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Abstract: Background: This study aimed to predict pathologic complete response (pCR) in neoadju-
vant chemotherapy for ER+HER2- locally advanced breast cancer (LABC), a subtype with limited
treatment response. Methods: We included 265 ER+HER2- LABC patients (2010–2020) with pre-
treatment MRI, neoadjuvant chemotherapy, and confirmed pathology. Using data from January 2016,
we divided them into training and validation cohorts. Volumes of interest (VOI) for the tumoral
and peritumoral regions were segmented on preoperative MRI from three sequences: T1-weighted
early and delayed contrast-enhanced sequences and T2-weighted fat-suppressed sequence (T2FS).
We constructed seven machine learning models using tumoral, peritumoral, and combined texture
features within and across the sequences, and evaluated their pCR prediction performance using AUC
values. Results: The best single sequence model was SVM using a 1 mm tumor-to-peritumor VOI in
the early contrast-enhanced phase (AUC = 0.9447). Among the combinations, the top-performing
model was K-Nearest Neighbor, using 1 mm tumor-to-peritumor VOI in the early contrast-enhanced
phase and 3 mm peritumoral VOI in T2FS (AUC = 0.9631). Conclusions: We suggest that a com-
bined machine learning model that integrates tumoral and peritumoral radiomic features across
different MRI sequences can provide a more accurate pretreatment pCR prediction for neoadjuvant
chemotherapy in ER+HER2- LABC.

Keywords: ER+HER2- locally advanced breast cancer; neoadjuvant chemotherapy; pathological
complete response; pretreatment MRI; segmentation; machine learning; radiomics

1. Introduction

Breast cancer is the most common female cancer worldwide [1,2]. Among the varied
subtypes, ER+HER2- breast cancer has consistently increased in number since its incidence
surpassed that of ER- breast cancer in 1950 [2]. Overall, ER+HER2- breast cancer has a
good prognosis compared with other breast cancer subtypes. However, owing to its high
incidence, it is the main subtype that accounts for the highest proportion of breast cancer
mortality [2].

The treatment of ER+HER2- breast cancer can be broadly divided into early-stage
breast cancer with no lymph node (LN) involvement and advanced-stage breast cancer
with LN involvement. Currently, for early-stage breast cancer without LN involvement,
the oncotype DX breast recurrence score is used as a quantitative measurement, using
real-time PCR to predict the response to chemotherapy in patients requiring adjuvant

Diagnostics 2023, 13, 3031. https://doi.org/10.3390/diagnostics13193031 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13193031
https://doi.org/10.3390/diagnostics13193031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://doi.org/10.3390/diagnostics13193031
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13193031?type=check_update&version=1


Diagnostics 2023, 13, 3031 2 of 13

chemotherapy [3]. For locally advanced breast cancer (LABC) with LN involvement,
the standard protocol has so far been surgery following the completion of neoadjuvant
chemotherapy (NAC) [4,5]. Regarding NAC, the lesion size is first reduced to improve
operability, and notably, the pathologic complete response (pCR) upon operation after NAC
has been proven to be a powerful prognostic factor for patients’ long-term outcomes [6–8].

Nonetheless, when the effect of NAC on ER+HER2- breast cancer is compared to that
of other molecular subtypes of breast cancer, it is shown to have a poor NAC response [4,5].
According to a meta-analysis, the pCR rate of LABC upon the operation following NAC var-
ied from 26.5% to 39.0% in other molecular subtypes, and the ER+HER2- subtype showed
a significant difference, with a rate of 7.2% to 13.0% [9]. Given the significantly low NAC
response in ER+HER2- LABC patients, it is crucial, from a precision medicine perspective,
to selectively administer NAC to the approximately 10% of patients who exhibited a fa-
vorable response to NAC. This approach can help reduce unnecessary suffering for the
90% of patients who do not respond well to NAC, mitigating issues such as drug toxicity
and delayed surgery. However, to date, there has been no reliable method for predicting
this response, leading to uniform treatment strategies for all patients. Therefore, this study
was focused on identifying, at an early stage, patients within the minority of patients with
ER+HER2- LABC who exhibited a favorable response to NAC and who had the potential
to achieve a pCR upon surgery.

We aimed to use magnetic resonance imaging (MRI), a representative modality for
evaluating treatment response, to classify patients and potentially provide clinical assis-
tance [6,7,10]. Initially, MRI assessed treatment response through lesion characteristics [11],
but technological advances have expanded predictive techniques, such as multiparametric
MRI, magnetic resonance spectroscopy (MRS), and FDG-PET [7,12]. Nevertheless, de-
signing accurate and reproducible parameters remains a challenge. Recent research has
actively explored MRI radiomics, utilizing texture features [3,10]. MRI texture analysis
(TA) offers objective assessment by quantifying data representing tissue heterogeneity,
often imperceptible visually [13]. This has led to efforts to enhance reproducibility through
machine learning models trained using a selected set of key texture features [14].

Most previous studies that used MRI to predict pCR rates among patients with breast
cancer can be broadly divided into two general aspects based on the region of interest in
the imaging. First, many studies have attempted to explain treatment responses based on
temporal changes in lesions between the initial MRI and the early or mid-term MRI after
NAC [15,16]. However, such a prediction based on a comparison between the initial lesion
and the residual lesion in a follow-up MRI has been reported to over- or under-estimate
the lesion due to various changes associated with the treatment response [17]. More
importantly, decreased quality of life experienced by patients who receive unnecessary
treatment or have delayed appropriate treatment should be considered. Thus, this study
focused on refining the prediction of pCR using pretreatment MRI. Second, in many
previous studies, when evaluating lesions on MRI, the focus was mainly on the tumor
region [18–20]; however, in this study, the peritumoral region was also evaluated and
analyzed. Several studies have shown that the peritumoral region can be critical to the
response to NAC by reflecting angiogenic or lymphangiogenic activity [21,22]. This study
focused more on confirming the importance of the peritumoral region. Thus far, a few recent
studies have attempted to use pretreatment MRI only or have included the peritumoral
region as a consideration [21,23]. However, these studies considered the ER+HER2- subtype,
the focus of this study, only as a part of the study population, and no study has yet
investigated the pretreatment NAC response with a focus on the ER+HER2- subtype.

Therefore, this study aimed to develop and validate a reproducible practical machine
learning model with texture features incorporating both tumoral and peritumoral regions
across initial pretreatment MRI sequences in patients with ER+HER2- LABC, whose NAC
response was notably low. Through this study, we hope to provide practical help to
clinicians in establishing tailored therapeutic strategies by stratifying this patient population
prior to treatment.
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2. Materials and Methods
2.1. Patient Population and Study Design

This retrospective study was approved by the institutional review board of our hospi-
tal, which waived the requirement for informed consent.

Between January 2010 and December 2020, 2349 patients with advanced breast cancer
received NAC at our institution. Among these, 818 were diagnosed with ER+HER2-
LABC subtype. First, 403 patients were excluded because of a lack of raw data for the
dynamic study in the Picture Archiving and Communication System (PACS). Patients with
a history of previous treatment, no cytology report on the initial axillary LN metastasis, no
report on the final pathological results, no pretreatment MRI, no verifiable information on
the four MRI sequences essential to this study (T1-weighted fat-suppressed pre-contrast,
early and delayed post-contrast subtraction sequences, and T2-weighted fat-suppressed
sequence), and insufficient image quality for lesion segmentation were excluded. Finally,
the inclusion criteria were patients who (1) had a pretreatment MRI performed at our
center, (2) completed all cycles of NAC and had surgery with a final pathologic report
on achievement of pCR or not, and (3) had all four sequences with sufficient quality for
segmentation, resulting in a total of 265 enrolled patients (stage IIB through IIIC according
to the 8th edition of the AJCC cancer staging system).

Based on the date of the pretreatment MRI scans, patients were divided into training
and validation cohorts. A total of 195 patients who underwent MRI between 2010 and 2015
were included in the training cohort. Another 70 patients who underwent MRI between
2016 and 2020 were included in the temporal validation cohort. The patient selection
process is illustrated in Figure 1.
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Figure 1. Flowchart of patient selection and data set. Abbreviations: NAC—neoadjuvant chemother-
apy; LABC—locally advanced breast cancer; PACS—Picture Archiving and Communication System;
LN—lymph node; MRI—magnetic resonance imaging; Ph2—T1-weighted fat-suppressed early post-
contrast subtraction sequences; Ph6—T1-weighted fat-suppressed delayed post-contrast subtraction
sequences; T2FS—T2-weighted fat-suppressed sequence.



Diagnostics 2023, 13, 3031 4 of 13

2.2. MRI Acquisition

Breast MRI examinations were performed with the patients in the prone position
using a 3.0 T scanner (MR750, GE Healthcare, Milwaukee, WI, USA or TrioTim, Siemens
Healthcare, Erlangen, Germany using a dedicated eight- or four-channel breast coil). The
following images have been commonly obtained after the localizer images from one of
the two types of scanners: T2-weighted fast spin echo axial images (TR/TE, 9100/100 ms;
flip angle, 110◦; matrix, 416 × 256 pixels; section thickness, 3 mm, or TR/TE, 4300/80 ms;
flip angle, 150◦; matrix, 512 × 512 pixels; section thickness, 3 mm), T2-weighted short-
time inversion recovery (STIR) axial images (TR/TE, 5000/70 ms; inversion time, 200 ms;
flip angle, 110◦; matrix, 320 × 256 pixels; section thickness, 3 mm), and T1-weighted
fat-suppressed pre-contrast and 3D dynamic post-contrast enhanced (DCE) axial images
(TR/TE, 5.6/1.7 ms; flip angle, 12◦; matrix, 280 × 512 pixels; section thickness, 3 mm, or
TR/TE, 280/2.6 ms; flip angle, 65◦; matrix, 343 × 512 pixels; section thickness, 3 mm)
with one pre-contrast and six post-contrast dynamic series obtained before and after a
bolus injection of 0.1 mmol/kg body weight of gadolinium-based contrast agent (Dotarem,
Guerbet, Paris, France; Magnevist, Berlex Laboratories, Wayne, NJ, USA, or Gadovist, Bayer
Schering Pharma, AG, Berlin, Germany) at a rate of 2 mL/s, followed by 20 mL saline flush.
Post-processing, image subtraction was performed by subtracting pre-contrast images from
the post-contrast images. The field of view was 32–34 cm for all MRI sequences.

2.3. Volume of Interest (VOI) Segmentation

The VOI segmentation of tumors was first semi-automatically performed along the
margin of the tumor in the axial scan of T1-weighted fat-suppressed early post-contrast
subtraction sequences (Ph2) by a radiologist (J.P., with 5 years of experience in radiology)
using 3D-Slicer (version 5.0.2) software, and the accuracy of the image up to the 3D
margin on the coronal and sagittal planes was checked with necessary modifications. For
peritumoral VOI segmentation, the existing tumor mask was subtracted after 3D dilation
by 1 mm and 3 mm units (Figure 2).
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Figure 2. Segmentation on T1-weighted fat-suppressed early post-contrast subtraction sequence for a
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masks; (c) sagittal tumoral masks; (d) axial-1 mm peritumoral mask; (e) axial-3 mm peritumoral
mask. Abbreviations: LABC—locally advanced breast cancer.
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The same process was applied to T1-weighted fat-suppressed delayed post-contrast
subtraction sequences (Ph6) and T2-weighted fat-suppressed sequences (T2FS). Thus, 15 VOIs
of tumoral, peritumoral (1 mm, 3 mm), and tumoral + peritumoral (1 mm, 3 mm) were
obtained for Ph2, Ph6, and T2FS in each patient’s pretreatment MRI. The process was evaluated
by another senior radiologist (M.J.K., with 23 years of experience in radiology) to assess and
revise the tumoral and peritumoral VOI segmentations to reconfirm the entire procedure.

2.4. MRI Preprocessing and Radiomic Texture Feature Extraction

For the segmented VOIs, N4ITK MRI bias correction was applied to improve the non-
uniformity of MR images between different patients [24], and the variation between data
was minimized by normalizing the gray-level value, as shown in the following formula [25]:

f(x) =
s(x − µx)

σx

Here, x is the amplitude of the image, µx is the average of the image values, σx is the
standard deviation of the image, and s is an optional scaling value set to 10 to prevent errors in
the calculation of radiomic features that may occur due to a relatively large standard deviation.
After resampling the image with a 1 × 1 × 1 mm iso-voxel, 863 radiomic features were
extracted from each VOI in the three sequences. Among the extracted features, diagnostic
features (n = 12), which are information on the entire image, not VOI, and shape features
among the original features (n = 14), which were information related to tumor size or vol-
ume measurable on conventional MRI, were excluded. The final feature set incorporated
2511 features for each sequence, and 7533 features were extracted from each patient.

2.5. Dimension Reduction

Python 3.8 was used for data handling in the machine learning steps, and the key
feature selection on the radiomic features extracted from each VOI was performed in
two steps. First, the Mann–Whitney U test was used with statistical significance related to
pCR or non-pCR prediction (p < 0.05). Second, using the random forest (RF) algorithm, the
top 30 features were selected for radiomic feature importance in pCR prediction. Prior to
data training, a standard scaler was applied to adjust the deviating scales of the radiomic
features and reduce the influence of outliers. Additionally, the synthetic minority over-
sampling technique (SMOTE) was performed to reduce the problem of overfitting toward
non-pCR due to the numerical imbalance between the pCR and non-pCR groups, even if
the number reflected the actual clinical pCR rate of ER+HER2- LABC.

2.6. Development of pCR Prediction Model in the Training Cohort

First, pCR prediction model development was individually developed for each se-
quence. Seven representative machine learning models were created with the key radiomic
features for each of the five VOIs (tumor, peritumor 1 mm, peritumor 3 mm, area from
tumor to peritumor 1 mm, and area from tumor to peritumor 3 mm) in the MRI sequences of
the training cohort: binary classification model, K-Nearest Neighbor model, Support Vector
Machine (SVM), Decision Tree classifier, AdaBoost classifier, Random Forest (RF) classifier,
and Light Gradient-Boosting Machine (LightGBM). A grid search approach was used to
find the best hyperparameters for each of these seven models. This method systematically
explores various combinations of hyperparameters to identify the optimal configuration
for each model. To evaluate the performance of each model and its hyperparameter combi-
nation, we employed a five-fold cross-validation. The dataset was divided into five subsets.
During each iteration, four subsets were designated for training, while the remaining subset
was allocated for validation. This cycle was repeated five times, ensuring that each subset
served as the validation set once. The optimal model and its hyperparameters for each
VOI were selected based on the area under the curve (AUC) value, representing the true
positive rate (sensitivity) plotted against the false positive rate (1-specificity) [26], which
measures the model’s ability to differentiate between the pCR and non-pCR groups.
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Next, to construct a more sophisticated pCR prediction model, seven machine learning
models were created with sets of selected key radiomic features in combination for tumoral,
peritumoral, and tumoral + peritumoral VOIs across sequences from the training cohort.
The training and testing processes were identical to those described as above, and AUC
values were used to select the optimal model.

Finally, a model incorporating clinical factors instead of radiomic features was created
as a comparison group, and its performance was evaluated. Excluding the molecular
subtype and axillary LN metastasis of breast cancer, which were fixed in this study, patient
age, tumor size, and estrogen receptor (ER) and progesterone receptor (PR) expression
levels were selected as clinical factors potentially associated with disease prognosis.

2.7. Assessment of pCR Prediction Model Performance with the Validation Cohort

We validated the predictive performance of the optimal models developed using
radiomic features extracted from the VOIs of each sequence, radiomic features combined
from the VOIs across different sequences, and clinical factors in the validation cohort. After
calculating the AUC, precision (the ratio of correctly predicted positive observations to the
total predicted positives), recall (the ratio of correctly predicted positive observations to total
actual positives), and F1 scores (the harmonic mean of Precision and Recall, representing
both precision and recall in one metric), the predictive performance of the model was
evaluated using the AUC of the receiver operating characteristic (ROC) curve [27].

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

F1 Score = 2 × Precision × Recall
Precision + Recall

The process of this study is summarized in Figure 3.
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2.8. Statistical Analysis

Statistical analyses of clinical factors, including patient age, tumor size, and ER and
PR expression levels, were performed as follows: continuous variables were expressed as
means and standard deviations, while categorical variables were expressed as frequencies
and percentages. Continuous variables were tested using the independent samples t-test or
the Mann–Whitney U test based on the results of the Shapiro–Wilk test for normality, and
categorical variables were compared using the χ2 test. Statistical significance was accepted
when p values were <0.05.

3. Results
3.1. Patient Characteristics

This study included pretreatment MRIs scans of 265 patients with ER+HER2- LABC
with axillary LN metastasis. The clinical and histological factors of the pCR and non-pCR
groups, considering pCR as the endpoint in this study, are shown in Table 1. Among the
patients, 238 (89.8%) had a non-pCR and 27 (10.2%) reached pCR. The mean tumor size
between the pCR and non-pCR groups was observed to be significantly different, with
37.9 ± 21.3 mm and 22.1 ± 8.8 mm, respectively. However, there were no significant
differences in terms of patient age and estrogen and progesterone receptor expression levels
between the pCR and non-pCR groups.

Table 1. Comparison of the patient characteristics between non-pCR and pCR groups.

Non-pCR pCR p Value

n = 238 (89.8%) n = 27 (10.2%)
Age, years 49.2 ± 9.1 48.6 ± 6.2 0.975

Tumor size, mm 37.9 ± 21.3 22.1 ± 8.8 <0.001
ER expression, % 85.6 ± 20.5 75.3 ± 30.7 0.058
PR expression, % 34.3 ± 36.3 28.9 ± 38.9 0.386

Abbreviations: pCR—pathologic complete response; ER—estrogen receptor; PR—progesterone receptor.

A comparison of the training and validation cohorts is shown in Table 2. The two co-
horts showed no significant difference in pCR rate (9.7% and 11.4%, respectively). Table 2
shows the other characteristics of the two cohorts, including patient age, tumor size, and
estrogen and progesterone receptor expression levels.

Table 2. Comparison of the patient characteristics between the training and validation cohorts.

Train Validation p Value

n = 195 (73.6%) n = 70 (26.4%)
Pathology non-pCR 176 (90.3%) 62 (88.6%) 0.865

pCR 19 (9.7%) 8 (11.4%)
Age, years 48.5 ± 8.4 51.0 ± 9.9 0.043

Tumor size, mm 35.0 ± 21.1 40.0 ± 19.9 0.086
ER expression, % 85.2 ± 21.7 82.8 ± 22.5 0.408
PR expression, % 30.9 ± 35.7 41.7 ± 38.0 0.016

Abbreviations: pCR—pathologic complete response; ER—estrogen receptor; PR—progesterone receptor.

3.2. Radiomic Texture Feature Composition and Dimension Reduction

As previously mentioned, excluding diagnostic and shape features, 837 radiomic
texture features per VOI were extracted from each patient’s pretreatment MRI. The 837 ra-
diomic texture features included 93 original (first-order, shape, gray-level co-occurrence
matrix [GLCM], gray-level dependence matrix [GLDM], gray-level run-length matrix
[GLRLM], gray-level size-zone matrix [GLSZM], and neighboring gray tone difference
matrix [NGTDM]), and 744 wavelet features (Table S1). The Mann–Whitney U test was
used to remove 16 features showing no significant difference between pCR and non-pCR.
The remaining 821 features were ranked by importance values from the Random Forest
(RF) algorithm, and the top 30 features were chosen.
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3.3. Performance of the pCR Prediction Model in Each Sequence

Table S2 presents the final pCR prediction performance in the validation cohort, which
was confirmed by sequentially applying the optimal machine learning models developed
from each of the five types of VOIs. A general look at the table reveals that the models
derived from Ph2 and T2FS showed relatively high AUC values, whereas even the best
performing models in Ph6 did not exceed an AUC value of 0.9. The best model for pCR
prediction of NAC in ER+HER2- LABC in the three respective sequences was the SVM
model of tumor-to-peritumor 1 mm on Ph2 (AUC = 0.9447, recall = 91%, precision = 91%,
and F1 score = 91%). The ROC curves and AUCs of the 15 models in the validation cohorts
are shown in Figure 4, and it can be confirmed once again that the overall high AUC value
was shown in Ph2.

3.4. Performance of the pCR Prediction Model with Combination of Sequences

We confirmed the predictive performance of pCR for the optimal machine learning
model developed from 75 VOIs, combining the tumoral and peritumoral regions in two dif-
ferent sequences in the validation cohort. The KNN model with key radiomic features
derived from a combination of VOIs ranging from the tumor-to-peritumor 1 mm in Ph2
and peritumor 3 mm VOI in T2FS exhibited the best pCR prediction performance, with
an AUC of 0.96. The pCR prediction performance based on the combination of tumoral
and peritumoral regions of different sequences is shown in Table S3. Additionally, Figure 5
compares the ROC curve of the optimal model developed using the tumoral VOI, peritu-
moral 1 mm VOI, tumor-to-peritumoral 1 mm VOI of Ph2, and peritumoral 3 mm VOI of
T2FS, which are components of the combination model.
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Figure 4. The ROC curve for the predictive performance of pCR in the validation cohort using the
optimal machine learning models in each sequence: (a) AUC on Ph2; (b) AUC on Ph6; (c) AUC on
T2FS. Abbreviations: Ph2—T1-weighted fat-suppressed early post-contrast subtraction sequence;
Ph6—T1-weighted fat-suppressed delayed post-contrast subtraction sequence; T2FS—T2-weighted
fat-suppressed sequence; Peri1—peritumoral region, 1 mm; Peri3—peritumoral region, 3 mm;
Tumor_peri1—tumoral + 1 mm peritumoral region; Tumor_peri3—tumoral + 3 mm peritumoral
region; FPR—false positive rate; TPR—true positive rate.
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Figure 5. Comparison of the pCR prediction performance in the validation cohort: The best com-
bination model of the VOI from tumor-to-peritumor 1 mm in Ph2 and the peritumor 3 mm VOI in
T2FS as well as the respective components of the VOI models. Abbreviations: Ph2—T1-weighted
fat-suppressed early post-contrast subtraction sequence; T2FS—T2-weighted fat-suppressed se-
quence; Peri1—peritumoral region, 1 mm; Tumor_peri1—tumoral + 1 mm peritumoral region;
Peri3—peritumoral region, 3 mm; FPR—false positive rate; TPR—true positive rate.

Cochran’s Q test verified that there was a significant difference between these five mod-
els (p < 0.001).

3.5. Diagnostic Performance of Clinical Model

Furthermore, we used the same process to confirm the predictive performance of pCR
for clinical factors that could be associated with patient prognosis in breast cancer, such as
age, tumor size, and estrogen and progesterone expression levels.

In the validation cohort, the AUC values were generally low for pCR prediction
performance compared to the radiomics models. The AUC values for patient age, tumor
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size, and the combination model of patient age and tumor size were 0.63, 0.81, and 0.67,
respectively. The AUC values for estrogen and progesterone expression levels and their
combination model were 0.68, 0.64, and 0.53, respectively. The results are summarized in
Table S4 and Figure 6.
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4. Discussion

ER+HER2- locally advanced breast cancer (LABC) has a poor pathologic complete re-
sponse (pCR) rate of approximately 10% compared with the 3–40% pCR rates of other molec-
ular subtypes after surgical intervention following neoadjuvant chemotherapy (NAC) [9].
Therefore, this study aimed to classify ER+HER2- LABC patients with a high probability of
providing an effective response to NAC using pretreatment MRI, which is a key modal-
ity for the non-invasive assessment of breast cancer [6,7,10]. Several recent studies have
attempted to create a prognosis prediction model for breast cancer using radiomic texture
feature extraction with respect to the pretreatment MRI applied in this study [10,21,28].
However, all these studies were conducted on heterogeneous molecular subtypes with
only a small part of the patient population with ER+HER2- LABC, which is the focus of
this study.

To construct a sophisticated model for pCR prediction after NAC in patients with
ER+HER2- LABC, the radiomic texture features of MRI were extracted from the tumor,
peritumor 1 mm, peritumor 3 mm, area from tumor-to-peritumor 1 mm, and area from
tumor-to-peritumor 3 mm for early post-contrast sequences, delayed post-contrast se-
quences, and T2-weighted fat-saturated sequences. In line with previous studies, it was
further established that early post-contrast images predominantly contain the most useful
texture features in machine learning models as a single sequence model evaluation [29–31].
The inclusion of the delayed post-contrast image in this study was based on a previous
study by Jin et al., who claimed that texture heterogeneity is better reflected in the delayed
enhanced phase for breast tumors [32]. However, the model incorporating the texture
features of the tumor in the delayed phase did not produce more potent information in
comparison to other sequences in our study.

Another strength of this study is that not only is the tumoral region the basis for
determining the VOI for radiomic feature extraction in MRI, but the peritumoral region,
which is also reported to form a microenvironment that affects the NAC response [21,22],
was included. Until recently, studies included the peritumoral region to investigate an
extended area from the tumoral to the peritumoral region on a single MRI sequence [22]. In
this study, on the other hand, the tumoral and peritumoral regions in combination across
sequences were examined to construct a more advanced model that reflects more important
sequences related to each region. As a result, the model with a combination of the extended
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tumoral region in the early enhanced phase and the peritumoral region in T2FS exhibited
the highest AUC. This finding is consistent with the general MRI principle that T2FS images
exhibit a wider range of signal alterations compared to T1-weighted images, even including
contrast-enhanced T1-weighted images [33,34]. In the future, more elaborate models need
to be developed by combining tumoral and peritumoral regions across different sequences
and validated for other molecular subtypes of breast cancer.

This study had several limitations. First, there was a possibility of selection bias be-
cause the study was a retrospective study conducted at a single tertiary referral center, and
due to the unavailability of raw data for MRI dynamic studies from patients accumulated
over a substantial ten-year period, certain patients had to be excluded. Second, this study in-
tentionally focused on ER+HER2- LABC, which is a molecular subtype with relatively poor
NAC response. Because the results were based on a single molecular subtype, it may be
difficult to generalize the findings to all patients with breast cancer. We hope that follow-up
studies will be conducted in future. Third, regarding the potential clinical utility, more time
seems necessary for the immediate clinical application of the findings through rapid and
reliable automatic segmentation. An accurate VOI segmentation process for a tumor is a
prerequisite for providing accurate key texture features to constitute machine learning mod-
els. Although this study used a 3D slicer to produce images in a semi-automatic manner, the
reliability of the VOI produced by the program decreased as the irregularity of the tumor
margin increased, which required modification by a radiologist and reconfirmation by a
senior radiologist to refine the VOI segmentation. Lastly, the most fundamental limitation
was found in the revision of treatment plans for patients with ER+HER2- LABC. Despite
a mere 10% pCR rate after NAC, NAC is still administered to patients with ER+HER2-
LABC, mainly because more effective and specific treatments for this patient group are still
in progress. However, if we accumulate evidence supporting the accurate classification of
patients who exhibited a favorable response to NAC before treatment initiation, we can
significantly influence practical treatment decisions made by oncologists and surgeons
by instilling confidence grounded in sound reasoning. This approach could potentially
shift the focus for ER+HER2- LABC patients expected to exhibit a poor response to NAC
towards earlier surgical interventions and the determination of the scope of post-surgery
treatment, leveraging tools such as Oncotype Dx for adjuvant chemotherapy decisions.
Consequently, we anticipate that these efforts will assist in the establishment of tailored
therapy plans that prioritize benefits over risks, ultimately improving patient quality of life.

To assess the NAC response of patients with ER+HER2- LABC on pretreatment MRI,
this study applied radiomic texture features to the tumoral and peritumoral regions across
MRI sequences. We suggest that a combination of machine learning models incorporating
tumoral and peritumoral texture features across different MRI sequences can provide
a more accurate prediction of pCR for NAC response in these patients. These results
are also expected to make a potential contribution to the development of novel clinical
therapeutic strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/diagnostics13193031/s1, Table S1: The radiomic features extracted using 3D
Slicer PyRadiomics; Table S2: The predictive performance of pCR in the validation cohort using the
optimal machine learning models developed for tumoral, peritumoral, and tumoral + peritumoral
VOIs in each sequence; Table S3: Predictive performance of pCR in the validation cohort using the
optimal machine learning models based on combination of tumoral and peritumoral regions across
sequences; Table S4: pCR prediction performances of the clinical models in the validation cohort.
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