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Highlights:
What are the main findings?

• Both the model utilizing edema-related features and the model utilizing mass-related fea-
tures demonstrated promising results in predicting the occurrence of lung metastases, with
similar performances.

What is the implication of the main finding?

• The findings suggest that the analysis of radiomic features extracted exclusively from edema
can offer valuable insights into the prediction of lung metastases.

Abstract: Introduction: This study aimed to evaluate whether radiomic features extracted solely
from the edema of soft tissue sarcomas (STS) could predict the occurrence of lung metastasis in
comparison with features extracted solely from the tumoral mass. Materials and Methods: We
retrospectively analyzed magnetic resonance imaging (MRI) scans of 32 STSs, including 14 with
lung metastasis and 18 without. A segmentation of the tumor mass and edema was assessed for
each MRI examination. A total of 107 radiomic features were extracted for each mass segmentation
and 107 radiomic features for each edema segmentation. A two-step feature selection process was
applied. Two predictive features for the development of lung metastasis were selected from the mass-
related features, as well as two predictive features from the edema-related features. Two Random
Forest models were created based on these selected features; 100 random subsampling runs were
performed. Key performance metrics, including accuracy and area under the ROC curve (AUC), were
calculated, and the resulting accuracies were compared. Results: The model based on mass-related
features achieved a median accuracy of 0.83 and a median AUC of 0.88, while the model based on
edema-related features achieved a median accuracy of 0.75 and a median AUC of 0.79. A statistical
analysis comparing the accuracies of the two models revealed no significant difference. Conclusion:
Both models showed promise in predicting the occurrence of lung metastasis in soft tissue sarcomas.
These findings suggest that radiomic analysis of edema features can provide valuable insights into
the prediction of lung metastasis in soft tissue sarcomas.

Keywords: radiomics; magnetic resonance imaging (MRI); soft tissue sarcoma; lung metastasis; edema

1. Introduction

Soft tissue sarcomas (STSs) encompass a diverse range of malignancies originating
from mesenchymal cells. The World Health Organization recognizes more than 50 distinct
subtypes within this category. STSs are rare tumors, accounting for approximately 1% of all
cancer cases [1]. Despite their low incidence, they pose significant concerns due to their
potential for distant metastases, which occur in about 25% of cases and contribute to the
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majority of deaths; high-grade STSs can exhibit a metastatic rate of up to 50% [2–4]. The
lungs are the most common site of metastasis, accounting for around 80% of lesions [5].

The prognosis for patients who develop metastases is generally poor. Those who
undergo surgical metastasectomy have a 3-year survival rate of less than 50%, while patients
who are not eligible for surgery have a survival rate below 20%. The median survival
time following the diagnosis of distant metastasis is approximately 11.6 months [2]. The
identification of patients with a heightened susceptibility to developing distant metastases
holds the potential to enhance the efficacy of therapeutic interventions [6,7].

In a study conducted by White [8], the presence of satellite tumor cells was observed
in 10 out of 15 patients with STSs. In 9 out of 15 cases, tumor cells were identified beyond
the sarcoma margin within regions exhibiting peritumoral edema and reactive changes as
observed on preoperative MRI scans.

By thoroughly investigating the edema, researchers can gain valuable insights into
the intricate interactions between the tumor and its surrounding tissue. The edema is
closely interconnected with the tumor microenvironment, which encompasses factors such
as inflammation, angiogenesis, and tissue remodeling. This comprehensive analysis of the
edema can provide additional prognostic information beyond relying solely on the tumor
volume. The incorporation of edema analysis in the evaluation of STSs has the potential to
aid in patient risk stratification and facilitate personalized treatment decisions.

Despite the significance of the edema in the tumor microenvironment, there is a no-
table gap in the existing literature. Our literature search on PubMed using the keywords
[(“soft tissue sarcoma” OR “soft tissue sarcoma”) AND edema] revealed a lack of studies
specifically focused on radiomic features extracted solely from the edema. Therefore, the
primary objective of our study is to fill this gap by investigating the potential correla-
tions between radiomic features derived from the edema of STSs and the occurrence of
lung metastases.

Through this exploration, our study aims to uncover the prognostic value and clinical
significance of these radiomic features in relation to lung metastases in STS patients. By
elucidating the role of edema-related radiomic features, we can advance our understanding
of STSs and improve patient management strategies. This investigation may also lead to the
identification of biomarkers associated with tumor behavior and response. Ultimately, our
study seeks to contribute valuable knowledge to the field and enhance the care provided to
STS patients.

2. Materials and Methods
2.1. Dataset

For our study, we employed an open-source anonymized database as the principal data
repository (available online: http://doi.org/10.7937/K9/TCIA.2015.7GO2GSKS; accessed
on 2 September 2023); this comprehensive dataset consisted of 51 cases of STSs affecting
the extremities, which were histologically confirmed [7,9]. Each patient in the dataset had
undergone fluoro-D-glucose positron emission tomography and MRI scans as part of their
evaluation, conducted between November 2004 and November 2011.

It is important to note that the MRI protocols employed were not standardized across
all patients. To ensure consistency in our analysis, we specifically selected T2-weighted
fat-saturated (T2FS) or short tau inversion recovery (STIR) MRI scans. The patients were
categorized into two groups based on clinical outcomes: “no lung metastases” (group A)
and “lung metastases” (group B).

The inclusion criteria required that the selected examinations exhibit distinct segmen-
tations for both the tumor mass and the tumor mass plus the associated edema, while
excluding cases where the two segmentations were identical (e.g., cases with no observable
edema). In other studies, T2FS and STIR images are deemed comparable in terms of texture
analysis; therefore, we grouped them together as a single category [7,10].

Following these criteria, a total of 32 patients were included in our analysis.

http://doi.org/10.7937/K9/TCIA.2015.7GO2GSKS
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2.2. Segmentation and Feature Extraction

The segmentations for the examinations were acquired from the aforementioned
publicly available database. Each individual segmentation underwent visual evaluation
by a radiologist with eight years of experience, and modifications were made as deemed
necessary. The 3D Slicer software, version 4.13, was employed for this process [11].

For every exam, the following segmentations were considered:

• Gross Tumoral Volume (GTV): a segmentation that encompassed only the tumor mass;
• Edema Tumoral Volume (EDV): this segmentation was derived by subtracting the

tumor mass segmentation alone (GTV) from the segmentation that encompasses both
the tumor mass (GTV) and the associated edema (see Figure 1).

Diagnostics 2023, 13, x FOR PEER REVIEW 3 of 13 
 

 

2.2. Segmentation and Feature Extraction 
The segmentations for the examinations were acquired from the aforementioned 

publicly available database. Each individual segmentation underwent visual evaluation 
by a radiologist with eight years of experience, and modifications were made as deemed 
necessary. The 3D Slicer software, version 4.13, was employed for this process [11]. 

For every exam, the following segmentations were considered: 
 Gross Tumoral Volume (GTV): a segmentation that encompassed only the tumor 

mass; 
 Edema Tumoral Volume (EDV): this segmentation was derived by subtracting the 

tumor mass segmentation alone (GTV) from the segmentation that encompasses both 
the tumor mass (GTV) and the associated edema (see Figure 1). 

 
Figure 1. GTV and EDV segmentations; EDV segmentations were obtained by subtracting the GTV 
segmentation from the segmentation that encompasses both the tumor mass (GTV) and the associ-
ated edema. 

The extraction of features, i.e., the derivation of features from radiological images, 
was performed using Pyradiomics 3.0.1 (hĴps://pyradiomics.readthedocs.io; accessed on 
2 September 2023), a software library designed for the extraction of radiomic features from 
medical imaging data [12]. Additionally, a Python script developed by the authors was 
utilized, ensuring compliance with the Image Biomarker Standardization Initiative (IBSI) 
standard [13]. 

The hyperparameters for feature extraction were set with the following values: nor-
malize = True; removeOutliers = 3; binCount = 50; resampledPixelSpacing = 0.8, 0.8, 5.5; 
interpolator = sitk.sitkBSpline; correctMask = True. All other parameters were kept at their 
default values. For each examination, the features were extracted individually from each 
exam in a separate manner. 

The radiomic features extracted in this study were categorized into seven main 
groups: First Order (FOF) Features; Shape Features (SHAPE); Gray Level Co-occurrence 
Matrix (GLCM) Features; Gray Level Run Length Matrix (GLRLM) Features; Gray Level 
Size Zone Matrix (GLSZM) Features; Gray Level Dependence Matrix (GLDM) Features; 
Neighboring Gray Tone Difference Matrix (NGTDM) Features. The definitions and a de-
tailed list of these features can be found in the Pyradiomics feature documentation, avail-
able at hĴps://pyradiomics.readthedocs.io (accessed on 2 September 2023). 

2.3. Feature Selection 
The feature selection process aimed to identify and select the most informative fea-

tures for incorporation into our models. To commence this process, we initiated the iden-
tification and elimination of highly correlated features. 

This was achieved through the utilization of the Spearman correlation coefficient, 
where features displaying a correlation value surpassing 0.8 were systematically dis-
carded. 

Figure 1. GTV and EDV segmentations; EDV segmentations were obtained by subtracting the
GTV segmentation from the segmentation that encompasses both the tumor mass (GTV) and the
associated edema.

The extraction of features, i.e., the derivation of features from radiological images,
was performed using Pyradiomics 3.0.1 (https://pyradiomics.readthedocs.io; accessed on
2 September 2023), a software library designed for the extraction of radiomic features from
medical imaging data [12]. Additionally, a Python script developed by the authors was
utilized, ensuring compliance with the Image Biomarker Standardization Initiative (IBSI)
standard [13].

The hyperparameters for feature extraction were set with the following values:
normalize = True; removeOutliers = 3; binCount = 50; resampledPixelSpacing = 0.8, 0.8,
5.5; interpolator = sitk.sitkBSpline; correctMask = True. All other parameters were kept
at their default values. For each examination, the features were extracted individually
from each exam in a separate manner.

The radiomic features extracted in this study were categorized into seven main groups:
First Order (FOF) Features; Shape Features (SHAPE); Gray Level Co-occurrence Matrix
(GLCM) Features; Gray Level Run Length Matrix (GLRLM) Features; Gray Level Size
Zone Matrix (GLSZM) Features; Gray Level Dependence Matrix (GLDM) Features; Neigh-
boring Gray Tone Difference Matrix (NGTDM) Features. The definitions and a detailed
list of these features can be found in the Pyradiomics feature documentation, available at
https://pyradiomics.readthedocs.io (accessed on 2 September 2023).

2.3. Feature Selection

The feature selection process aimed to identify and select the most informative features
for incorporation into our models. To commence this process, we initiated the identification
and elimination of highly correlated features.

This was achieved through the utilization of the Spearman correlation coefficient,
where features displaying a correlation value surpassing 0.8 were systematically discarded.

Following this initial step, our approach involved a comprehensive evaluation of
potential feature combinations. We commenced this evaluation by considering individual
features and then progressively expanding the combination size, ultimately capping it at a
maximum of five features. For each combination size, we harnessed the Exhaustive Feature
Selection algorithm [14], which meticulously scrutinized all possible combinations; we

https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
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computed the average area under the receiver operating characteristic curve (AUC) score
using a 5-fold cross-validation approach and a Random Forest (RF) classifier. In essence, for
each combination size, we identified and selected the combination that yielded the highest
average AUC score, thus designating it as the optimal combination for that specific number
of features.

Finally, the number and names of the ultimately selected features were determined
by identifying the first peak value in the average AUC score (avg_score). This selection
process was conducted across the best combinations ranging from 1 to 5 features.

To illustrate with an example, we systematically explored various feature combinations
of different sizes to identify the optimal set of features for our analysis:

1. Single Feature Evaluation: When considering single features in isolation, we ob-
served that ‘feature_C’ exhibited the highest AUC of 0.65, outperforming all other
individual features.

2. Two-Feature Combinations: Expanding our investigation to pairs of features, we found
that the combination of ‘feature_D’ and ‘feature_H’ produced the most favorable result,
with an AUC of 0.77. This combination surpassed all other two-feature combinations.

3. Three-Feature Combinations: Continuing our analysis, we explored combinations
of three features. Among these, ‘feature_A’ + ‘feature_C’ + ‘feature_F’ yielded the
highest AUC of 0.75, demonstrating superior performance when compared to other
three-feature combinations.

4. Four-Feature Combinations: Extending our search to combinations of four features,
‘feature_B’ + ‘feature_D’ + ‘feature_F’ + ‘feature_H’ achieved an AUC of 0.71.
This particular combination displayed notable predictive power within the set of
four-feature combinations.

5. Five-Feature Combinations: Finally, in the context of five-feature combinations, ‘fea-
ture_A’ + ‘feature_C’ + ‘feature_F’ + ‘feature_H’ + ‘feature_G’ exhibited the highest
AUC of 0.81, outperforming all other five-feature combinations.

After these five steps, we opted for a two-feature combination, ‘feature_D’ + ‘fea-
ture_H’, which achieved an AUC of 0.77. This decision was based on the observation that
it represented the first peak of the AUC values among the feature combinations, ranging
from one to five features.

More details regarding the Exhaustive Feature Selection algorithm and the curves
obtained in our analysis are elaborated in the Supplementary Materials (Exhaustive Feature
Selection algorithm section, Figures S1 and S2).

2.4. Modeling and Statistical Analysis

An RF model based on the selected GTV features (RF-GTV) and an RF model based
on the selected EDV features (RF-EDV) were compared.

In particular, we performed 100 random subsampling iterations to evaluate the perfor-
mances of the two models. For each iteration, we randomly split the dataset into training
and testing sets; as suggested by Nadeau and Bengio [15], the training set was five times
larger than the testing set.

The RF models were trained on the training sets and evaluated on the corresponding
testing sets. Performance metrics, such as accuracy, sensitivity, specificity, and AUC, were
computed for both algorithms.

The median and interquartile range (IQR) of accuracy, sensitivity, specificity, and AUC
were calculated across the 100 iterations for both the RF-GTV and the RF-EDV models.

To compare the two models, we used the Nadeau and Bengio corrected resampled
t-test for the obtained accuracies. According to [15,16], performing 100 randomized subsam-
pling iterations and the Nadeau and Bengio corrected resampled t-test guarantee a close
alignment of Type I error with the significance level. Importantly, in contrast to McNemar’s
test and the 5 × 2 cross-validation test, this method doesn’t exhibit a heightened Type II
error rate. Moreover, when employing a total of 100 runs, the level of replicability reaches a
satisfactory threshold, thereby enabling reliable comparisons among diverse algorithms.
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The Spearman correlation coefficient was employed to calculate the intercorrelation
among the selected features. Additionally, the Mann-Whitney test was utilized to assess
statistically significant differences in selected feature values between group A/group B.

The correlation between the clinical features and the clinical outcomes (the “no lung
metastases” group and the “lung metastases” group) was subjected to statistical analysis.
This analysis employed the Mann-Whitney U test and Fisher’s exact test [17].

To enhance the generalizability of our findings to a wider population, we utilized
10000 stratified bootstrap iterations to calculate 95% confidence intervals (CI) [18], with a
particular focus on accuracy and AUC.

The described pipeline was performed using Python version 3.8. For RF, max_depth
(the longest path from the root node to the leaf node) was set to 10; the default values were
retained for all the remaining parameters.

3. Results
3.1. Dataset

Our study comprised a cohort of 32 patients, consisting of 14 males and 18 females,
with a median age of 60 years (range: 16–83 years). Throughout the follow-up period,
18 patients remained free from lung metastases (group A), while 14 patients experienced
lung metastases (group B).

The median duration from the diagnosis to the last follow-up was 684.5 days (range:
377–1329 days) for group A, whereas the median duration from the diagnosis to the onset
of metastases or local recurrence was 162 days (range: 29–731 days) for group B.

Regarding histological grades, 18 patients had high-grade sarcomas (8 patients in group
A and 10 patients in group B), 13 patients had intermediate-grade sarcomas (10 patients in
group A and 3 patients in group B), and 1 patient had a low-grade sarcoma (in group A).
Further details on relevant clinical parameters and treatment modalities can be found in
Table 1, along with the supplementary information provided in the Supplementary Table S1
section under “Clinical data”.

Table 1. Clinical parameters. (* p-value for statistically significant differences of value distribution in
Group A and Group B; age—Mann–Whitney; gender ratio, grade radio and MSKCC type—Fisher’s
exact test).

Group A (No Lung Metastases) Group B (Lung Metastases) p-Value *

Number of patients 18 14 -

Gender ratio (M/F) 5/13 9/5 0.072

Age, y, median (range) 53.5 (16–83) 62.5 (44–74) 0.106

Grade ratio (Low/Intermediate/High) 1/9/8 0/4/10 0.216

MSKCC type
(Fibrosarcoma/Leiomyosarcoma/

Liposarcoma/MFH/Synovial
sarcoma/Other)

1/6/3/3/3/2 0/3/2/8/1/0 0.238

The MRI protocols were heterogeneous; T2FS or STIR sequences were used. Additional
details regarding the MRI acquisition protocols can be found in the Supplementary Table S1
section under “MRI data”. Not all individual patients had both STIR and T2FS sequences
available. Consequently, we selected the only fluid-sensitive sequence that was accessible
for each patient during the analysis [7,10].

3.2. Features Extraction

After conducting a visual evaluation, it was determined that the segmentations of
31 exams were suitable for both GTV and EDV; however, in one exam, manual adjustments
were made to improve the delineation of the EDV segmentation.
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A comprehensive set of 214 radiomics features was extracted, specifically comprising
107 features from the EDV segmentation and 107 features from the GTV segmentation.

3.3. Features Selection

In relation to the features extracted from GTV and EDV, after the removal of the highly
correlated features, a total of 31 features were retained for GTV and 33 for EDV. Subse-
quently, the Exhaustive Feature Selection algorithm was iteratively applied, considering
the range of one to five features, and identified the first peak in the average AUC score
(more details regarding the curves obtained are elaborated in the Supplementary Materials
Figures S1 and S2). As a result, two features were selected for both GTV and EDV, as shown
in Table 2.

Table 2. Selected features for Gross Tumor Volume (GTV) and Edema Tumor Volume (EDV).

Selected Features

Gross Tumor Volume (GTV) Edema Tumor Volume (EDV)

original_glcm_Correlation original_firstorder_Kurtosis

original_glszm_SmallAreaLowGrayLevelEmphasis original_glszm_SizeZoneNonUniformityNormalized

3.4. Classification Performance

After conducting 100 random subsampling iterations for both the RF-GTV and the
RF-EDV models, the resulting performance metrics are shown in Table 3; in particular, the
accuracy was 0.83 for the RF-GTV and 0.75 for the RF-EDV.

Table 3. Classification performance on 100 random subsampling iterations.

RF-GTV Median
[Interquartile Range]

RF-EDV Median
[Interquartile Range]

Accuracy 0.83 [0.17] 0.75 [0.17]

Sensitivity 0.67 [0.50] 0.67 [0.50]

Specificity 1.00 [0.33] 0.80 [0.33]

AUC 0.88 [0.23] 0.79 [0.38]

Based on the results of the Nadeau and Bengio corrected resampled t-test, there was
no statistically significant difference observed between the accuracies of the two models
(p-value = 0.433).

Figure 2 presents the ROC curves, along with the corresponding AUC values for both
models. These ROC curves and AUC values serve as essential visual and quantitative
tools for the assessment of the predictive performance and discriminative capabilities of
their respective models, offering valuable insights into their effectiveness in distinguishing
between various classes (group A, “no lung metastases” versus group B, “lung metastases”).
The ROC curves provide a graphical representation of the models’ trade-offs between
sensitivity and specificity across different threshold settings, enabling a nuanced evaluation
of their diagnostic or predictive utility. Meanwhile, the AUC values summarize the overall
discriminatory power of each model. In particular, the RF-GTV model obtained an AUC of
0.88 and the RF-EDV model achieved an AUC of 0.79.

The bootstrap evaluation, which went through 10000 iterations for calculating the
median and 95% CI, revealed the following values:

• For the RF-GTV: a median accuracy of 0.71 [95% CI: 0.46–0.92], a median AUC of 0.79
[95% CI: 0.50 1.00];

• For the RF-EDV: a median accuracy of 0.69 [95% CI: 0.43–0.91], a median AUC of 0.73
[95% CI: 0.45 0.94].
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Further details regarding the bootstrap results can be found in the Supplementary
Materials (Figures S3–S7).

Figure 3 displays the intercorrelation patterns observed among the features selected
for both the RF-GTV and the RF-EDV models. These intercorrelations were computed
through the application of the Spearman correlation coefficient. The examination of the
correlation coefficients revealed values consistently below the value of 0.3, demonstrating a
lack of substantial correlation. Such findings emphasize the relative independence of these
features within the context of our models.
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Figures 4 and 5 illustrate the boxplots representing the selected features in group A
and group B; the statistical analysis conducted using the Mann-Whitney test revealed no
significant differences among the selected features in terms of the comparison between
group A and group B.
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4. Discussion

This study aimed to compare the predictive ability of radiomic features extracted
from the edemas and tumoral masses of STSs in predicting lung metastases. MRI
scans of 32 STSs were retrospectively analyzed, of which 18 cases were without lung
metastases and 14 cases had lung metastases. A total of 107 radiomic features were
extracted from each GTV and EDV segmentation. After feature selection, the feature
vectors contained two features for the mass model (original_glcm_Correlation and orig-
inal_glszm_SmallAreaLowGrayLevelEmphasis) and two features for the edema model
(original_firstorder_Kurtosis and original_glszm_SizeZoneNonUniformityNormalized). Ran-
dom Forest models were created using the selected features, and key performance
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metrics were calculated. The model based on the mass-related features (RF-GTV)
achieved a median accuracy of 0.83 and a median AUC of 0.88, while the model based
on the edema-related features (RF-EDV) achieved a median accuracy of 0.75 and a me-
dian AUC of 0.79. According to the Nadeau and Bengio corrected t-test, the statistical
analysis showed no significant difference between the accuracies of the two models.

The Spearman correlation coefficient was used to assess the independence of feature
vectors; the results revealed an absence of substantial correlation (Spearman correlation
coefficient < 0.3).

In relation to the statistical differences in the distribution of clinical parameters be-
tween Group A and Group B, no statistically significant differences were observed for
age, gender, grade, and MSKCC type (p-value > 0.05). It is noteworthy that, despite
references [19,20], which assert that the risk of distant metastases in STSs can range from
20% to nearly 100% based on grading and histological type, our study did not identify any
significant correlations between these clinical parameters and the risk of pulmonary metas-
tases. Consequently, the radiomic model demonstrated its capacity to predict outcomes, in
contrast to the clinical parameters examined in this study.

In the context of comparing images obtained from the EDV segmentations of individ-
uals without lung metastases (group A) and those with lung metastases (group B), some
differences were observed, even though they were not statistically significant. Specifically,
Group A exhibited a lower median value of Original FirstOrder Kurtosis, indicating a more
peaked distribution of pixel intensities around the mean. Furthermore, Group A exhib-
ited a significantly higher median value of Original GLSZM Size-Zone Non-Uniformity
Normalized, indicating the presence of regions within the image with varying sizes or
distinct patterns.

In other terms, group A’s images showed a relatively consistent overall texture with
localized variations or structures that contribute to the general heterogeneity of the im-
ages. In contrast, group B had pronounced variations and irregularities in pixel intensities
throughout the region, with regions that exhibited relatively consistent size zones, indicat-
ing the presence of distinct histological structures or patterns (e.g., tumor cells arranged in
well-defined nests).

To support these findings, the presence of satellite tumor cells within the context of
edema and the association of edema and high-grade STSs has been investigated in [8].
Moreover, several previous studies [21–27] have examined the impact of various factors on
MRI (including edema), and have highlighted the prognostic significance of baseline size,
heterogeneous signal intensities on pre-treatment conventional MRI sequences, necrotic
signals, peritumoral edema and enhancement, and the presence of a tail sign; these stud-
ies have also investigated the associations between these features and the histological
grading according to the “Fédération National des Centres de Lutte Contre le Cancer”
grading system.

Other studies have examined edema [7,26,28–35], but none of these studies have
specifically extracted radiomic features solely from the edema region of STSs. In partic-
ular, Crombé et al. [26] examined the changes in semantic features before, during, and
after neoadjuvant therapy and surgery using MRI. It was found that changes in edema
enhancement were associated with the presence of tumor cells beyond the lesion borders,
while variations in edema were associated with disease-free survival; however, none of
the studied outcomes were associated with the assessment of edema on baseline MRI.
Fadli et al. [28] examined the changes in semantic and radiomic features in a cohort of two
consecutive pre-therapy MRIs; the findings revealed a significant association between the
presence or increase in edemas (assessed semantically) and the occurrence of local recur-
rence. In another study [30], selected semantic and radiomic features were analyzed in a
cohort of patients who underwent two consecutive MRI scans before and after two cycles of
neoadjuvant chemotherapy; the analysis revealed that variations in the surrounding edema
(measured semantically) were associated with a positive treatment response, defined as a
threshold of less than 10% viable cells on surgical specimens.
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Our results have been compared with other studies that utilized the same dataset [7,9].
Specifically, Vallières et al. [7], using a model based on four features extracted from FDG-
PET/T1 and FDG-PET/T2FS to predict the onset of lung metastases, achieved an AUC
of 0.984 using a bootstrap evaluation. Zhao et al. [10], employing a signature based on
T2-weighted MRI features to predict the development of metastasis or recurrence, obtained
AUC values of 0.8481 and 0.7351, respectively, in the training and validation datasets,
using a four-fold cross-validation. Escobar et al. [36] developed a model to predict the
onset of lung metastases using MRI sequences, and achieved an AUC of 0.840 using
BootstrapOutOfBag. In [37], a methodology utilizing formal logic and radiomics models to
predict the risk of metastasis or recurrence yielded an accuracy of 0.74. However, unlike
our study, the first three works employed segmentations that included only the GTV, while
the fourth study used segmentations that included both the GTV and edema together.

The aforementioned literature has highlighted the scarcity of studies dedicated to the
analysis of radiomic features extracted exclusively from edema. In contrast to previous
studies, our findings underscore the importance of investigating radiomic features derived
solely from edema. This is attributed to the potential they hold in providing valuable
insights into the prediction of lung metastases.

The current study has several limitations that need to be acknowledged. Firstly,
the sample size used in this study is relatively small, which can reduce the statistical
power of the classification outcomes. To mitigate this limitation, we employed 100 random
subsampling iterations to assess the performance of the two models. Each iteration involved
randomly splitting the dataset into training and testing sets, following the recommendation
of Nadeau and Bengio [15], with the training set being five times larger than the testing
set. Secondly, the study faced limitations associated with variations in MRI scanning
parameters. These differences could potentially introduce batch effects, but they also
presented an opportunity to examine the robustness of the methods across diverse image
acquisition parameters. Thirdly, we did not employ the DeLong test to compare the AUC
values of the models. We made this decision based on concerns raised about the DeLong
method, primarily due to its misuse when training and testing the models using the same
dataset [38,39]. Instead, we opted to use the Nadeau and Bengio corrected t-test to compare
the accuracies of the models [16].

In summary, both the RF-GTV and the RF-EDV models exhibited promising potential
for predicting the occurrence of lung metastasis in soft tissue sarcomas. Specifically, the
model incorporating radiomic features solely extracted from the edema region (RF-EDV)
demonstrated the capability to predict lung metastases, although its performance was
slightly inferior to the model based on mass-related features (RF-GTV). However, the
disparity between the two models did not reach statistical significance.

5. Conclusions

These findings suggest that the utilization of radiomic analysis focusing on edema
features holds promise in predicting lung metastases in STSs, providing results that are
comparable to those obtained from mass-related features. Further investigations involving
larger cohorts are warranted to validate the clinical utility of these models.
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Abbreviations

MRI Magnetic Resonance Imaging
AUC Area Under the ROC Curve
STS Soft-Tissue Sarcoma
T2FS T2-weighted Fat-Saturated
STIR Short Tau Inversion Recovery
GTV Gross Tumoral Volume
EDV Edema Tumoral Volume
FOF First Order Features
SHAPE Shape Features
GLCM Gray Level Co-occurrence Matrix Features
GLRLM Gray Level Run Length Matrix Features
GLSZM Gray Level Size Zone Matrix Features
GLDM Gray Level Dependence Matrix Features
NGTDM Neighboring Gray Tone Difference Matrix Features
RF Random Forest
RF-GTV Random Forest model based on selected GTV features
RF-EDV Random Forest model based on selected EDV features
IQR interquartile range
CI confidence intervals
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