among others.

Chitosan (CH) is a co-polymer formed from deacetylated chitin in an alkaline medium.
Chitin is a natural polymer of the exoskeleton structure of marine invertebrates, insects,
fungi, algae, and yeast [17,18]. CH is characterized by its suitability for coat and film
formation since it has permeable selectivity to CO2 and O2 and remarkable mechanical
properties [17]. CH is a safe, natural allergen-free, and biocompatible polymer associated
with different health benefits [16]. Moreover, CH coatings are nontoxic, biocompatible,
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and biodegradable and have antimicrobial effect over broad-spectrum pathogens, antiox-
idant activities [17], and excellent O2 and CO2 barrier properties [16]. CH film/coatings
applied on the F&V surface positively impact their shelf life since decay-causing fungi, an
antimicrobial effect, and an elicited host defense are produced [18]. Furthermore, CH’s
semipermeable capacity can reduce the respiration rate by adjusting O2 permeability con-
sumption and CO2 production, improving antioxidant activity [18]. Nevertheless, CH
coatings have high water vapor permeability (WVP) [17], leading to a need to be fortified
by incorporating other compounds. CH is also a biopolymer with great application for the
food industry since it is a by-product produced during the processing of various exoskele-
ton crustaceans [19], so the use of these biopolymers for the production of edible coatings
would support the circular economy system.

Starch is mainly formed by amylose and amylopectin, being suitable for coating
production because of its mechanical and barrier properties [11]. Starch is a potential
biopolymer for the food industry, not only for the suitable physicochemical properties but
also for the sources in which it can be found, such as cassava, potatoes, sweet potatoes,
corn, wheat, rice, and peas [11]. The hydrogen bond network of starch shows an excellent
gas barrier for both CO2 and O2, as well as a low permeability of flavoring agents [11,16].
Moreover, starch biopolymers are odorless, tasteless, and colorless, suitable for the food in-
dustry [11]. Despite these suitable properties, starch biopolymers have high hydrophily [11],
leading to an undesirable WVP that has to be improved by adding other molecules.

Alginate is a co-polymer extracted from seaweeds that forms a transparent, uniform,
water-soluble, high-quality film/coat characterized by its colloidal characteristics, such
as being a thickening, gel-forming, film-forming, and emulsion-stabilizing agent, as well
as for its low permeability to lipophilic molecules and O2 [16,17]. This leads to the rear
of the lipid oxidation processes of F&V and, consequently, to a reduction in weight loss
and microbial growth [17]. Alginate-based coats also reduce shrinkage, moisture loss, oil
absorption, and flavor and color loss [17].

Pectin is a generally recognized as safe (GRAS) molecule by the Food and Drug
Administration (FDA). It is an amorphous, white-colored colloidal carbohydrate and the
main plant cell wall component [6,20]. It is characterized by its suitable properties for the
packaging sector of the food industry since it is nontoxic, biodegradable, and biocompatible
and because of its permeability properties, gas barrier, and microbial controller abilities.
Moreover, pectin has various technological properties, such as being an emulsifier, gelling
agent, thickener, and stabilizer [6], and can be obtained from other food sector by-products,
promoting a circular economy.

Cellulose-derivative-based coatings are characterized by their colorless and oil-free
appearance and their minimal calories, while the moisture barrier is low because of their
hydrophilic nature [16]. Carboxymethyl cellulose (CMC) is a cellulose derivative, an anionic
linear long-chain water-soluble compound with high strength and structural integrity [21],
suitable for the production of coatings applied to F&Vs. The presence of both hydroxyl
and carboxylic groups in the CMC structure provides water binding and moisture sorption
properties [21]. Moreover, CMC provides moisture, O2, CO2, aroma, and oil barrier
improvement, as well as an increment of adhesion of the coating–surface interaction [21].
Finally, the antisenescence property of CMC reduces the ripening process in climacteric
fruits [21], enhancing their shelf life.

2.2.2. Proteins

Protein characteristics are suitable for edible film formation because of the amino
acids’ position on the chain and the chain-to-chain interaction, which also determines the
coating’s strength and gas and liquid permeability [16]. Protein-based edible coatings are
considered excellent O2 blockers, even at low relative humidity, and from a nutritional
point of view [16]. Different proteins have been applied in edible coating formation—soy,
whey, gluten, and zein corn proteins being especially relevant in F&Vs. The food industry
produces soy protein, zein protein, and gluten as by-products in activities such as soybean



Foods 2023, 12, 3570 6 of 18

processing, defatting soybean favor, or production of wheat starch [19]. Moreover, casein,
keratin, and gelatin are common protein residues from animal product processing [19].
Whey-protein-based coatings have accurate hindrance and excellent gas barrier proper-
ties at low relative humidity. Moreover, these coatings are suitable blockers of aroma
compounds and oil, while their moisture barrier capacity is limited by their hydrophilic
nature [16].

2.2.3. Lipids

Since lipids are good barriers against water migration, lipid-based coatings are ex-
cellent moisture barriers. However, the high hydrophobicity of these coatings leads to
extra-brittle and thicker properties, so a blending of lipids with proteins and polysaccha-
rides is usually applied. Moreover, lipid-based coatings have been noticed with damaged
appearance and gloss [16]. Paraffin-wax-based coatings are the main lipid-based films used
as layers for F&V products. Films obtained with these waxes are characterized by their
moisture barrier capacity and improvement of the outer surface appearance of different
meals. Nevertheless, these layers are edible only when applied in a thin layer, while a thick
layer must be disposed of before eating [16].

3. Food By-Products as Materials for Edible Coating Formation

Edible coating formulation requires at least one macromolecule to act as the biopoly-
mer, which can be a polysaccharide, a protein, or a lipid. The blending of two or more
compounds usually allows the obtaining of the best coat. With the application of these
biopolymers on the surface of F&Vs, FLW is reduced and can be even more notable if the
circular economy system is considered. The circular economy approach uses by-products
produced by the food industry as sources of biopolymers used in edible coating forma-
tion. This policy is promoted by the European Union (EU), encouraging the food industry
to upgrade the low-quality by-products obtained during processing to minimize waste.
By-products are a source of bioactive compounds that can be introduced in edible coating
formulation. If all or some of the coating components come from food industry by-products,
the efficiency and sustainability of edible packaging will be guaranteed [19].

F&V postharvest processing also carries high amounts of by-products rich in com-
pounds with suitable characteristics for edible coating formation [22]. These F&V by-
products are known as plant-derived food by-products (PDFBPs) and are mainly seeds
or kernels, pomace, peels, and leaves containing biopolymers such as cellulose, starch,
pectin, and plant-based proteins, which are the main components of coatings and films [23].
Thus, wheat straws, wheat brans, and millet brans are a rich source of arabinoxylan, a
hemicellulose polymer, while oat brans are rich in β-glucan. Moreover, fruit seeds or
kernels are an excellent source of amylose, the main component of starch. CMC is found
in rice stubbles and nanocellulose from wheat brans, obtaining nanofibers with high crys-
tallinity and a large specific surface area rich in hydroxyl groups characterized by good
biocompatibility and low cytotoxicity. Furthermore, apple pomace, mango, pineapple, and
lime peels are rich in pectin, and lime peel pectin is a rapid-set gel former. Pineapple peel
pectin incorporated into a commercial pectin film showed a higher water barrier property
and antioxidant capacity. Finally, plant proteins can be extracted from different sources;
coconut milk and rice bran are good examples [24].

Although plenty of data confirm the suitability of the by-product compounds gener-
ated by the food industry for edible coating formation, few studies have been developed
using these molecules. In a study by Torres-León et al., the authors used mango peel
flour and mango seed kernel to produce edible coatings applied to peach surfaces. For the
mango peel flour coating, all compounds were used, while in the mango seed kernel, only
the antioxidants were incorporated [25]. In another study by Grimaldi et al., all parts of
onions, artichokes, and thistles were selected to incorporate into an edible coating since
these vegetables entail a considerable amount of waste in the Italian food industry. Results
showed that the coating had excellent mechanochemical properties [22]. Regarding food
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by-products, leaves are a big waste, so different studies have considered these vegetable
parts as suitable matrices to obtain bioactive compounds. In 2022, Zhang et al. used loquat
leaves to obtain an active extract to incorporate into the formulation of an edible coating
applied to tangerines [26]. Aguilar-Veloz et al., Tesfay and Magwaza, and Chong and
Brooks obtained leaf extracts of jackfruit, moringa, and haskap to formulate edible coatings
to be applied to tomatoes, avocados, grape tomatoes, and bananas, respectively [27].

In summary, food by-products produced during food industry processing have differ-
ent chemicals in their composition that can be used for edible coating and film production.
Using peels, kernels, pomace, or crustaceous exoskeletons to recover polysaccharides and
proteins incorporated as edible coatings leads to a promising circular economy achievement,
as shown in Figure 2. However, because of the slight data available on studies that used
food by-products for the edible coating formation and its potential exploitation (Table 1),
further research is needed.
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Figure 2. Application of food industry by-products as potential components to be used as edible
coatings and films in fruits and vegetables.



Foods 2023, 12, 3570 8 of 18

Table 1. Improvements of different food products after their storage with edible coatings.

Edible Coating Macro-Molecule Remarkable
Component Food Product Improvement T

(◦C)
t

(Days) RH (%) Ref.

Alginate (3%) + Chitosan (1%) +
Olive leaf extract PS Olive leaf extract Cherry fruits Retardation of maturation,

Anthocyanin incrementation 25 20 65 [28]

Guava leaf extract (20%) +
Lemon extract (15%) - Guava leaf extract +

Lemon extract Banana Reduction in color changes,
Preservation of vitamin C NS 14 NS [29]

Commercial pectin + corn-flour
starch + beetroot powder PS

Corn-flour starch//Corn-
flour–beetroot

powder
Tomatoes

Lower weight loss, Lower decay
percentage, Lower

respiration rate
25 30 80–85 [30]

Pectin + Oregano essential oil
(36.1 mg/mL) PS Oregano EO Tomatoes Lower fungal decay, Increase in

antioxidant activity 25 12 NS [31]

Whey protein pectin + pectin +
transglutaminase PR and PS Transglutaminase Apples, Potatoes,

Carrots

Lower weight loss, Inhibition of
microbial growth, Antioxidant

activity preservation
4–6 10 NS [32]

Glycerol + Tragacanth
gum (0.6%)

PS

Tragacanth gum

Strawberries
Reduction in the rate of

deterioration in ascorbic acid,
total phenolics and anthocyanins

4 16 NS [33]Glycerol + CMC (1%) CMC
Glycerol +LMP (2%) LMP
Glycerol + PG (4%) PG

Whey protein (8%) + lemon
oil (1%) PR Lemon oil Pears Reduction in color changes,

Reduction in loss of hardness,
Reduction in loss of polyphenols

and flavonoids

4 7–28 80 [34]
Whey protein (8%) + lemon

grass essential oil (0.5%) PR Lemongrass EO

Chitosan (1%) + Gum
ghatti (1%) PS Gum ghatti Grapes

Retention of phenolic acids
content, Reduction in

yeast-mold growth
1 60 85–90 [35]

Alginate + Aloe vera
+ ZnO-NPs PS Aloe vera ZnO-NPs Tomatoes No spoilage during the storage RT 16 NS [36]

PET + Chitosan (2%) +
Cinnamon essential oil (0.5%) PS Cinnamon EO Pineapple

Lower weight loss, Lower
decrease in L*, Microbial

growth retardation
5 15 NS [37]

Sodium alginate + sweet
orange essential oil (5%) PS Sweet orange EO Tomatoes

Eradication of sessile and
planktonic forms of Salmonella
and Listeria, Lower weight loss

22 15 NS [38]

Pullulan + cinnamon EO PS Cinnamon EO Strawberry Delay in mass loss, decay
percentage, and firmness 20 6 70–75% [39]
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Table 1. Cont.

Edible Coating Macro-Molecule Remarkable
Component Food Product Improvement T

(◦C)
t

(Days) RH (%) Ref.

Sodium alginate (2%) +
ascorbic acid (0.5%) +

vanillin (1%) PS Ascorbic acid, Vanillin Kiwifruit
Lower decay, Lower ascorbic

acid loss 5 7 NS [40]

Sodium alginate (2%) +
ascorbic acid (0.5%) +

vanillin (0.5%)
Lower weight loss

Walnut flour protein PR - Walnuts
Protection against lipid

deterioration, Preservation of the
sensory characteristics

40 84 NS [41]

Soy protein + ferulic acid PR Ferulic acid Fresh-cut apple Weight loss control,
Firmness control 10 7 50 [42]

Soy protein + cysteine (1%) PR Cysteine Fresh-cut eggplant Enzymatic browning control 8–9 5 NS [43]
Whey protein +. Xanthan gum

+ Clove oil PR Clove oil Tomatoes Improvements in firmness and
color, Respiration is inhibited 15 20 85 [44]

Whey protein nanofibrils +
glycerol + trehalose PR Glycerol and trehalose Fresh-cut apple Enzymatic browning control 10 4 NS [45]

Whey protein nanofibrils - Hydrophobic and
antioxidant activity

Aloe vera 50% gel Gel Aloe vera Papaya fruit
Control disease pathogens, Delay

ripening, Water loss control,
Respiration rate reduction

15 28 68–70 [46]

Chitosan-gelatin PS - Red bell peppers
Microbial spoilage reduction,
Respiration rate maintenance,

Nutritional content maintenance

7; 20 14
- [47]21 7

14 20

Chitosan + HPMC +
bergamot EO PS Bergamot EO Grapes

Weight loss reduction,
Respiration rate reduction,

Firmness improvement,
Antimicrobial effect

1–2 22 - [48]

Pea starch + guar gum PS - Oranges
Shelf-life extension, Higher

perception of off flavors, Better
sensory scores

20 7 90–95 [49]

Abbreviations: T: temperature; t: time; RH: relative humidity; EO essential oil; RT room temperature; NS not specified; CMC methyl cellulose; LMP: Low methoxyl pectin; PG: Persian
gum; PS: polysaccharide; PR: protein; L: lipids.
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4. Improvement of the Physicochemical and Functional Characteristics of the Coatings

Biopolymers used as coats for food packaging are typically hydrocolloids, being
alginates and chitosan that are broadly studied. Taking into account that biopolymers used
as coats can be protein based or polysaccharide based and considering that both molecules
are characterized by their hydrophilic capacity, the reinforcement of these compounds with
other materials is convenient [50]. In this way, the physicochemical properties of these
compounds can be improved by adding other elements, such as nanoparticles, essential
oils, and bio-nanocomposites. Thus, the effects achieved with these components’ addition
is described below and summarized in Figure 3.
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4.1. Essential Oils

Essential oils (EOs) are natural derivative aromatic compounds that can be extracted
from the seeds, stems, leaves, flowers, and fruits of plants [3]. Moreover, EOs are antimi-
crobial additives considered GRAS [14] and have attractive features for edible coating
incorporation because of the preservative and antimicrobial ability of their compounds to-
ward foodborne pathogens in materials such as vegetables, fruits, and meat products [14,51].
Since EOs are characterized by their hydrophobic substances, they are suitable for reducing
vapor penetration by increasing the hydrophobicity of edible coatings [14,52]. EO features
comprise the ability to increase the physical stability of active ingredients, the maintenance
of aroma, taste, and flavor when added into nanoemulsions, and the increment of the
effectiveness against foodborne pathogens [14]. Furthermore, EOs incorporated into a
suitable delivery system are considered more efficient and protective to avoid dependency
on other food components [14]. Nano-systems are commonly used as delivery systems
of EOs to minimize the negative impact of these compounds in the sensory analysis of
food products and to increase their stability in the food matrices [53]. Since EOs have
antimicrobial and antioxidant properties, several studies have been developed about these
volatile compounds, considering different matrices. Thus, cinnamon, oregano, and thyme
are examples of matrices in which EOs have been studied with these activities [14,54].

4.2. Nanoemulsions

Nanoemulsions are oil-in-water or water-in-oil solutions that can be used for edible
coating formulations to improve their physicochemical properties. Oil-in-water nanoemul-
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sions are more suitable for this application since they can be easily fused with food-grade
components, allowing a better scaling-up process [14]. The nanoemulsion mechanism
is based on the nanodroplet formation of the emulsion covered by a film or a layer of a
food ingredient. The particle size of these droplets (between 10 and 100 nm) increases
the bioavailability and the chemical reactivity. Moreover, the functional qualities of the
encapsulated component are improved because of the surface area increment [14,55], which
is an essential factor for the promotion of the antibacterial EO characteristics and the im-
provement of the absorption of additional hydrophobic compounds [14,56]. These droplets
are optically clear [14], and their bioavailability and chemical reactivity are higher because
of the increment of the surface area of the particles [14]. The best procedure for the incorpo-
ration of EOs into edible coatings is in nanoemulsion, since this allows a minimum dose
addition, leading to no adverse impact on sensory characteristics. Moreover, the nano-scale
guarantees the effectiveness of shelf-life prolongation [14]. Oil-in-water nanoemulsions are
considered the next-generation edible coatings since they can be fused with food-grade
components, allowing more scope for the scaling-up step in the industry by applying a
homogenization approach [14,57]. There are two processes for the nanoemulsion incorpora-
tion of edible coatings: a single-step nanoemulsion process in which all the ingredients are
mixed in a coarse solution and then homogenized to create nanometric-sized droplets or a
two-step nanoemulsion preparation where the aqueous solution is made first and, then,
is combined with the biopolymer solution [58]. Nanoemulsions can be applied as edible
coatings in different postharvest fruits such as papaya, mango, or strawberries [14].

4.3. Bio-Nanocomposites

Bio-nanocomposites are a mixture of various nanocomponents organized to create an
obstacle against the entrance or existence of different molecules, such as oxygen or water
vapor, reducing weight loss [59]. The concentration of the mixed materials influences the
effect of the overall performance of polymer-based nanocomposites [50]. Moreover, it has
been proved that the homogeneous dispersion of nanofillers leads to a better performance
of bio-nanocomposites [50]. Nanocomposites also improve different properties of the
biopolymers used for edible coating production. Among others, the mechanical properties,
the barrier and thermal features, and the antimicrobial activity are improved [59]. Water
barrier properties can be improved by adding Ag NPs, chitosan nanofibers, TiO2 NPs,
Zein NPs, cellulose nanofillers, and copper oxide NPs, leading to lower solubility and an
improved contact water angle. Moreover, NPs create a tortuous pathway by narrowing
pore channels, which increases the diffusional path and reduces water diffusion [50]. In the
same way, a uniform distribution of nanofillers in bio-nanocomposites leads to an excellent
gas barrier by creating a complex pathway that restricts the movement of gas molecules
through the material. These nanofillers’ distribution may change the interfacial region of
the polymer matrix, improving gas permeability characteristics [50].

4.4. Inorganic Nanoparticles

Inorganic nanoparticles (NPs) are solid colloidal particles of 10–100 nm character-
ized by their stability, functionality, and biological activity [60]. NPs can load functional
molecules, improving their stability and performance by encapsulation [60]. NP obtention
methods are ionic crosslinking, covalent crosslinking, precipitation, and polyelectrolyte
complexation [60]. These particles feature antimicrobial activity, so their incorporation
has a protective function [15,61]. Moreover, the increased surface area leads to a better
reinforcement effect in the matrix [59]. Thus, using NPs in the food industry relies on their
ability to be easily dispersed into matrices, minimizing the adverse flavor impact, while the
diffusion and bioavailability are enhanced [61]. In this way, incorporating NPs into edible
coatings can be a suitable option to reduce the adverse effects of antimicrobial substances
on food odors [61].
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5. Application of Edible Coatings on Fruits and Vegetables
5.1. Current Application of Edible Coatings Applied on Fruits and Vegetables

Nowadays, edible coatings are studied for perishable food products, such as F&Vs,
meat and poultry, and fresh fish. On the one hand, microbial contamination is common
in these products because of their high water content. F&Vs are prone to water loss,
mechanical damage, and sensory changes during storage, leading to economic loss [3].
Mechanical injury, environmental stress, and pathological breakdown are also situations
that reduce these perishable food products’ shelf life [59]. These effects also impact the
consumers’ acceptance and health [3]. Different studies have applied biopolymers with
bioactive compounds (such as EOs), inorganic NPs, or bio-nanocomposites as edible
coatings to prolong these products’ shelf life. In this section, the current application of
edible coatings (Table 2) is discussed, providing several examples where F&V shelf life is
improved (Table 1).

Several studies have been carried out using edible coatings as shelf-life extenders.
Polysaccharides are the most common macromolecules used in EC production. Sucheta
et al. studied the tomato’s changes during 30 days of storage at 25 ◦C using a pectin-based
edible coating mixed with corn flour and beetroot powder in different proportions. Results
showed how the coating produced with 50% pectin and 50% corn flour (PCF) achieved the
best weight loss, decay percentage, respiration rate, and biochemical quality. Moreover,
PCF and P (100% pectin) coating could maintain maximum glossiness and minimum
shrinkage of the tomato’s pericarp without causing off-flavors [30]. Rodriguez-Garcia et al.
also studied the tomato changes that took place during 12 days of storage at 25 ◦C. The
edible coating was prepared using citrus peel pectin as the main macromolecule, mixed
with oregano EO. Results showed the antifungal effect of the EC on inoculated tomatoes
because of the EO addition. Moreover, the total phenol content and the antioxidant activity
were increased without affecting the sensory acceptability of the tomatoes [31]. Another
study explored the tomato’s variations after being coated with alginate mixed with aloe
vera, and ZnO-NPs were measured during 16 days of storage at room temperature. Results
showed the applicability of this edible coating since the UV shielding and water barrier
and the thermal, mechanical, and antimicrobial properties were excellent. The authors
demonstrated that the improved properties resulted from the synergic action of the alginate
mixed with ZnO-NPs and aloe vera [36]. Strawberries were also among the focus fruits for
the shelf-life extension. Khodaei et al. applied an edible coating made of CMC, Persian gum
(PG), low methoxyl pectin (LMP), or tragacanth gum (TG) in strawberries stored at fridge
temperature (4 ◦C) for 16 days. To analyze the effect of the different coating treatments
on the strawberries’ shelf-life, the TOPSIS method was applied, showing that the CMC
coating has the best results in reducing weight loss and spoilage and preserving nutritional
ingredients [33]. The shelf-life prolongation of coated strawberries was also studied. The
coatings were made of pullulan (a water-soluble polysaccharide), and cinnamon EO was
incorporated in a nanoemulsion structure. The edible coating addition led to different
improvements in the mass loss delay, firmness, total soluble solids, and titratable acidity
during the 6 days of storage at room temperature [39]. In the same way as strawberries,
cherry fruits are highly perishable. Sweet cherries were coated with a polysaccharide-based
coat of alginate and chitosan and mixed with olive leaf extract. After 20 days of storage at
25 ◦C, coated cherries showed retardation of the ripening process and maximum retention
of phenolic compounds. Furthermore, the authors determined the correlation between
antioxidant activity and the retention of phenolic compounds [28]. Coated grapes have
been studied using a polysaccharide-based coating of chitosan (1%) and a combination
of chitosan (1%) and gum ghatti (1%) applied to the grapes’ surface before their storage
at fridge temperature (1 ◦C) for 60 days. After comparing the results, the chitosan and
gum ghatti showed better antifungal activity. This coat also gave good results regarding
nutritional properties, phenolic compounds, and antioxidant activity maintenance [35].
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Table 2. Application of by-product compounds in edible coating production.

Product Subproduct Extraction Conditions Compound Formulation Application Product Ref.

Mango
Mango peel flour Drying pretreatment 60 ◦C; 48 h - 1.09% MPF

0.33% Gly Casting Peach [25]

Mango seed kernel Solvent extraction EtOH 90%; 75 ◦C Antioxidant
compounds

1.09% MPF
0.33% Gly

0.078 g/L EMS
Onion

Leaves, stems,
flowers UAE Acetone Phenolic compounds

1% SA
0.3 g/g Gly/SA

0.04 g/g CaCO3/SA
5.4 g/g GDL/CaCO3

- - [22]Artichoke
Thistle

Mango Kernel Solvent extraction Sodium
metabisulphite 0.16%

Amylose;
amylopectin Gly:Sorbitol 1:1

Starch 50%
Dipping Tomato [62]

Olive leaf Leaves Solvent extraction EtOH 40%; 60 ◦C; 120 min Olive leaf extract

3% SA
10% Gly

2% CaCl2
0.01 g/mL Chitosan

0.02 g/mL OLE

Dipping Sweet cherries [28]

Loquat leaf Leaves Reflux extraction EtOH 50%; 196 ◦C Loquat leaf extract

10 g/L SA
0.7 g/L CA
10 g/L SE

0.5 g/L AsA
0.5 g/L PS

Dipping Tangerines [26]

Jackfruit leaf Leaves MAE EtOH:H2O 4:1; 840 W; 2 min Jackfruit leaf extract

1.5% pectin (w/v)
30% (w/w) Gly

10% (w/w)
Beeswax

JLE 5 mg/mL

Wounded Tomatoes [27]

Moringa leaf Leaves NS - Moringa leaf extract
MLE 2%

Chitosan 0.5%
CMC 0.5%

Dipping Avocado [63]

Haskap leaf Leaves ATPE Sodium phosphate 10%,
EtOH 37%, H2O 53%; 5 min

Haskap leaf
bioactive

compounds

PPC 10%
0.91% Gly

10% SPHLE/ASHLE
1.7 g CA/MA

Filming Grape tomatoes

[64]Dipping Bananas

Abbreviations: UAE: ultrasound-assisted extraction; MAE: microwave-assisted extraction; ATPE: aqueous two-phase extraction; MPF: mango peel flour; Gly: glycerol; EMS: extract
mango seed; SA: sodium alginate; GDL: D-(+)-gluconic acid-σ-lactone; OLE: olive leaf extract; JLE: jackfruit leaf extract; CA: citric acid; SE: sucrose ester; AsA: ascorbic acid; PS:
potassium sorbate; PPC: pea protein concentrate; SPHLE: sodium phosphate haskap leaf extract; ASHLE: ammonium sulphate haskap leaf extract; MA: malic acid; NS: not specified.
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Regarding protein-based coatings, fewer studies have been conducted. Protein-based
coatings mixed with transglutaminase were applied to apples, potatoes, and carrots cut
in slices and stored at fresh temperatures for 10 days. In this study, positive results were
shown when the transglutaminase was incorporated into the edible coating, reducing
weight loss, preventing microbial growth, and maintaining antioxidant activity during the
10-day storage. Furthermore, apples, carrots, and potatoes showed no significant changes
in their hardness and chewiness [32]. Another study compared the addition of lemon oil,
lemongrass EO, and non-incorporated oils in whey-protein edible coatings applied onto
the surface of pears. Results showed how the coating with lemon oil (1%) and lemongrass
EO (0.5%) reduced weight loss, WVP, oxygen, and carbon dioxide. However, those pears
coated with lemon oil had a reduction in firmness after 28 days at fresh storage with 80%
humidity, while those coated with lemongrass EO showed higher brownness because of the
nature of the oil and its natural yellow color. Regarding acceptability, both coatings showed
a slight reduction in acceptability compared with the EC without the oils [34]. Walnut flour
protein was applied to the kernel surface of walnuts to improve their storage for 40 days
at 84 ◦C. Edible coatings preserved the sensory characteristics, especially those regarding
lipid deterioration (e.g., lipidic peroxidation that leads to rancid flavor) [41].

According to Table 1, EOs are commonly chosen to improve the features of the coatings.
Olive leaf extract, orange, oregano, thyme, cinnamon, and lemon EOs are broadly incorpo-
rated into edible coatings. Reduction in water loss and hardness, fewer color changes, and
lower respiration rates are the most common advantages when edible coatings formulated
with EOs are applied on F&V products. Moreover, storage time is highly incremented
when the edible coating is applied on fruits, especially suitable on those fruits for which a
long period passes between harvest and selling. Therefore, the edible coating incorporation
on F&V surfaces improved the shelf-life extension of these perishable products, which may
lead to lower waste production and, finally, to fewer economic losses.

5.2. Effects of Edible Coatings in the Sensory Characteristics

Edible coatings seem a suitable pathway for the shelf-life extension of F&Vs, producing
some improvements such as retardation of maturation, inhibition of enzymatic brown
reactions, or reduction in respiration rates, among others. However, the impact of the
edible coating application on the acceptance of the product, depending on firmness, color,
flavor, taste, smell, hardness, and overall acceptability, should be considered. Basaglia et al.
studied the changes in color and firmness of coated pineapples, and results showed no
significant variations in color until day 7, with a lower decrease in brightness compared
to uncoated pineapples. No significant changes were measured in firmness until day 9.
Moreover, 12 trained judges analyzed aroma and overall evaluation, finding no significant
difference until day 5 [37]. Manzoor et al. determined the firmness of fresh-cut kiwifruit
coated with sodium alginate, ascorbic acid, and vanillin, showing slower changes in
those coated slices than in the uncoated ones [40]. However, Tabassum et al. determined
the changes in color and firmness when guava leaf and lemon extract were applied to
bananas using a scale ranging from 1 to 7 and 1 to 5, respectively. Results showed that
coated bananas maintained firmness and color for 2 and 5 days more than those uncoated,
respectively [29]. In a different study, 15 semi-trained judges evaluated coated tomatoes’
taste, firmness, and visual appearance. After a 15-day storage period, the acceptance rate
was higher than for the uncoated. Nevertheless, a distinct but pleasant difference in the
coated tomatoes was detected. Regarding firmness and color, results showed higher visual
brightness of coated tomatoes compared with those uncoated. Finally, firmness of coated
tomatoes was reduced by 28%, while uncoated tomatoes showed a reduction in firmness of
61% [38]. The sensory changes of tomatoes coated with whey protein, xanthan gum, and
clove oil were also analyzed by a trained panelist. Color, texture, taste, flavor, and overall
acceptability were evaluated. After 15 days of storage, the coated tomatoes were found
acceptable, whereas the uncoated tomatoes showed a desiccated appearance. The coated
tomatoes showed no adverse effect on color, texture, taste, and flavor [44]. Regarding the
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data available considering sensory characteristics of the F&Vs coated, positive results are
found. Overall, there is an improvement in the firmness, color, flavor, smell, and taste of
the samples coated, guaranteeing the consumers’ acceptability of F&Vs.

5.3. Edible Coatings Regulation

When EC are added onto F&V surfaces, the materials of these coatings are in direct
contact with the food product. Therefore, the safety approval of the corresponding author-
ities is necessary for the commercialization of these products [65]. In this way, the Food
and Drug Administration (FDA) and the European Food Safety Authority (EFSA) have
developed codes regarding the proper application of packaging and food contact materials
(FCM) [65], guaranteeing the consumer’s health [66]. Thus, three different categories have
been described: FCM, defined as the materials and articles that are in direct contact with
food, such as nanoparticles and antimicrobial and antioxidant compounds, that in the case
of the European Union are legislated by Regulation (EC) 1935/2004; food contact substances
(FCS), which are the components of the main material, and food contact articles (FCA),
which are the final product (whether they are coatings or films) [65,66]. It is important to
remark that the edible coatings added to the surfaces of F&Vs must be a recognized GRAS
or food additive by the FDA, and the main compounds used in the production of EC are
generally in the additives list made by the European authorities included in Regulation
(EC) 1333/2008 [65].

In conclusion, when edible coatings are developed, it is important to use compounds
that are considered safe or are included in the additive lists of the different authorities so
consumer health is not compromised. In this way, it would be interesting for the European
authorities to develop a more specific legislation for EC, since it seems to be an alternative
with potential for the improvement of the shelf life and quality of perishable products such
as F&Vs.

6. Conclusions

Edible coatings are a suitable alternative to traditional plastic packaging that is being
widely studied nowadays, especially for perishable products such as fruits and vegetables.
The need for food waste reduction, the consumers’ interest in incorporating more fresh
products in their diet, and the awareness of society about the environment are key points
and the main reasons why edible coatings are receiving so much interest from the scientific
community. Different formulations can be used to achieve the best edible coating proper-
ties for one specific product. Furthermore, edible coatings are suitable for incorporating
substances that provide added value to the product, such as bioactive compounds, essential
oils, or nanoparticles, and in many cases, these compounds can be obtained from food
industry by-products, contributing to the circular economy. This review aimed to provide
data about edible coatings, their formulation, and their application procedures and to give
an approach to studies considering edible coatings applied to fruits and vegetables. The
data collected about edible coatings show that this pathway should be considered by the
food industry, not only for the advantages from the point of view of the prolongation of
perishable products’ shelf-life but for the possibility of using other food by-products, such
as pectin and chitosan, as biopolymers for coating formulations. Since inorganic nanopar-
ticles and other elements can be incorporated into edible coatings, further investigations
considering toxicity must be performed to guarantee consumers’ health.
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