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Abstract: Perfluorohexane sulfonate (PFHxS) is a widely detected replacement for legacy long-
chain perfluoroalkyl substances (PFAS) in the environment and human blood samples. Its potential
toxicity led to its recent classification as a globally regulated persistent organic pollutant. Although
animal studies have shown a positive association between PFHxS levels and hepatic steatosis and
hepatocellular hypertrophy, the link with liver toxicity, including end-stage liver cancer, remains
inconclusive. In this study, we examined the effects of PFHxS on the proliferation of Hep3B (human
hepatocellular carcinoma) and SK-Hep1 (human liver sinusoidal endothelial cells). Cells were
exposed to different PFHxS concentrations for 24–48 h to assess viability and 12–14 days to measure
colony formation. The viability of both cell lines increased at PFHxS concentrations <200 µM,
decreased at >400 µM, and was highest at 50 µM. Colony formation increased at <300 µM and
decreased at 500 µM PFHxS. Consistent with the effect on cell proliferation, PFHxS increased the
expression of proliferating cell nuclear antigen (PCNA) and cell-cycle molecules (CDK2, CDK4, cyclin
E, and cyclin D1). In summary, PFHxS exhibited a biphasic effect on liver cell proliferation, promoting
survival and proliferation at lower concentrations and being cytotoxic at higher concentrations. This
suggests that PFHxS, especially at lower concentrations, might be associated with HCC development
and progression.

Keywords: perfluorohexane sulfonate; human hepatocellular carcinoma; liver cancer; colony formation;
cell-cycle progression

1. Introduction

Since the accidental discovery of Teflon in 1938, the material has gained considerable at-
tention in the chemical industries due to its exceptional chemical stability, water-repellency
properties, and high surface activity [1]. The favorable properties of Teflon led to the devel-
opment of closely related chemicals, namely, perluoroalkyl and polyfluoroalkyl substances
(PFAS). Thereafter, PFAS-related products have been widely used in various applications
including in textiles, food packaging, fire retardants, and other industrial applications [2–4].

PFAS have become ubiquitous in ecosystems and have been detected in humans [5]
as well as in the environment and wildlife [6–8]. With the advancement of analytical and
toxicological methods, various adverse effects of PFAS have been reported. In particular,
eight-carbon congeners (C8), perfluoro-octane sulfonic acid (PFOS), and perfluorooctanoic
acid (PFOA) are the most widely distributed and bio-accumulated, and they have been
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reported to be toxic. As a result of this probable toxicity, the production of these chemi-
cals has been voluntarily discontinued by their manufacturer, 3M Company. Numerous
substitutes for these legacy PFAS have been introduced, including perfluorobutanoic acid
(PFBA), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), and perflu-
orohexanesulfonic acid (PFHxS), but these alternatives are also potentially toxic [9,10].

PFHxS, a six-carbon congener developed as a substitute for PFOS, is widely used
in industrial and consumer applications, particularly in the electroplating industry [11],
and is highly prevalent in the environment and living organisms. Due to its persistent,
bio-accumulative, and toxic properties [12–14], PFHxS and its salts have been listed in
Annex A of the 2021 Stockholm Convention on Persistent Organic Pollutants. Consequently,
regulations on the use of PFHxS are being strengthened worldwide. For example, Korea
and Japan are considering adding PFHxS to the PFAS survey items for water quality, which
already includes PFOS and PFOA.

Studies on the toxico-kinetics of PFAS have shown that the distribution of PFHxS has a
high liver-to-plasma ratio after oral and intravenous administration [15,16]. Animal studies
have demonstrated that PFHxS promotes hepatic steatosis and exacerbates the hepatic
symptoms of non-alcoholic fatty liver diseases (NAFLD) in obese mice [13,17]. Similarly, an
epidemiological study has indicated a positive association between serum PFHxS levels and
the NAFLD index in obese people [18], suggesting that PFHxS is potentially toxic to the liver.
However, there is a scarcity of human studies specifically examining the effects of PFHxS
on the liver, including the potential to cause liver cancer. Liver cancer was the third leading
cause of cancer-related death worldwide in 2020 [19]. The identification of environmental
factors contributing to the progression of liver cancer is crucial for developing effective
therapeutic and preventative strategies for liver cancer. Hepatocellular carcinoma (HCC) is
the most common form of liver cancer, accounting for 90% of cases, and is associated with
poor prognosis [20]. Liver sinusoidal endothelial cells (LSEC) have been reported to play
a role in hepatocellular carcinoma development and progression [21]. In this study, we
investigated the effects of PFHxS on the proliferation of Hep3B (human HCC) and SK-Hep1
(human LSEC).

2. Materials and Methods
2.1. Materials

K+PFHxS (≥99.9% purity) was obtained from 3M Company (St. Paul, MN, USA).
PFHxS was prepared by dissolving in dimethyl sulfoxide (DMSO). Antibodies of Cdk2,
Cdk4, Cyclin D1, Cyclin E, PCNA, and GAPDH were purchased from Santa Cruz (Dallas,
TX, USA). Anti-rabbit IgG and anti-mouse IgG were obtained from GeneTex (Irvine, CA,
USA).

2.2. Cell Culture

Hep3B and SK-Hep1 were obtained from the Korean Cell Line Bank (Seoul, Korea).
Cells were cultured in minimum essential medium (MEM, GIBCO, Billings, MT, USA)
supplemented with 10% fetal bovine serum (Hyclone, Logan, UT, USA) and 1% peni-
cillin/streptomycin (GIBCO). The cells were maintained in a humidified atmosphere at
37 ◦C with 5% CO2.

2.3. Cell Viability Assay

Hep3B (8 × 103/well) and SK-Hep1 (6.5 × 103) cells were seeded in 96-well plates
and cultured overnight, then cells with approximately 70% confluency were treated with
various concentrations (0, 1, 10, 50, 100, 200, 300, 400, and 500 µM) of PFHxS for 24 or 48 h.
Control cells were treated with vehicle control (DMSO) for 24 or 48 h. The plates were
treated with tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
(MTT) solution at 37 ◦C for 4 h. Formazan crystals were dissolved with DMSO, and the
absorbance was measured at 595 nm as previously described [22].



Int. J. Environ. Res. Public Health 2023, 20, 6868 3 of 8

2.4. Colony Formation Assay

Cells seeded into 24-well plates (4 × 104 cells/well) were cultured overnight and then
treated with different concentrations (0, 1, 10, 50, 100, 200, 300, 400, and 500 µM) of PFHxS
for 12–14 days to allow colony formation. Colonies consisting of more than 50 cells were
stained with 0.5% crystal violet (Junsei Chemical Co., Ltd., Tokyo, Japan) in 60% methanol.
Images were acquired using the Chemi-Doc XRS imaging system (Bio-Rad, Hercules, CA,
USA), and the number of colonies was quantified by measuring the optical density of the
extracted crystal violet dye with DMSO at 570 nm.

2.5. Western Blotting

Cells lysates were prepared using lysis buffer containing 20 mM HEPES (pH 7.5), 1 mM
EDTA, 1 mM EGTA, 10 mM NaF, 2 mM MgCl2, 150 mM NaCl, 10 mM KCl, 1 mM Na3VO4,
10 mM β-glycerophosphate, 1 mM DTT, 1 mM benzamide, 1 mM PMSF, 10 µg/mL apro-
tinin, 10 µg/mL leupeptin, 10 µg/mL pepstatin A, and 1% NP40. Equal amounts (20 µg)
of proteins from each sample were separated using SDS-PAGE gel and were transferred
onto a nitrocellulose membrane by Semi-Dry Transfer Cell (Bio-Rad, Hercules, CA) at
300 mA for 40 min. After blocking with non-fat dry milk, primary antibodies for CDK2
(1:1000), CDK4 (1:1000), Cyclin D1 (1:1000), Cyclin E (1:1000), PCNA (1:1000), and GAPDH
(1:1000) were applied overnight at 4 ◦C, followed by incubation with secondary antibodies,
anti-rabbit IgG (1:3000) and anti-mouse IgG (1:3000) for 1 h. Protein bands were detected
using chemiluminescence reagents. Band intensities were analyzed using a Chemi-Doc
XRS imaging system (Bio-Rad, Hercules, CA, USA). The membranes were reprobed with
anti-GAPDH antibody, which was used as a loading control for each gel.

2.6. Statistical Analysis

Data are presented as mean ± SEM. Statistical analyses were performed using the two-
sample t-test for two-group comparison or one-way ANOVA followed by Tukey’s post hoc
test for multiple-group comparisons. A p-value less than 0.05 was considered significant.
Statistical analysis was conducted using GraphPad Prism 4.0 software (GraphPad Software,
Boston, MA, USA).

3. Results and Discussion

Exposure to PFAS potentially contributes to the development of NAFLD, which has
become the most common cause of chronic liver diseases, including liver cancer, in recent
years [23,24]. Furthermore, animal and human studies have demonstrated that exposure to
PFHxS promotes NAFLD-related symptoms [17,18], raising the possibility that PFHxS may
also affect the proliferation of liver cells.

To investigate the effect of PFHxS on the proliferation of HCC and LSEC, we as-
sessed cell viability and colony formation in Hep3B and SK-Hep1 cells treated with dif-
ferent concentrations (0–500 µM) of PFHxS for 24 and 48 h. Treatment with PFHxS for
24 h significantly increased the viability of Hep3B cells at concentrations ≤ 50 µM and
significantly increased the viability of SK-Hep1 cells at concentrations ≤ 100 µM. Simi-
larly, treatment with PFHxS for 48 h significantly increased the viability of Hep3B cells
at concentrations ≤ 200 µM and significantly increased the viability of SK-Hep1 cells at
concentrations ≤ 100 µM. However, cell viability decreased compared with the control
group in both cell lines at PFHxS concentrations ≥ 400 µM (Figure 1).

To confirm the stimulatory effect of PFHxS on liver cell proliferation, we measured
colony formation. Cells were treated with PFHxS at various concentrations for 12–14 days.
Consistent with the cell viability results, PFHxS significantly increased colony formation
at concentrations ≤ 300 µM in both Hep3B and SK-Hep1 cells, while 500 µM of PFHxS
decreased colony formation (Figure 2). These results indicate that PFHxS enhances liver
cell proliferation at concentrations below 200 µM but becomes cytotoxic at concentrations
above 400 µM.
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Figure 1. The effects of PFHxS on the viability of HCC and LSEC. Hep3B (A) and SK-Hep1 (B) cells
were treated with the indicated concentrations of PFHxS for 24 and 48 h. Cell viability was measured
using an MTT assay. Data represent the mean ± SEM (n = 3–4) (* p < 0.05, ** p < 0.01 and *** p < 0.001
vs. 24 h control; # p < 0.05, ## p < 0.01 and ### p < 0.001 vs. 48 h control).

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW  4  of  8 
 

 

 

Figure 1. The effects of PFHxS on the viability of HCC and LSEC. Hep3B (A) and SK-Hep1 (B) cells 

were treated with the indicated concentrations of PFHxS for 24 and 48 h. Cell viability was measured 

using an MTT assay. Data represent the mean ± SEM (n = 3‒4) (* p < 0.05, ** p < 0.01 and *** p < 0.001 

vs. 24 h control; # p < 0.05, ## p < 0.01 and ### p < 0.001 vs. 48 h control). 

To confirm the stimulatory effect of PFHxS on liver cell proliferation, we measured 

colony formation. Cells were treated with PFHxS at various concentrations for 12–14 days. 

Consistent with the cell viability results, PFHxS significantly increased colony formation 

at concentrations ≤ 300 µM  in both Hep3B and SK-Hep1 cells, while 500 µM of PFHxS 

decreased colony formation (Figure 2). These results indicate that PFHxS enhances liver 

cell proliferation at concentrations below 200 µM but becomes cytotoxic at concentrations 

above 400 µM. 

 

Figure 2. The effects of PFHxS on colony formation of HCC and LSEC. Hep3B and SK-Hep1 cells 

were treated with the indicated concentrations of PFHxS for 12‒14 days. The colonies were stained 

with crystal violet and representative photos of the colonies are presented (A). The absorbance of 

resolved dyes was measured at 570 nm (B). Data represent the mean ± SEM (n = 6‒12; * p < 0.05, ** p 

< 0.01 and *** p < 0.001 vs. control). 

Figure 2. The effects of PFHxS on colony formation of HCC and LSEC. Hep3B and SK-Hep1 cells
were treated with the indicated concentrations of PFHxS for 12–14 days. The colonies were stained
with crystal violet and representative photos of the colonies are presented (A). The absorbance of
resolved dyes was measured at 570 nm (B). Data represent the mean ± SEM (n = 6–12; * p < 0.05,
** p < 0.01 and *** p < 0.001 vs. control).

We also examined the effect of PFHxS on the levels of key regulators of the cell cycle,
such as cyclins and cyclin-dependent kinases (CDKs), which drive cell-cycle progression
from the resting G0 phase to growth phases, as well as the effect of PFHxS on proliferating
cell nuclear antigen (PCNA), a marker of proliferation. Treatment of Hep3B and SK-Hep1
cells with 10–100 µM PFHxS for 48 h significantly increased the levels of cyclin E, cyclin
D1, CDK2, CDK4, and PCNA (Figure 3).
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Figure 3. The effects of PFHxS on cell-cycle signaling molecules in HCC and LSEC. Hep3B (A) and
SK-Hep1 (B) cells were treated with the indicated concentrations of PFHxS for 48 h. The protein levels
of CDKs, cyclins, and PCNA were detected by Western blotting. The band intensities were measured
and presented in the bar graphs. Data represent the mean ± SEM (n = 3) (* p < 0.05, ** p < 0.01 and
*** p < 0.001 vs. control).

Overall, our findings indicate that at concentrations below 200 µM, PFHxS stimulates
liver cell proliferation by enhancing cell survival and colony formation. Conversely, at
concentrations above 400 µM, PFHxS exhibits cytotoxic effects. The PFHxS-mediated in-
crease in liver cell proliferation was associated with an increase in the level of cell-cycle
markers. These observations align with previous studies on the cellular effects of PFOA
and PFOS, which showed that the compounds increased cell viability at 100 µM but were
cytotoxic at higher concentrations [25]. Recent epidemiological studies have also reported
an association between elevated blood levels of PFOS and an increased risk of non-viral
HCC and higher levels of alpha-fetoprotein, a hepatic tumor marker [26,27]. Although
shorter-chain PFAS are generally considered to be less toxic than PFOA or PFOS, previ-
ous studies suggest that some shorter-chain replacements have similar or higher toxicity
than long-chain PFAS, and the toxic potencies of PFAS cannot be determined by the chain
length [28,29]. Olsen et al. (2007) reported that the serum concentrations of PFHxS in
retired fluorochemical manufacturing ranged from 16 to 1295 ng/mL, with a half-life of
approximately 4 years in the blood [30]. However, the specific concentrations of PFHxS in
the human liver remain unclear. An animal study showed that oral gavage administration
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of PFHxS to rats (0–10 mg/kg/day) for 42 days resulted in a higher accumulation of PFHxS
in the liver compared to serum levels. At a dose of 10 mg/kg, the ratio between liver and
serum PFHxS concentrations was approximately threefold, and this ratio increased with
both time and dose [12]. Therefore, it is plausible that liver concentrations in occupational
workers may reach up to or more than 5 µM, a concentration relevant to our study, sug-
gesting a potential impact of PFHxS on liver cancer cell proliferation. Future studies are
needed to investigate the relationship between PFHxS in the blood and liver in humans.

In addition, multiple PFAS are detected in most environmental and biological samples.
Recent studies have shown that PFAS mixtures can have synergistic, additive, or less than
additive effects on liver cells, depending on the specific PFAS combination and the cellular
targets [31–33]. Therefore, the potency of PFHxS in promoting HCC proliferation may
depend on the exposure mode, such as exposure to PFHxS alone or in a mixture with
other PFAS.

Although evidence regarding the initiation and carcinogenesis of liver cancer by
PFHxS is lacking, our finding suggests that certain concentrations of PFHxS, a ubiquitous
persistent organic pollutant, may exacerbate HCC progression. Considering that PFAS
mixtures have been detected in human blood, the high distribution of PFHxS and PFOS
in the liver, and the physiochemical similarities between PFOS and PFHxS, it is possible
that PFHxS could increase the risk of HCC at concentrations lower than those identified in
our study.

Our study provides insight into how a chemical found in the environment might
contribute to HCC risk. However, larger-scale studies, including epidemiological and
mechanistic investigations, are needed to validate these findings. Additionally, further re-
search should explore the role of LSEC proliferation in PFHxS-increased HCC proliferation
and how exposure to other individual substitute PFAS compounds, such as PFBS, PFBA,
and PFHxA, as well as single or combined exposure to PFHxS and legacy PFAS, affects the
development of HCC.

4. Conclusions

Our study suggests that PFHxS, a well-known alternative to PFOS, may contribute to
the progression of HCC in humans. PFHxS increased the survival and proliferation of HCC
and LSEC at relatively low concentrations (10–200 µM). Conversely, higher concentrations
of PFHxS (>400 µM) were cytotoxic.

These findings provide valuable insights into PFHxS kinetics and facilitate the contex-
tualization of human toxicity data, which is crucial for risk assessment of PFAS exposure in
humans. In particular, this finding is of great importance in Japan and South Korea, where
concerns about the potential toxicity of PFHxS are growing.
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