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Abstract: Shaoxing rice wine is a notable exemplar of Chinese rice wine. Its superior quality is strongly
correlated with the indigenous natural environment. The results indicated that Firmicutes (75%),
Actinobacteria (15%), Proteobacteria (5%), and Bacteroidetes (3%) comprised the prevailing bacterial
groups. Among the main bacterial genera, Lactobacillus was the most abundant, accounting for 49.4%,
followed by Lactococcus (11.9%), Saccharopolyspora (13.1%), Leuconostoc (4.1%), and Thermoactinomyces
(1.1%). The dominant fungal phyla were Ascomycota and Zygomycota. Among the dominant
genera, Saccharomyces (59.3%) prevailed as the most abundant, followed by Saccharomycopsis (10.7%),
Aspergillus (7.1%), Thermomyces (6.2%), Rhizopus (4.9%), Rhizomucor (2.2%), and Mucor (1.3%). The
findings demonstrate that the structure of the bacterial and fungal communities remains stable in
the environment, with their diversity strongly influenced by climatic conditions. The continuous
fluctuations in environmental factors, such as temperature, air pressure, humidity, rainfall, and
light, significantly impact the composition and diversity of microbial populations, particularly the
dominant bacterial community.

Keywords: Illumina MiSeq sequencing; fermented beverage; bacterial communities; food environ-
ment; fungal community; environment

1. Introduction

Huangjiu, a Chinese national specialty commonly referred to as rice wine, is a promi-
nent member of the world’s three major brewing wines, along with wine and beer, holding
a significant position. The intricate brewing process involving rice soaking, steaming,
fermentation, pressing, sterilization, storage, and aging, combined with the unique climatic
conditions (including temperature, humidity, and precipitation), which results in a distinct
and intricate microbial community structure within Shaoxing rice wine. This complex
ecosystem contributes to the unique flavor profile of Shaoxing rice wine [1,2].

Shaoxing is situated on the southeastern coast of China (29◦13′35′ ′~30◦17′30′ ′ N,
119◦53′03′ ′~121◦13′38′ ′ E), with Kuaiji Mountain to the south and Yushao Plain to the north.
Due to the influence of external ocean currents and the barrier of Siming Mountain and
Kuaiji Mountain, the producing area has formed a relatively stable and humid environment
in the outer sea. The average annual temperature in the producing area ranges from 16.2 ◦C
to 16.5 ◦C (the seasonal temperature ranges: from 15.7 ◦C to 15.9 ◦C in spring; 28.2~28.7 ◦C
in summer; 17.7~18.3 ◦C in autumn; and 3.9~4.4 ◦C in winter) The annual humidity (the
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degree of saturation of the distance between water vapor in the air) is 77% to 82%, and the
annual precipitation is 1301 to 1465 mm. This unique geographical environment is suitable
for the growth of brewing microorganisms.

The microbial community is unevenly distributed in the environment and exhibit
biogeographical patterns. In large organisms, these biogeographic patterns are determined
via biological factors such as competition between species, predation, and parasitism, as
well as abiotic factors such as temperature range, nutrients, and biodistribution [3].

Shaoxing rice wine fermentation involves a complex microbial community that ex-
hibits symbiotic interactions [4]. This community strongly relies on its environment and
contributes to the flavor and taste of the wine to some extent. The fermentation process
follows a co-fermentation mode of mixed strains in an open environment [5]. Numerous
studies have highlighted that the dominant fungi in rice wine starter cultures (such as
wheat Qu and Jiuyao) are mainly mold, followed by yeast [6]. In terms of bacterial microor-
ganisms, Bacillus, Staphylococcus, Leuconostoc, Pediococcus, Lactobacillus, and Lactococcus are
predominant [7]. The microbiota involved in the Shaoxing rice wine brewing process pri-
marily encompasses fungi (such as Saccharomyces, Aspergillus, Rhizopus, and Monascus) and
bacteria (including Bacillus and Lactobacillus, such as Lactobacillus plantarum, Lactobacillus
brevis, Micrococcus pentosus, and Micrococcus yeast) [4,8]. Microbial community diversity is
influenced by factors such as the microbial inoculum, processing technology, production
environment, and climatic conditions [9]. Currently, micro-fermentation morphology at-
tracts significant attention from rice wine researchers, particularly the interplay between
environmental microecology and the microorganisms involved in rice wine fermentation.

This study utilizes high-throughput sequencing technology to investigate the microbial
community structure and the diversity within the core area of the Shaoxing rice wine
production area throughout the four seasons of a year. Additionally, correlation analysis is
employed to analyze the impact of environmental factors on these microbial communities.
The findings of this study offer a theoretical foundation for further understanding the
connection between fermented ecological resources and the quality of fermented foods.

2. Materials and Methods
2.1. Sample Collection

All environmental samples were obtained from 10 wineries producing Shaoxing rice
wine, a product protected via geographical indications. Samples were collected in the
four seasons from the brewing tools, indoor windowsills, door frames, floors, and areas
around the wine vats [9]. Representative samples were taken five times in each season, and
10 groups of the samples were randomly mixed in equal quantities each time (a total of
200 groups of the samples). The fresh samples were sealed and put into the refrigerator at
−80 ◦C for low-temperature storage until use.

2.2. High-Throughput Sequencing Analysis
2.2.1. Microbial Enrichment in Pretreatment Samples

Sample pretreatment was carried out on the basis of the previous studies by Zhu Y
et al. [10]. The mixed sample of 200 mg, 1 mL of ethanol (70%), and 4 to 5 glass beads were
added into the 200 mL centrifuge tube, shook for 5 min, centrifuged at 10,000 rmp for 3 min,
and then the upper liquid was discarded. A phosphate (PBS) buffer at 10,000 rmp was
added to the lower liquid and centrifuged for 3 min, then the supernatant was discarded.
The 200 mL centrifuge tubes were placed on absorbent paper until no liquid remained.

2.2.2. DNA Extraction and PCR Amplification

Genomics DNA from the samples were extracted via MP Fast DNA SPIN Kit for Soil
Kit (MP Biomedical). Qubit 3.0 fluorometer was used to determine the concentration of
DNA, and a 0.8% agar gel electrophoresis buffer was used to detect DNA integrity [10].

The V3 and V4 regions of bacterial 16S rRNA and fungal ITS rRNA were amplified
based on previous research in our laboratory [11].
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The PCR amplification system and conditions have been modified according to pre-
vious methods [12]. PCR reactions were performed in triplicate using 0.4 µL of FastPfu
polymerase, 4 µL of 5× FastPfu buffer, 0.8 µL (5 µM) of each primer, 2 µL of 2.5 mM dNTPs,
and 10 ng of template DNA under the following conditions: 95 ◦C for 3 min, 27 cycles at
95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 45 s, and a final extension at 72 ◦C for 5 min.

2.2.3. Data Processing and Analysis

Sequencing was performed on the Illumina MiSeq sequencing platform (Illumina
in San Diego, CA, USA and Majorbio Technology Co., Ltd. in Shanghai, China). The
data were analyzed on the QIIME platform and Operational Taxonomic Units (OTU) were
identified (97% similarity) [13]. OTU is classified via the Ribosome Database Program (RDP)
classifier [14]. Alpha diversity (the Number of OUT, Shannon index, Coverage, Simpson
index, and Chao1) indicates the richness and diversity of the microbial communities.

The Shannon index and the Simpson index indicate the degree of diversity of the
community.

2.3. Environmental Factors

The data of temperature, humidity, precipitation, light, pressure, air quality, and
other environmental factors were provided by the Environmental Monitoring Center of
Shaoxing City.

2.4. Statistical Analysis

To explore and visualize the relationships between Alpha diversity, the dominant
environmental microbial (fungi, bacteria), and the environmental factors, a correlation
matrix was constructed by calculating all possible pairwise Pearson’s rank correlations at
the phylum and genus levels. A Pearson’s test was performed using the SPSS software
version 18.0 (SPSS Inc., Chicago, IL, USA). A Pearson’s correlation coefficient (ρ) > 0.5 (or
less than −0.5) was performed and a statistical significance of p < 0.01 was set to indicate a
co-occurrence (or negative) event for a particular correlation.

3. Results and Discussions
3.1. Correlation between Environmental Factors and Alpha Diversity of Bacterial and
Fungal Communities

The study utilized the Illumina MiSeq platform to analyze the microorganisms in
the environmental samples. The OTUs, with a 97% similarity, were clustered using the
USEARCH algorithm. Several metrics, including the number of OTUs, Simpson index,
Coverage, Chao1, and Shannon index, were employed to assess the alpha diversity of bac-
teria and fungi in the environment (Figure 1) [15]. Across all samples, a total of 5780 OTUs
were identified for bacteria, with an average of 289 OTUs per sample. Similarly, a total
of 1379 OTUs were found for fungi, with an average of 69 OTUs per sample. In terms
of seasonality, the number of bacterial OTUs ranged from 176 to 391, while fungal OTUs
ranged from 63 to 75 (Figure 1A).

The results indicated significant differences in the diversity of environmental mi-
croorganisms (fungi and bacteria) between autumn (September to November) and winter
(December to February). The diversity of the bacterial community is much greater than
that of the fungal community during Huangjiu brewing [2,7]. Figure 1B–D illustrates that
during autumn, the Chao1, Shannon index, and Simpson index were all at their lowest,
indicating a reduced diversity and richness of environmental microorganisms. Conversely,
the situation reversed during winter. Additionally, the most significant changes in the
environmental microbial diversity occurred during summer, with notable variations among
the different sample groups. The coverage of all samples exceeded 99.9% (Figure 1E), sug-
gesting that the sequencing results accurately reflected the actual state of the samples [15].
These observations indicate that the growth and enrichment of the microbial communities
were unfavorable in autumn but favorable in winter. Furthermore, the fluctuating micro-
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bial community diversity in summer aligns with the susceptibility of rice wine to spoilage
during that season.
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Figure 1. Alpha diversity of bacteria and fungi in different seasonal 508 environmental samples:
(A) number of OTU; (B) Chao1; (C) Shannon index; (D) Simpson index; (E) coverage. Note. SP: Spring;
SU: Summer; AU: Autumn; WI: Winter.

A correlation analysis was conducted to examine the relationship between the envi-
ronmental factors and the microbial diversity, including fungi and bacteria. The results
of this analysis can be seen in Figures 2 and 3. The Pearson correlation coefficient was
used to divide the data into three groups, representing Alpha diversity and environmental
factors. Bacterial diversity in both summer and winter showed significant correlations with
environmental factors. During the summer, the number of operational taxonomic units
(OTUs) was positively correlated with humidity and the eight-hour average concentration
of ozone (O3_8h), but negatively correlated with temperature, precipitation, and light. In
the winter, the number of OTUs was positively correlated with temperature, air pressure,
humidity, and precipitation, but negatively correlated with sunlight. Bacterial communities
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showed a significant correlation with temperature in all four seasons. Specifically, the
correlation was positive in spring, autumn, and winter, but negative in summer.

Unlike bacteria, fungal community diversity was only related to certain environmental
factors. In spring, the Simpson index showed a negative correlation with temperature,
but a positive correlation with precipitation. In summer, Alpha diversity was negatively
correlated with sulfur dioxide (SO2), which is commonly used as a chemical preservative in
the wine industry to prevent the growth of spoilage microorganisms [16], whereas summer
is a high season for spoilage microorganisms [17]. In winter, the Shannon index showed a
positive correlation with temperature, humidity, and nitrogen dioxide (NO2).
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***: p ≤ 0.001.

The results indicated that multiple environmental factors in the four seasons influenced
the diversity of bacteria and fungi in the environment of the yellow rice wine producing
areas and played a regulatory role. Temperature, in particular, had a significant effect on
the regulation of the microbial community. The correlation between environmental factors
and the Alpha diversity of the bacterial and fungal communities varied across different
seasons. The microbial communities are regulated via environmental factors in different
seasons, leading to a substantial difference in the microbial diversity between the four
seasons. The level of dependence of microorganisms on their own growth resources and
environment differs, and the symbiotic relationship between them further explains the
variations in environmental microbial community diversity across different periods.
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3.2. Similarity Analysis of Bacterial and Fungal Community Structure

Based on Illumina MiSeq sequencing data, a principal component analysis (PCA) was
conducted to assess the similarity and difference in the bacterial community structure across
different seasons (Figure 4A). The PCA results revealed that PCA1 and PCA2 collectively
accounted for 72.34% of the variation in the environmental bacterial community. The
seasons could be classified into four distinct categories, with the bacterial communities in
spring and winter exhibiting a close resemblance, suggesting minimal disparity between
these two seasons. Conversely, the bacterial community structure in summer differs
significantly from the other three seasons, as exemplified by the greater distance separating
it from the rest. A possible explanation for this dissimilarity may be the higher summer
temperatures in the Shaoxing rice wine region (ranging from 28.2 to 28.7 ◦C), which
likely exert a substantial influence on the bacterial community. Moving on to the fungal
community, the principal component analysis (Figure 4B) elucidated that PCA1 and PCA2
collectively explained 74.56% of the variation in the environmental fungal community.
Interestingly, the fungal communities in spring and autumn were adjacent and exhibited
some overlap, indicative of the minimal differences in their community structures. In
contrast, there was a substantial dissimilarity in the fungal community structure between
summer and winter, as evidenced via the extensive distance separating the two seasons.
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3.3. Structural Changes of Microbial Colonies in Environmental Samples
3.3.1. Bacterial Community Structure

Based on the sequencing data, the regional sequences of bacterial 16S rRNA gene V3-
V4 and fungal ITS rRNA gene ITS1-ITS2 in the four seasons were analyzed, which accurately
reflected the complete species and structure of bacteria and fungi in the environment.
At the phylum level, the composition of the bacterial community structure is shown in
Figure 5A. In the four seasons, a total of 15 phyla were detected. At the phyla level, the main
bacteria were Firmicutes, Cyanobacteria, Actinobacteria, Proteobacteria, and Bacteroidetes.
Among them, the abundance of Firmicutes was the highest, especially in summer, with
the highest relative abundance of 85.5% and the average of 81.6%. At the phylum level,
the second dominant bacteria were Actinobacteria with an average relative abundance of
10.1% in summer. In the other seasons, its relative abundance remained between 15.2%
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and 17.5%. Other dominant bacteria were Cyanobacteria (1.6%), Proteobacteria (5.4%),
and Bacteroidetes (7.8%). Except for dominance, the remaining 10 phyla were all less than
0.1% in relative abundance in any sample and were classified as other. Numerous past
studies have shown that microorganisms play a key role in the production of fermented
food [12,18,19].
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The findings indicated that the prevalent bacterial phyla in the environment through-
out all four seasons were Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes.
These bacterial phyla exhibited relative stability in their dominance within the environment.
Firmicutes, the largest bacterial phylum, encompasses several significant fermentation
bacteria found in rice wine, such as Lactobacillus and Leuconostoc. These bacterial communi-
ties exert inhibitory effects on other microorganisms, enabling the preservation of normal
fermentation in fermented foods and providing protection against pathogen interference
during the fermentation process [20].

The diversity of environmental microorganisms was assessed based on the genus struc-
ture [21]. A total of 505 bacterial genera were identified from the environmental samples
(Figure 5B). In the four seasons, 452, 486, 393, and 442 bacterial genera were detected, respec-
tively. The top 16 genera were consistently detected in all seasons, comprising 93.6–95.6%
of the total relative abundance. Lactobacillus exhibited the highest relative abundance in all
seasons, accounting for 38.5% in spring, 71.4% in summer, 44.3% in autumn, and 43.3% in
winter. The second most dominant genus was Saccharopolyspora, with a relative abundance
of 16.0% in winter and 9.5% in summer. Apart from Lactobacillus and Saccharopolyspora, the
relative abundance of Lactococcus and Leuconostoc in the environmental bacterial communi-
ties was also noteworthy, ranging from 0.06% to 24.0% and from 0.02% to 8.4%, respectively,
at the genus level. The relative abundance of Thermoactinomyces peaked at 1.8% in summer
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and reached its lowest point of 0.5% in winter. Other genera accounted for a mean relative
abundance of 6.4% in summer and 4.4% in winter. Previous research demonstrated that
Lactobacillus, Saccharopolyspora, Leuconostoc, Lactococcus, Staphylococcus, Bacillus, Weissella,
Pseudomonas, Thermoactinomyces, and Enterobacteria were the most predominant bacteria in
Shaoxing rice wine and Shanghai rice wine at the genus level, aligning with the findings of
this study [22].

These results showed that the relative abundance of the bacterial communities varies
with the seasonal environmental factors. The most miscellaneous bacteria were found in
summer and the least in winter, which may explain why rice wine brewed in summer
is more prone to rancidity and deterioration while that brewed in winter is of better
quality. In conclusion, the growth and enrichment of bacteria were significantly affected
by climatic conditions. Lactobacillus, Lactococcus, and Pediococcus belong to Lactic acid
bacteria (LAB), and the relative abundance of LAB in all seasons is 62.5%, 76.3%, 59.9%,
and 55.6%, respectively. LAB has an inhibitory effect on other microorganisms [15], and
it can convert sugar into lactic acid. Lactic acid can react with ethanol to produce ester
substances, which is an important flavor substance in the fermentation process of rice
wine [12]. Enterobacteriaceae can degrade sugars via glycolysis and pentose phosphate to
produce organic acids.

It is worth noting that the number of acid-producing bacteria is higher in summer
than in the other seasons, especially with a particularly high percentage of Lactobacillus,
which includes Lactobacillus brevis. Studies have shown that Lactobacillus brevis can lead to
rancor in wine and beer and produce a pungent odor [17]. Lactobacillus brevis has strong
acid-producing capacity, and an excessive content easy leads to the rancidity of rice wine,
which affects the final quality of rice wine. Low-temperature conditions in winter inhibit
the growth and reproduction of Lactobacillus brevis, and yellow rice wine is not easy to
induce rancidity. At the same time, Saccharopolyspora and Leuconostoc were higher in winter
than in the other seasons, which may be due to the low temperature and dry environmental
conditions, which reduces the enzyme activity and slows down the metabolic rate of
microorganisms, which contributes to the slow growth of microorganisms in rice wine
brewing. It promotes the stability of the ecosystem, the subsequent aging of rice wine,
and the synthesis of flavor substances. The content of miscellaneous bacteria in the winter
environment is less than that in the other seasons, and the comprehensive environment in
winter is more conducive to the brewing of high-quality rice wine [23,24].

3.3.2. Comparison of Fungal Community Structure

In the earliest fermentation process, owing to the sufficiency of nutrients and a favor-
able environment, fungal microorganisms grow rapidly and multiply to form a complex
fungal community. At the phylum level, a total of eight phyla were detected in the envi-
ronmental samples, mainly Ascomycota and Zygomycota (the average content was more
than 1%) (Figure 5C). The relative abundance of Ascomycota remained in the range of
81–91.7% in the four seasons, accounting for the vast majority of the fungal community in
the whole environmental sample, and it was the first dominant fungal phylum in the whole
process of rice wine brewing. A large number of studies have shown that Ascomycota is
the dominant fungus not only in the brewing process of rice wine, but also in fermented
foods such as white wine and edible vinegar [25]. Zygomycota is the second dominant
fungus phylum, which includes the common fungus genera in rice wine wheat Qu and
Jiuyao, such as Rhizopus, Rhizomucor, and Mucor [26].

A total of 93 fungi were detected at the genus level in the environmental samples.
The seven main fungi genera are Saccharomyces, Rhizopus, Thermomyces, Aspergillus, Saccha-
romycopsis, Rhizomucor, and Mucor (Figure 5D). In the environmental samples, although
the species of fungi were similar in the four seasons, the relative abundance of some fungi
varied greatly at the genus level. For example, the relative abundance of Rhizopus is 11.3%
in spring and 0.4% in summer. The Thermomyces relative abundance is 14.4% in summer
and only 0.2% in winter. The relative abundance of Saccharomyces was the highest in the
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four seasons. Saccharomyces was the main dominant fungus genus in the environment of
the rice wine producing areas. The content was 55.2% in spring, 63.2% in summer, 59.8% in
autumn, and 59.2% in winter. Yeast is an important fungus in fermented wine and plays a
leading role in ethanol production [27]. In the brewing process of Shaoxing rice wine, yeast
can activate the enzyme system in the body of microorganisms to promote the conversion
of carbohydrates to ethanol [20]. Rhizopus is the second most dominant genus of fungi.
The relative abundance was 11.3% in spring, 0.4% in summer, 5.7% in autumn, and 2.0%
in winter. Rhizopus has been widely used in the fermentation industry, which can inhibit
the growth and reproduction of pathogenic bacteria and produce acid, thus aiding the
fermentation of food [21].

3.4. Relationship between Environmental Factors and Dominant Microbial Communities

In order to analyze the dynamic relationship between the environmental factors and
the environmentally dominant bacteria community, 27 dominant fungi and bacteria with an
abundance ≥ 1.00% were selected as the research subjects. As shown in Figure 6, 23 dom-
inant fungi and bacteria were significantly associated with one or more environmental
factors. Due to the unknown that the different environmental factors act on the microbial
communities at the same time, we also analyzed the correlation between the different envi-
ronmental factors. The results show that temperature was negatively correlated with air
pressure, positively correlated with precipitation, and negatively correlated with sunlight
and humidity.

A total of 12 kinds of superiority bacterium (Trichosporon, Weissella, Thermoactinomyces,
etc.) are associated with a significant temperature. Among them, the Lactobacillus, Ther-
momyces, Weissella, Thermoactinomyces, and Trichosporon were significantly positively related
to temperature, and Pichia, Saccharomycopsis, and Leuconostoc had a significantly negative
correlation with temperature. Since precipitation and temperature are positively corre-
lated, the correlation between precipitation and the main microbial in the environmental
samples is consistent with temperature. Eight main microbials (Pichia, Thermoactinomyces,
Thermomyces, etc.) are significantly related to air pressure. Six main microbials (Acetobac-
ter, Acinetobacter, Mucor, etc.) were significantly correlated with humidity, among which
Terribacillus, Acetobacter, and Acinetobacter were significantly negatively correlated with
humidity. Nine main microbials (Trichosporon, Thermoactinomyces, Weissella, etc.) were
significantly related to precipitation. Ten main microbials (Pichia, Acetobacter, Terribacillus,
etc.) were significantly correlated with sunlight, among which Terribacillus, Acetobacter, and
Acinetobacter were significantly positively correlated with sunlight.

These data indicated that temperature, precipitation, and sunlight were conditional
factors for the micro-ecology and diversity of the environment. Previous studies have
shown that temperature is an important factor in determining the quality of rice wine during
fermentation [22,28,29]. High-quality rice wine is more suitable for room temperature or
cold drinks because yeast is the main source of the flavor of rice wine, so it can be produced
after long-term fermentation at low temperatures. Thermoactinomyces and Thermomyces are
high-temperature-resistant microorganisms, which produce fatty acids, phosphatase, and
thermostable enzymes respectively, and then degrade the carbohydrates to provide energy
sources for the dominant bacteria in the brewing process [30]. At the same time, a higher
storage temperature will easily lead to the deterioration of rice wine, and drinking rancid
rice wine will lead to the increase in prevalence, so it is necessary to control the temperature
during the brewing and storage of rice wine [31]. At the same time, there was a significant
negative correlation between nitrogen dioxide and sulfur dioxide and yeast. Yeast is the
main dominant fungus in the process of rice wine brewing. The air quality of Shaoxing city
affects the brewing of rice wine to some extent.

In conclusion, environmental factors play a decisive role in the regulation of the
microbial community’s structure and diversity, and different environmental factors have a
synergistic effect. Ambient temperature, air pressure, precipitation, sunlight, and humidity
affect the growth and enrichment of microorganisms, indirectly or directly. The unique
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climatic conditions in Shaoxing provided suitable growth and reproduction conditions
for rice wine fermentation microorganisms. These conditions allow the fermentation
microorganisms to stably reproduce in the long-term and provide enrichment. At the same
time, it once again proved that Shaoxing is a famous rice wine producing area.
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4. Conclusions

This article uses high-throughput sequencing technology to study the structure and
diversity of the environmental microbial communities in the Shaoxing rice wine production
area. The dominant microbial (genus) composition was common and relatively stable
across seasons. There were five dominant bacterial genera in the environmental samples:
Lactobacillus (49.4%), Lactococcus (11.9%), Saccharopolyspora (13.1%), Leuconostoc (4.1%), and
Thermoactinomyces (1.1%), among which Lactobacillus was the absolute dominant bacteria.
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There were seven major fungal genera: Saccharomyces (59.3%), Rhizopus (4.9%), Thermomyces
(6.2%), Aspergillus (7.1%), Saccharomycosis (10.7%), Rhizomucor (4.9%), and Mucor (1.3%),
among which Saccharomyces was the absolute dominant fungus.

Environmental factors, especially temperature, air pressure, precipitation, humidity,
and sunlight, significantly affected the dynamic changes of the community structure and
diversity of the environmental microorganisms, which was one of the key factors affecting
the quality of Shaoxing rice wine.

The results of this study provide a reference for researchers to understand the con-
tribution mechanism of fermentation microecology to fermentation quality and provide
theoretical support for the development and support for the development and optimization
of the fermentation process in Shaoxing rice wine.
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