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Abstract: An evidence-based diagnostic algorithm for adult asthma is necessary for effective treat-
ment and management. We present a diagnostic algorithm that utilizes a random forest (RF) and an
optimized eXtreme Gradient Boosting (XGBoost) classifier to diagnose adult asthma as an auxiliary
tool. Data were gathered from the medical records of 566 adult outpatients who visited Kindai Uni-
versity Hospital with complaints of nonspecific respiratory symptoms. Specialists made a thorough
diagnosis of asthma based on symptoms, physical indicators, and objective testing, including airway
hyperresponsiveness. We used two decision-tree classifiers to identify the diagnostic algorithms: RF
and XGBoost. Bayesian optimization was used to optimize the hyperparameters of RF and XGBoost.
Accuracy and area under the curve (AUC) were used as evaluation metrics. The XGBoost classifier
outperformed the RF classifier with an accuracy of 81% and an AUC of 85%. A combination of
symptom–physical signs and lung function tests was successfully used to construct a diagnostic algo-
rithm on importance features for diagnosing adult asthma. These results indicate that the proposed
model can be reliably used to construct diagnostic algorithms with selected features from objective
tests in different settings.

Keywords: adult asthma; artificial intelligence; diagnostic assistant; machine learning; random
forest; XGBoost

1. Introduction

Asthma is characterized by a history of symptoms of airflow obstruction such as
wheezing, shortness of breath, chest tightness, and coughing that vary substantially in
magnitude, spontaneously or with treatment [1]. Airway hyperresponsiveness (AHR)
or objective evidence of airflow obstruction with partial reversibility is used to make
the diagnosis of asthma. However, lung function tests for objective evidence of airflow
obstruction are less often performed for diagnosing adult asthma in the real world [2,3]. A
systematic review and meta-analysis showed that the bronchodilator response (BR), which
was performed as objective evidence of airflow reversibility, has a limited sensitivity of
38.9% and specificity of 94.6% [4]. No “gold” reference standard is available for confirming
or overturning the diagnosis [5].

The misdiagnosis of asthma, including overdiagnosis and underdiagnosis, is partly
due to the lack of a standard approach for diagnosing adult asthma. Routine objective
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lung function tests likely reduce overdiagnosis before any treatment is commenced [6].
Poor disease outcomes and unwanted side effects without any clinical benefit are linked to
improper use of asthma treatment [7–10].

Diagnostic prediction tools should provide realistic probabilities of a diagnosis and
practical guidance on available tests in order to be adopted by general practitioners (GPs)
and used in everyday practice [11]. Four national and international guidelines have
been developed as evidence-based diagnostic algorithms or flow charts to diagnose adult
asthma [1,5,12,13]; however, these provide conflicting advice for GPs. The National Institute
for Health and Care Excellence suggests diagnosing using objective tests on treatable traits
by including a high fraction of exhaled nitric oxide (FeNO ≥ 40 ppb), which is predictive of
corticosteroid responsiveness [5]. The task force established by the European Respiratory
Society recommends assessing FeNO as part of the diagnostic workup for patients with
suspected asthma in those whose diagnosis is not established based on first spirometry
combined with bronchodilator reversibility tests [12]. In partnership with the Scottish
Intercollegiate Guideline Network (BTS/SIGN), the British Thoracic Society recommends
that patients have a high probability of asthma based on structured clinical assessment
alone without any required objective tests [13]. On the other hand, Global Initiative for
Asthma (GINA) guidelines state that objective tests assessing airway inflammation or
bronchial hyperresponsiveness are not necessary for asthma diagnosis [1].

The use of machine learning (ML), a type of artificial intelligence (AI), and AI in
medicine is growing. Several classical ML algorithms have been proposed, such as logistic
regression analysis, support vector machine (SVM), and deep neural networks (DNN).
Our earlier study was the first to show that, compared to logistic regression analysis and
SVM, DNN can diagnose adult asthma at a level that is comparable to that of human
specialists [14]. The internal logic of DNN needs to be explained and incomprehensible
due to the complex architectures of artificial neural networks (ANN) [15]. This behavior of
DNN—why it performs what it does or how it works—cannot be understood and is known
as the “black-box problem.” DNN has the problem of lacking interpretability. Decision-
tree-based classifiers are powerful and ultimately interpretable by enabling better output
transparency [16]. Random forest (RF) and eXtreme Gradient Boosting (XGBoost) are two
popular tree-structured classifiers for ML.

Auxiliary tools to diagnose adult asthma using DNN have the potential to yield
misleading diagnostic results. Using decision-tree-based classifiers, this study set out to
determine which features are more crucial for correctly diagnosing adult asthma. Subse-
quently, using two types of input features, including all full and selected features of input
data for symptoms, physical signs, and FeNO, we confirm useful features for diagnosing
adult asthma in various settings, assuming to diagnose adult asthma without objective
evidence of airflow obstruction.

2. Materials and Methods
2.1. Patients

For this re-analysis study, 566 patients with generalized respiratory symptoms were
eligible. The patients were thoroughly reviewed in our prior paper [17]. In summary,
566 cases involved 367 positive cases of asthma and 199 negative cases. The cases had a
median age of 52 (18 to 88) years and included 345 women and 221 males. The breakdown of
the asthmatic patients, comprehensively diagnosed by experts based on pertinent symptom
history and objective tests, revealed a positive finding for reversibility with a bronchodilator
response (BR) of 15%, defined as a 200 mL and a 12% increase in forced expiratory volume
in one second (FEV1), and a positive test for airway hyperresponsiveness (AHR) of 97%.
A positive methacholine-induced AHR test defines 5 mg/mL as below the provocative
methacholine dose, producing a 20% reduction in the FEV1 (PC20).
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2.2. Features of Variables for Inputs

All patient feature records were divided into four components: symptom–physical
signs, blood tests, lung function measurements, and airway inflammatory tests.

Symptom–physical signs (eight features): age (actual variable), sex (dichotomous
variable) (female = 0, male = 1), history of wheezing, diurnal variation of symptoms,
repeated symptoms, history of allergy diseases, family history of allergy diseases, and
current wheezing in auscultation as dichotomous variables (yes = 1, no = 0). Blood tests
(four features): the number of peripheral eosinophils, the number of peripheral basophils,
total IgE (actual variables), and a positive air-borne specific IgE (dichotomous variable)
(yes = 1, no = 0). Lung function measurements (five features): percent predicted FEV1
(%predicted FEV1), the airflow rate at 50% vital capacity (V50), V25, V50/V25, and increased
volume in FEV1 after administration of bronchodilator drug (BD) (actual variables). Airway
inflammatory test (one feature): FeNO level as an actual variable.

2.3. Model Construction

We applied two ML classifiers—RF and XGBoost—to train a gradient-boosted decision
tree with the same model representation and inference but with different training algorithms
(Figure 1).

RF is a classifier consisting of a collection of tree-structured classifiers with the same
distribution for all trees in the forest [18]. As base learners, RF constructs an ensemble of K
decision trees (DT). Each DT individually predicts the output, and the predictions are then
averaged to produce the outcome (Equation (1)):

T̂(x) =
1
k ∑K

k=1 T̂k(x) (1)

where x represents the input, and T̂ k(x) represents the estimation made by the kth tree [19].
XGBoost is an ensemble tree method that uses gradient descent architecture to boost

weak learners [20]. The loss function is given a regularization term by XGBoost, which
smooths out the learned weights and prevents overfitting. The output of XGBoost can be
calculated as follows:

ŷ =
1
k

ΣK
k=1fk(x), fkεГ (2)

where fk represents the output of the kth tree, x is the input vector, Γ denotes the function
space containing all possible regression trees, and ŷ is the projected output [21]. Equation (3)
displays the objective function of XGBoost:

Obj(θ) = L(θ)+Ω(θ) (3)

where L(θ) is the loss function that calculates the difference between the target value and
the predicted value, and Ω(θ) is the regularization function that manages the model’s
complexity and guards against overfitting [22].

The RF and XGBoost algorithms were obtained from Python’s scikit-learn function.
We prepared two types of input data to construct a diagnostic algorithm for adult

asthma diagnosis. In the first model, all full features of input data consisted of all four
components: symptom–physical signs, blood tests, lung function measurement, and airway
inflammatory tests. In the second model, selected features of input data consisted of two
limited components: symptom–physical signs and airway inflammatory test. During the
training process of the decision-tree classifier, the total dataset was divided into three
datasets: training, validation, and test sets.
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Figure 1. Overview of decision-tree classifiers. (A) Illustration of an RF classifier, which is a bagging
model that trains multiple trees in parallel and determines its final output by majority voting among
trees. The RF builds trees with different data and features and selects the best tree. (B) Illustration
of an XGBoost classifier, which creates a sequential ensemble of tree models that work together to
improve each other and determine its final output. It calculates an optimized tree every cycle as every
new estimator is added. Each decision tree creates a series of decision rules to predict adult asthma
outcomes based on input features in training data.

2.4. Hyperparameter Optimization Using Optuna

Bayesian optimization effectively optimizes objective functions globally and builds a
smooth model [23,24]. The training was performed using Optuna [25], which is available
as a library for Python. To avoid overfitting the model, we used Optuna, which hyperpa-
rameters for RF and XGBoost classifiers can tune. In the process of the RF classifier, Gini
impurity for the supported criterion and the maximum depth of the tree (max_depth = 3)
were fixed. The number of decision trees (n_estimators), the number of samples needed
to split an internal node (min_samples_split), and the number of features to take into
account when determining the best split (max_features) were adjusted. In the process of
the XGBoost classifier, some parameters were fixed on Gini impurity for the supported
criterion, maximum depth of the tree (max_depth = 3), early stopping at 50, and learning
rate. The other parameters were tuned using Optuna on L1 regularization (reg_alpha), L2
regularization (reg_lambda), a fixed threshold of gain improvement to keep a split (gamma),
minimum sum of Hessians needed to keep a child node (min_child_weight), subsample
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rows of training data prior to fitting a new estimator (subsample), and fraction of features
for subsampling at different distinctions in the tree building process (colsample_bytree).

2.5. Performance Evaluation of Feature Importance and Metrics

Internal estimates were used to evaluate feature importance and provide global expla-
nations for the prediction process of each selected parameter to measure feature importance
using SHapley Additive exPlanations (SHAP) [26]. The global average and model output
can be fully explained using SHAP, which can also take into account single and multiple
correlations for linear and nonlinear interactions. Game theory provides a strong theo-
retical framework for SHAP. To do this, SHAP gives each variable a score that represents
its relative importance in determining the result. The following is how SHAP defines a
model’s output:

f(x) = g
(

z’
)
= Φ0 + ΣM

i−1Φiz’
i

where g(z′) denotes the SHAP explanation model, φi represents the Shapley value, and
ziε{0, 1} is a binary variable [27].

Decision trees were visualized using the Python library dtreeviz. The k-fold cross-
validation was used to validate the calculated methods. The original dataset was split into
k number of folds. The remaining k − 1 folds served as the training set, and each fold
was utilized once as a validation set. Five evaluation metrics, namely precision, recall, F1
score, accuracy, and AUC (area under the receiver operating characteristic curve), were
used to assess model performance. Among the total test set, accuracy was the proportion of
patients that were correctly predicted. ROC (receiver operating characteristic) curves were
generated by plotting sensitivity versus specificity at different classification thresholds.

3. Results
3.1. Learning Curve and Hyperparameters

The optimized hyperparameters for the best performance of the RF and XGBoost
classifier on the first and second models of input datasets are shown in Table 1. These
conditions were selected based on accuracy and overfitting. Overfitting is a problem with
sophisticated nonlinear learning algorithms such as gradient boosting.

Table 1. Optimal hyperparameter utilizing Optuna for the RF and XGBoost classifiers of the first
model and the second model.

Parameters Function
Optimal Parameter Values

RF * XGBoost *

learning_rate Learning rate in integration NA 1 × 10−7–5 × 10−8

max_depth Maximum tree depth 3–3 3–3

n_estimators Number of decision trees
or weak classifiers 122–346 200–358

min_samples_spit Minimum sample weights needed to split a leaf node 26–40 NA

min_samples_leaf Minimum number of samples required to be at a leaf node 10–3 NA

max_leaf_nodes Total number of terminal nodes in a tree 972–292 NA

early stopping Number of pruners of unpromising trials to stop NA 50

min_child_weight Minimum sum of Hessians needed to keep a child node NA 3–2

subsample Subsample rows of training data prior to fitting a new estimator NA 0.5–0.5

colsample_bytree Fraction of features for subsampling at different distinctions in
tree building process NA 0.7–0.7

reg_alpha L1 regularization NA 0.0047–1.138 × 10−8
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Table 1. Cont.

Parameters Function
Optimal Parameter Values

RF * XGBoost *

reg_lambda L2 regularization NA 1.9 × 10−7–0.0003

gamma Fixed threshold of gain improvement to keep a split NA 2–2

NA, not available. * It denotes (the value of the first model–the value of the second model). In the first model, the
input dataset consisted of all four feature components, including symptom–physical signs, laboratory findings,
lung function tests, and airway inflammatory tests. In the second model, the input dataset consisted of two limited
components: symptom–physical signs and FeNO. During the training process of decision-tree classifiers, the total
dataset was divided into training, verification, and test sets.

We used learning curves in ML to optimize the internal parameters of algorithms.
Figure 2 displays the training and validation accuracy scores for the proposed XGBoost
classifier on the first model input dataset. The training and cross-validation scores were
approximately equal algorithms using full components.
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Figure 2. The learning curve of training and validation datasets using XGBoost classifier on the first
model of input datasets using full components (18 features). The figure shows the learning curve of
the training and test datasets, where the x-axis is the number of iterations of the algorithm (or the
number of trees added to the set), and the y-axis is the logarithmic loss of the model. Each row shows
the logarithmic loss per iteration for a given dataset. From the learning curve, the model performance
(red line) on the training data set is better or has a lower loss than the model performance (blue line)
on the validation data set. AUC, area under the receiver operating curve.

3.2. Performance of Algorithms

Table 2 summarizes the performance of the classifiers using k-fold (k = 10) cross-
validation in prediction algorithms for diagnosis of adult asthma. The performance of the
XGBoost classifier using the first model of input datasets was the highest compared with
those of all other combinations of classifiers and dataset models, with a precision of 0.80, a
recall of 0.81, an F1 score of 0.81, an accuracy of 0.81, and an AUC of 0.81. Figure 3 more
unequivocally illustrates the AUC of these models.
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Table 2. Performance comparison of RF and XGBoost classifiers.

Classifier Data Set Model Precision Recall F1 Score Accuracy AUC

RF First model 0.66 0.75 0.72 0.76 0.79

RF Second model 0.62 0.72 0.68 0.72 0.76

XGBoost First model 0.80 0.81 0.81 0.81 0.85

XGBoost Second model 0.72 0.74 0.73 0.74 0.77
AUC, the area under the receiver operating curve. In the first model, the input dataset consisted of all four
feature components, including symptom–physical signs, laboratory findings, lung function tests, and airway
inflammatory test. In the second model, the input dataset consisted of two limited components: symptom–
physical signs and airway inflammatory test. During the training process of decision-tree classifiers, the total
dataset was divided into training, verification, and test sets.
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Figure 3. Performance of decision-tree classifiers for diagnosis of adult asthma using the ROC
analysis. ROC using RF classifier on the first model of datasets (A), RF classifier on the second model
of datasets (B), XGBoost classifier on the first model of datasets (C), and XGBoost classifier on the
second model of datasets (D). The first model of input datasets consisted of full components, including
symptom–physical signs, blood tests, lung function measurements, and airway inflammatory tests,
and the second model of input datasets consisted of two components, including symptom–physical
signs and airway inflammatory tests.

3.3. Feature Importance and Visualization of Diagnostic Algorithms

The Shapley value, used as an index of feature importance, is the average of all
marginal contributions to all possible coalitions. Figure 4 depicts a SHAP beeswarm plot,
where dots stand in for individual cases and are color-coded according to the variable’s
value on the y-axis and their related Shapley value on the x-axis. We acquire information
on the variable’s value, computed by the XGBoost classifier on the first and second models
of the input datasets, as well as the amount and directionality of contribution to prediction
to diagnose adult asthma. When all features were entered into the first model, %V50
was identified as the most crucial feature, followed by %predicted FEV1 and total serum
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IgE value, with a combined weighted score of more than 30% (Figure 4A). A diagnostic
algorithm was constructed based on feature importance patterns. Figure 5A visualizes the
diagnostic algorithm using the XGBoost classifier on an all-features model. The decision
tree starts with %predicted FEV1 as the root node, the topmost node in a tree data structure.
Then, the root node is split into either the number of peripheral eosinophils or %V50 as the
next decision node.
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Figure 4. SHAP beeswarm plot demonstrating feature importance and the effects of the predictions
using RF (A) and XGBoost classifiers on the first model of input datasets, which consisted of full
components, including symptom–physical signs, blood tests, lung function measurements, and
airway inflammatory test (A), and the second model of input data sets, which consisted of two
components, including symptom–physical signs and airway inflammatory test (B). An adult asthma
diagnosis feature’s Shapley value is represented by each point on the x-axis. The sum of the Shapley
value magnitudes is used to order the features along the y-axis from top to bottom. The value of the
characteristic, which ranges from low to high according to the model’s predictions, is represented
by the color spectrum from blue to red. Abbreviations: FeNO, fraction of exhaled nitric oxide;
%predicted FEV1, percent predicted FEV1; V50, airflow rate at 50% vital capacity.
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inflammatory test (B). Abbreviations: Eo, eosinophils; ∆FEV1 after BD, increase in volume in forced
expiratory volume in one second after BD; FeNO, fraction of exhaled nitric oxide; %predicted FEV1,
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As selected features of input data consist of two limited components, such as symptom–
physical signs and airway inflammatory tests used to construct the diagnostic algorithm,
diurnal variation of symptoms, repeated symptoms, and FeNO levels were chosen as more
important features (Figure 4B). The diagnostic algorithm was visualized using the XGBoost
classifier on the part of the feature model in Figure 5B. The decision tree starts with repeated
symptoms as the root node and then splits into FeNO levels.

4. Discussion

To promote the clinical use of deep learning, studies must address the major hurdle
of model interpretability through the “black-box problem.” This study demonstrated how
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features can be useful in unraveling explanations that have shown improvement in diag-
nosing adult asthma using a decision-tree-based classifier. First, compared with the two
classifiers, the XGBoost classifier was a better model than the RF classifier regarding good
performance accuracy for diagnosing adult asthma. Second, two different diagnostic algo-
rithms were automatically constructed using a decision-tree-based classifier of the XGBoost
classifier on different combinations, including all full and selected features consisting of
symptom–physical signs, lung function measurements, and FeNO as inputs.

We have previously examined the effectiveness of DNN in modeling combinations
of symptom–physical signs and objective tests to predict the initial diagnosis of adult
asthma using ML [14]. Despite DNN being an excellent classifier for decision making, it
cannot demonstrate which features are more useful for diagnosing adult asthma using ML.
Decision-tree-based classifiers offer further insights into the relationship between features
and targets to predict. This study investigated the capacity of decision-tree-based classifiers
RF and XGBoost. Table 2 and Figure 3 indicate that the XGBoost classifier was prominent in
distinguishing between asthma and non-asthma compared with the RF classifier, especially
when all full features were used as inputs.

In this study, we showed feature ranking for diagnosing adult asthma using a decision-
tree-based classifier. The XGBoost classifier provided interpretability as to which feature has
contributed to model learning in data interpretation and model improvement. The %V50,
%predicted FEV1, serum total IgE level, and age values were the top-ranking variables by
the size of their impact on the prediction of adult asthma diagnosis (Figure 4A).

Shapley values can roughly evaluate the contributions of features to model learning
in decision-tree-based models for classifiers. In this study, small airway dysfunction
was the most important feature for diagnosing adult asthma using ML. All full features,
including lung function measurements, were used to construct the diagnostic algorithm.
Some reports have suggested that lung function measurements are required to accurately
diagnose adult asthma [4,21,28,29]. The BTS/SIGN asthma guideline [13] advocates clinical
diagnosis based on physician evaluation and promotes unbiased research to show variable
airflow obstruction or AHR. Asthma is characterized by a high prevalence of small airway
dysfunction, and some investigations indicate that small airway involvement is among the
early clinical symptoms [30–32].

On the other hand, when the objective test of lung function was not used to construct
the XGBoost classifier, we demonstrated that FeNO was replaced as an important feature
for diagnosing adult asthma using the decision-tree-based classifier. GPs look forward to
receiving an algorithm for detecting asthma in a case without airflow obstruction because
the AHR test is not available in routine medical care. Our model was built on supervised
learning training, where each specialist made a diagnosis of asthma based on the AHR test.
However, our input data were not included in the AHR test. Additionally, GPs struggled to
diagnose adult asthma in patients who presented with symptoms but did not have airflow
obstruction or who refused to take an objective test of lung function test. We believe that
our model will indicate whether or not these patients have asthma. Our research may
help bridge the diagnostic gap between the high prevalence of AHR (97%) and the low
prevalence of reversibility with BR (15%) in adult asthma.

Some studies have demonstrated that single-use FeNO contributes more towards
ruling in than ruling out a diagnosis of asthma with an overall sensitivity of 0.65 and
overall specificity of 0.82 in meta-analysis [4,33]. We emphasized that the combination of
symptom–sign features and FeNO was accurate for diagnosing adult asthma using the
XGBboost classifier. Among symptom–sign features, repeated episodes of symptoms were
the more useful features in our XGB classifier using two limited components, including
symptom–sign features and FeNO. Our previous report indicated that repeated episodes of
symptoms were most useful for diagnosing adult asthma in logistic regression analysis of
symptom–physical signs (odds ratio: 4.14; 95% CI: 2.43–7.06) [17].

We utilized the RF and XGBoost classifier, two decision-tree-based classifiers. They
are ‘state-of-the-art’ classification methods using gradient boosting algorithms, including
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CatBoost (Category Boosting) [34] and LightGBM (Light Gradient Boosted Machine) [35] as
well as XGBoost. It was reported that the superiority of these approaches depends on the
dataset; XGboost sometimes performs slightly better, or LightGBM (or Catboost) does [36].

This study has some limitations. First, our study had a medium size and internal
validation of analysis. A decision-tree classifier is one form of supervised ML, and it
requires a supervisor’s presence for the final and correct diagnosis. Future work will
require larger size and external validation through collecting patients who have been
accurately diagnosed using AHR as a multiple-center study. Second, the balance of datasets
affecting decision-tree classifiers is the better option to fit models. The two decision-tree
classifiers that were used in this study have different training algorithms, such as algorithms
built parallel in RF and sequentially in XGBoost. In this study, XGBoost was a good option
due to the unbalanced data.

5. Conclusions

We adjusted parameters in XGBoost models and used these models to limit the misdiag-
nosis of asthma because DNN frequently gives misleading diagnostic results by overfitting
models. Additionally, the DNN is frequently effective and accurate for diagnosing adult
asthma; nevertheless, it has also been referred to as having “black-box problems” because
it is unclear how the DNN “learns.” To concentrate on the interpretability of the learning
process, we employed the white box of XGBoost. We propose that an optimized XGBoost
model might lessen misdiagnosis. Four sets of national and international asthma guidelines
advocate using diagnostic algorithms [1,5,12,13]. In this study, we established the decision-
tree-based diagnostic algorithm to reveal discriminative features for the diagnosis of adult
asthma. The goal of the current work was to find an efficient and usable AI model that
may be utilized to diagnose adult asthma in primary care settings where GPs may choose
to empirically diagnose and treat patients for asthma without objective testing of lung
function. Hopefully, such a model may eventually be developed into a tailored diagnostic
tool to reduce the rates of asthma misdiagnosis.
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