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Summary

Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear 

how convergent biological processes in affected individuals may give rise to symptoms. Here, 

using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain 

development between boys with idiopathic ASD and their unaffected fathers in thirteen families. 

Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic 

probands involves an opposite disruption of the balance between excitatory neurons of the dorsal 

cortical plate and other lineages such as early-generated neurons from the putative preplate. The 
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imbalance stemmed from divergent expression of transcription factors driving cell fate during 

early cortical development. While we did not find genomic variants in probands that explained the 

observed transcriptomic alterations, a significant overlap between altered transcripts and reported 

ASD risk genes affected by rare variants suggests a degree of gene convergence between rare 

forms of ASD and the developmental transcriptome in idiopathic ASD.

Introduction

Autism spectrum disorder (ASD) is polygenic and heterogenous in its presentation and, 

so far, no convergent pathophysiology has emerged to guide prognosis and therapeutics. 

Risk factors for ASD includes multiple rare, inherited or de novo single nucleotide and 

structural variants1. Both transcriptomic studies of postmortem brains2 and whole-exome 

and genome analyses of genomic variations3–7 have identified several transcription factors 

(TFs) and chromatin modifiers as important ASD risk genes that operate during human fetal 

cortical neurogenesis. Human brain organoids derived from induced pluripotent stem cells 

(iPSC) have the advantage of reproducing these early stages of development in vitro8–10 and 

despite their limitation in recapitulating the full range of neuronal diversity11, represent the 

only available model that allows to retrospectively investigate gene expression dynamics in 

typical and atypical brain development.

Macrocephaly is a frequent phenotype that has been linked with increased severity and 

poorer outcomes in longitudinal and cross-sectional studies of children with ASD12–14 and 

may or may not be accompanied by general somatic overgrowth15–17. Since macrocephaly 

in ASD is likely rooted in differences in early brain development, we and others 

have taken this phenotype into consideration when studying ASD. Using telencephalic 

organoids derived from families with ASD with macrocephaly, we previously reported 

increased proliferation, differentiation, neurite outgrowth and increased FOXG1 expression 

in idiopathic macrocephalic ASD probands18. However, no previous study has directly 

compared the basic biology of ASD with and without macrocephaly.

In this work, we generated single cell transcriptomic datasets in forebrain organoids from 13 

families with macrocephalic or normocephalic ASD probands and compared differentially 

expressed genes (DEGs) between boys with ASD and their fathers in each cell type. We 

show that macrocephalic probands potentially represent a separate mechanism of ASD 

pathogenesis as compared to normocephalic probands. This involves an opposite disruption 

of the balance between the excitatory neurons of the dorsal cortical plate and other lineages 

such as the early-generated neurons from the putative preplate, which are the precursor 

of the subplate and marginal zone19–22. Such imbalances stemmed from an opposite 

dysregulation of cortical plate TFs between the two head-size ASD cohorts during early 

development. Most of the DEGs were not explained by rare coding genomic variants in our 

cohort, suggesting that transcriptomic alterations in probands stem from common variants 

and/or epigenomic modifications in upstream non-coding regions.
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Results

1. Forebrain organoids recapitulate early brain cellular diversity and patterning

Induced pluripotent stem cell (iPSC) lines were generated from male individuals affected 

with ASD (probands), and their unaffected fathers (controls). Probands were considered 

macrocephalic if presenting with head circumference at or above the 90th percentile and 

normocephalic otherwise, using a normative dataset as reference23. Altogether, iPSCs from 

32 individuals from 16 families were used for this study, including 8 macrocephalic ASD 

probands (macro-ASD) and 5 normocephalic ASD probands (normo-ASD) (Supplementary 

Table 1 & 2, T1).

Whole genome sequencing was performed on all iPSC lines to identify rare single 

nucleotide variant (SNV) or structural variants (SV) affecting the coding region of genes 

linked to syndromic ASD as defined by the SFARI database (Methods and Supplementary 

Table 1, T2–3). Four ASD probands presented a deletion of one or more exons of a 

syndromic gene. One proband (8303–03) had a large duplication increasing the copy number 

of 57 genes, including the syndromic gene POGZ. Additionally, 6 other probands carried a 

putative heterozygous loss of function SNV or frameshifting indel in syndromic ASD genes. 

All but 1 deletion and 1 SNV were not observed in fathers and may have been inherited 

from mothers, occurred de novo, or acquired in primary cells or during iPSCs culture. 

None of those rare mutations were common between probands and the affected genes 

did not converge on a single molecular pathway or cellular function. Except for the large 

duplication, the expression level of genes affected by these variants was similar in organoids 

carrying and non-carrying the variants (Supplementary Fig. 1). This suggested that identified 

variants do not cause a significant alteration in the expression of the corresponding genes, 

though they might cause altered protein function. Therefore, the cohort utilized in this study 

showed no evident gene expression bias due to mutations in syndromic ASD genes and was 

considered idiopathic.

The iPSCs were differentiated into forebrain organoids using a protocol designed to guide 

pluripotent cell differentiation toward anterior neuroectoderm (Methods, Extended Data Fig. 

1A). The ASD proband and the control lines from each family were cultured, differentiated, 

and processed in parallel. We performed scRNA-seq at 0, 30 and 60 days of organoid 

terminal differentiation (TD0, TD30, TD60), with TD0 corresponding to the first day 

when organoids are shifted to a mitogen-free medium, initiating neurogenesis. For initial 

characterization, a total of 72 scRNA-seq libraries from 26 individuals (6 macrocephalic 

ASD-control pairs, 5 normocephalic ASD-control pairs, and 2 control pairs) were merged 

into a “core dataset” comprising 664,272 cells (Supplementary Table 2). Trajectory analysis 

followed by unsupervised clustering identified 43 cell clusters, 37 of which were used for 

downstream analyses after filtering (Fig. 1A, Extended Data Fig. 1B–D; Supplementary 

Fig. 2 and Tables 2–3; Methods). Genes differentially expressed across clusters (i.e., cluster 

markers) were annotated using an extensive curated list of genes characteristic of cell types 

or regions of mammalian and human fetal brain development (see known markers and 

cluster markers in Supplementary Table 3) to group clusters into 11 annotated main cell 

types (Fig. 1A–E).

Jourdon et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, scRNA-seq trajectory analysis reflected how organoids reproduce the diversity of 

neuroectoderm-derived cell lineages of the early human forebrain (Fig. 1B–E and Extended 

Data Fig. 1E). Cells expressing markers of neural progenitor cells of the cortical plate 

(e.g., PAX6, SOX2, ID4, HES1, NES) were labelled as radial glia (RG). A subset of 

RG expressing truncated radial glia genes (e.g., CTGF, SAMD4A) and cell cycle markers 

(e.g., ASPM, TOP2A) was labelled as tRG. Another subset of RG expressing outer radial 

glia genes (e.g., HOPX, PTN and TNC)24 and prevalent in late stage organoids was 

labelled as oRG. Along the pseudotime, cells identified as intermediate progenitor cell or 

newborn neuron (IPC/nN, marked by EOMES/NHLH1) branched into different neuronal 

clusters (all expressing STMN2, MAP2 or SYT5). Excitatory neurons (EN) were identified 

by their expression of vesicular glutamate transporter genes (i.e., SLC17A6, SLC17A7) 

and inhibitory neurons (IN) by GABAergic-related genes (e.g., GAD1/2, DLX2, SP8, 

SLC32A1). EN included early-born neurons of the pre-plate (EN-PP) expressing TBR1, 

LHX5, LHX5-AS1 or LHX925–27, and including RELN+ Cajal-Retzius cells. Later-born 

dorsal cortical plate EN (EN-DCP) were identified by the TFs NEUROD6, EMX1 or 

NFIA with expression of subtype/cortical layer markers such as SATB2, TBR1, FEZF2 or 

BCL11B. A less defined neuronal subtype was labelled as cortical plate mixed neurons (CP-

mixed). The presence of cells expressing several of those described markers was confirmed 

at the protein level (Fig. 1F). Validating our annotations, gene expression in most organoid 

cluster’s correlated with that of corresponding cell clusters identified in human fetal brain 

(Extended Data Fig. 1F, G)11, 28.

While many clusters expressed the signature TF FOXG1 characteristic of telencephalic fates 

(Fig. 1D–F)29, 30, evidence of medio-lateral and dorso-ventral patterning also emerged. At 

the origin of the pseudotime (Fig. 1A), a cluster of early cells was annotated as RG-hem 

in reference to the cortical hem, a transient organizing center and source of BMP and 

WNT signaling in the medial edge of the cortical plate31, 32. Another group of related 

clusters expressing many medial markers (e.g., LMX1A or OTX2) was labelled as medial 

cortical plate (MCP) and included both putative ependymal cells (GMNC+, FOXJ1+) and 

choroid plexus cells (TTR+, cluster 15) (Fig. 1B, D, E), in agreement with mouse studies33. 

Both RG-hem and MCP expressed high levels of Wnts (WNT5A/8B), Wnt-related genes 

(RSPO2/3, WLS) and BMPs (BMP6/7). In contrast, RG clusters expressed the WNT 

pathway inhibitors SFRP1/2 and canonical dorsal cortical plate (DCP) markers like HES1, 

PAX6, GLI2, LHX2 and FOXG1 (Figs. 1D, E, F and Extended Data Fig. 1E)30, 34. 

Immunostainings confirmed the presence of TTR+, OTX2+ choroid plexus-like structures 

spatially segregated from FOXG1+/EOMES+ DCP-like structure in organoids (Fig. 1F). 

Conversely, progenitors marked by ASCL1/DLX1/GSX2 and labelled as RG-LGE indicated 

the presence of a ventrolateral ganglionic eminence fate in our preparation (Fig. 1B,D). We 

then sought to explore how such self-patterning within progenitors along the medio-lateral 

and dorso-ventral axes of the forebrain was related to the neuronal diversity of organoids.

2. Organoid cell composition is associated with specific gene expression in progenitors

We explored how the proportions of different cell types in organoids varied in relation to 

developmental time, batches, iPSC lines or individual’s clinical characteristics. Hierarchical 

clustering and compositional data analysis results were first driven by the expected shift 

Jourdon et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



occurring between TD0 and TD30/60. While RG-hem, tRG and RG cell proportion 

decreased, oRG, EN-PP, EN-DCP and CP-mixed cells increased, consistent with the 

progression of neurogenesis over time (Fig. 2A–C, Supplementary Fig. 3A–B & 4C). 

Between TD30 and TD60, oRG, an RG subtype central to the evolutionary expansion 

of the human neocortex24, 35, increased in proportion in organoids (Supplementary Fig. 

3A–B, 4C). Independently from this time trend, we observed a variation in different cell 

type proportions over the different organoid preparations. An inverse correlation in the 

abundance of IN versus MCP cells explained an important part of this variation (Fig. 

2A,D, Extended Data Fig. 2A), suggesting that a variable degree of ventralization (i.e., 

RG-LGE/IN lineage) or medialization (MCP cells) occurred in organoids, potentially due 

to autonomous variable self-patterning by endogenous SHH and Wnt/BMP signaling which 

program those lineages36, 37. Similarly, an inverse correlation between EN-DCP and EN-PP 

was observed across samples at TD30/60, suggesting variable propensity to generate early 

and late cortical neuron subtypes (Fig. 2A, Extended Data Fig. 2B).

Testing the effect of each single metadata on sample-to-sample differences revealed that 

variation in cell composition was not principally driven by either ASD phenotype, head 

size groups, donor age or reprogramming method (Fig. 2A, Supplementary Fig. 3C–M). 

Genetic background and preparation batch had the stronger effects as samples from the same 

families differentiated together were found to be more similar than samples across families 

(Extended Data Fig. 2C). The effect of organoid preparation batch was then examined in 

six technical replicates of the same lines at identical stages. Replicates displayed similar 

cell type compositions and high correlation in cell type-specific gene expression, except 

for one outlier replica for 10789–01 at TD30 (Extended Data Fig. 2D–F). Batch-to batch 

consistency was also evaluated by bulk RNA-seq, since gene expression measured by 

bulk RNA-seq strongly correlated with both pseudobulk and cell proportions measured 

by scRNA-seq of identical samples (Supplementary Fig. 5 & Table 2, T1). We observed 

that correlation coefficients of bulk RNA-seq gene expression were higher within organoids 

derived from the same iPSC lines cultured in different batches than across organoids derived 

from different individuals (Supplementary Fig. 5G). Together, the data show that variability 

in cell composition is predominantly driven by differences across lines from different 

families, suggesting that genetic background is driving the differences.

The expression and activity of TFs are thought to be the earliest predictors of cell fate 

in many systems, including the CNS38, 39. We observed that the level of expression of 

specific TFs in RG progenitor cells at TD30/60 was correlated with the abundance of 

different neuronal subtypes across samples, confirming that changes in the proportion of 

different neurons as measured by scRNA-seq reflected different transcriptional programs 

of progenitor cells. For instance, expression in RG of EMX1 was higher in EN-DCP-

abundant samples, whereas GSX2 expression was higher in IN-abundant samples (Fig. 2E). 

Coherently, FOXG1 expression was independently associated with the abundance of both 

IN and EN-DCP cells. We then identified all genes whose expression level in progenitor 

cells was positively correlated with increased cell proportion of a specific neuronal subtype 

(Fig. 2F, Methods and Supplementary Table 4). Progenitor genes correlated with abundance 

of EN-DCP included known regulators of the cortical plate lineage (e.g., NEUROD6, 

EMX1, LHX2) but also less characterized TFs (e.g., TFAP2C, DMRTA2, SMAD9) (Fig. 
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2G). NEUROD6 expression in RG was the top predictor of a higher ratio of EN-DCP to 

EN-PP across samples (Extended Data Fig. 2G). A high fraction of IN was associated with 

expression in RG of TFs of the LGE lineage (e.g., GSX2, SIX3, DLX1/2). In contrast, the 

abundance of EN-PP was driven by TFs linked to the medial pallium, including ZIC1 and 

PROX1, both expressed in the cortical hem40, 41. ZIC1 is an activator of WNT signaling42, 

and consistently, expression of several other activators of the WNT signaling pathway (e.g., 

WLS, WNT7B) in RG cells were also predictors of EN-PP abundance (Fig. 2G) as well as 

top predictors of a higher ratio of EN-PP to EN-DCP across samples (Extended Data Fig. 

2G). This analysis identified neuron predictor genes whose expression in progenitor cells 

could drive or participate in the balance between neuronal subtypes (Supplementary Table 

4). Furthermore, it supports that variability in cell type composition is not attributable to 

technical factors or stochastic fate decisions in post-mitotic neurons, but rather reflects the 

propensity of progenitors to adopt different cell fates within the organoids, driven in part by 

individuals’ genetic background.

3. Macrocephalic and Normocephalic ASD show distinct cellular and molecular profiles

We compared each ASD proband to its unaffected father (always differentiated in the same 

batch) using a pairwise approach and identified alterations in both gene expression and 

cell proportion associated with ASD in macro and normo cohorts (8 pairs and 5 pairs, 

respectively, Methods; Fig. 3; Extended Data Fig. 3, 4). Differentially expressed genes 

(DEGs) were identified in each cell type at two differentiation stages: early (TD0) and 

late (TD30/TD60). To account for variabilities between ASD families and highlight the 

more robust cases of convergence, a set of “high confidence” DEGs was also derived based 

on the number of families supporting each DEG (Supplementary Table 5, Methods). In 

total, 2,788 genes were identified as high confidence DEGs across our dataset (Fig. 3A), 

comprising 1 to 608 genes up-regulated (upDEG) or downregulated (downDEG) in ASD 

per cell type. High confidence DEGs included 1,540 genes altered only in macro-ASD, 

709 only in normo-ASD, and 539 altered in both, although often in different cell types or 

direction. Of the 221 cases where the same gene was altered in the same cell type, only 28% 

(62 cases) had concordant direction of change in the two ASD cohorts (Fig. 3B). Although 

the sensitivity to detect DEGs in each cohort may differ based on the number of cells and 

number of families analyzed in each cell types (Fig. 3A, T2 in Supplementary Table 5), 

this low level of DEG convergence pointed towards divergent alterations in molecular and 

developmental trajectories associated with ASD phenotypes in the two head size cohort.

Macrocephalic ASD probands exhibited an upregulation of genes involved in dorsolateral 

forebrain/cortical plate identity and glutamatergic neurogenesis (EN-DCP), particularly in 

progenitor cells at TD30/60. High confidence upDEGs included TFs governing dorsal 

patterning of the pallium (e.g., EMX1/2, LHX2, DMRTA2), cerebral cortical fate (e.g., 

FEZF2) and excitatory neurogenesis (e.g., NFIA/B, EOMES, NEUROG2) (Fig. 3D, 

Extended Data Fig. 4C). Markers of other fates were on the contrary downregulated, 

including markers of preplate, medial cortical plate and inhibitory lineages (e.g., WLS, 

OTX2, LMO1, WNT7B, TCF7L2, GSX2). In contrast, EN-DCP-related transcripts were 

unaffected or downregulated in normo-ASD, notably in IPC/nN, including EMX1, NFIA, 

NEUROD6, EOMES (Fig. 3D and Extended Data Fig. 4D), along with a downregulation 
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of oRG marker genes (e.g., HOPX, FAM107A and PTPRZ1, Fig. 3D). No change in 

EN-DCP related transcripts was evident from DEG analysis in two control families with 

macrocephalic children (Supplementary Fig. 6), suggesting that the increase in EN-DCP fate 

was specific to ASD with macrocephaly.

Cell proportion changes were consistent with expression changes. Macro-ASD showed a 

relative increase in RG and EN-DCP cells, particularly at TD30, with a corresponding 

decrease of EN-PP and IN. In contrast, normo-ASD showed a decrease in EN-DCP and an 

increase in EN-PP cells (Fig. 3E, Extended Data Fig. 3A–C, Supplementary Fig. 4A,B). 

Consistently with this shift in fate preference, genes identified as cluster markers of EN-

DCP and EN-PP were affected in opposite direction in IPC cells (the cell type representing 

the immediate precursors of pallial excitatory neurons) in the two head size cohorts 

(Extended Data Fig. 6A). To link differences in gene expression with cell proportion, 

we analyzed DEGs for enrichment in neuron predictor genes (as defined in Fig. 2F,G & 

Supplementary Table 4). Notably, EN-DCP predictors (including NEUROD6, EMX1 and 

LHX2) were enriched amongst macro upDEGs and normo downDEGs, whereas EN-PP 

and IN predictors (including medial pallial genes OTX2, PROX1, IRX1 and WLS) were 

enriched amongst macro downDEGs and to a lesser extent in normo upDEGs (Fig. 3F). 

We confirmed the strongest increase of EN-DCP-related lineage cells in 3 macro-ASD 

families at TD30 by immunocytochemical counts of NEUROD2 and EOMES-positive 

intermediate progenitor cells (Fig. 3G–I and Extended Data Fig. 7A–D). Finally, EN-DCP 

fate imbalances was also evident in matched bulk RNA-seq DEG analyses (Supplementary 

Fig. 5H).

upDEGs in RG cells at TD0 were enriched in genes associated with “cell cycle”, “DNA 

replication” and “cell division” GO terms (Extended Data Fig. 5A) and 7 out of 8 

macro-ASD showed an increased fraction of cells classified in S or G2/M phases of the 

cell cycle at TD0 (Extended Data Fig. 3E,F), suggesting that the increase in RG and 

EN-DCP cell proportion in macro-ASD at TD30 (Fig. 3E) could be related to an imbalance 

between neurogenesis and proliferation in early progenitors. Indeed, immunostaining RG 

cells (labeled by SOX1) with the cell cycle protein Ki67 revealed an overall increase in 

cell proliferation in macro-ASD probands at TD30 with respect to their control fathers 

(Extended Data Fig. 7E,F). This was also supported by an upregulation of ID1/3 genes 

and a downregulation of NR2F1 and SFRP2 at TD0, which influence the balance between 

proliferation and neurogenesis in the cortical plate in vivo43–45 (Fig. 3C). Confirming the 

decrease in early neurogenesis, GO terms linked to cell migration, synapse and neuronal 

maturation were enriched in macro downDEGs at TD30/60 (Extended Data Fig. 5A). As 

this could suggest a difference in maturation speed of neuronal cells, we compared the 

distribution of EN cells along the pseudotime axis between ASD probands and controls 

and found no consistent differences across families and stages (Extended Data Fig. 3D). 

In addition, changes in excitatory lineage gene expression were consistent between TD30 

and TD60 (Extended Data Fig. 8), suggesting that initial differences were not compensated 

over the investigated timeframe, although we cannot exclude that a “catch-up phenomenon” 

could be observed at a later time. We suggest that the decrease/increase in expression in 

excitatory neuron genes is attributable to an opposite bias in lineage choice in the two 

ASD subphenotypes, where normo-ASD neuroepithelial cells tend to exit the cell cycle 
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and differentiate into excitatory preplate neurons, whereas macro-ASD precursors show an 

increase in cell division, more abundant RG cells and increased EN-DCP fate specification 

to the detriment of EN-PP or IN fates. Finally, we found no strong indication that this 

imbalance in EN-DCP was linked to a biased specification in organoids towards a specific 

cortical area. On the contrary, marker genes of cortical areas identified in fetal brain46 were 

overall prevalently downregulated in both ASD cohorts (Extended Data Fig. 6B,C), similarly 

to what has been described in vivo47, 48.

4. Molecular convergence across ASD subtypes is limited to cell cycle and regulation of 
translation

To investigate if some molecular convergence existed across ASD with or without 

macrocephaly, we identified a set of confident shared DEGs across the majority of the 

13 ASD families, using stringent criteria, notably by excluding genes also differentially 

expressed in control families (Supplementary Fig. 6A) and requiring that ASD probands 

from both cohorts were affected in the same direction (Methods). Shared DEGs included 

81 genes, mostly affected in RG at TD0, and in oRG, IPC/nN and MCP at TD30/60, with 

no single DEG altered identically throughout all 13 families (Extended Data Fig. 9A–D, 

Supplementary Table 5, T4). Shared DEGs didn’t include any TF and had only 2 known 

markers of neurodevelopment (SFRP2, MOXD1) and 2 SFARI genes (MCM4 and PCDH9). 

Functional annotation revealed that cell cycle and DNA replication-related genes were found 

upregulated in RG at TD0, suggesting that cell cycle dynamic was altered early on in 

both cohorts (Extended Data Fig. 9B–D, & Supplementary Table 6, T2). Protein-protein 

interaction networks constructed using STRING revealed that shared downDEGs included 

genes with little degree of known interaction, with a generic annotation related to “brain 

function” and 7 genes associated with the VEGFA-VEGFR2 signaling pathway (Extended 

Data Fig. 9E). On the contrary, STRING analysis of upDEGs suggested DNA replication 

and translation-related transcripts as convergently upregulated functions in our ASD cohort, 

without highlighting a more defined function (Extended Data Fig. 9F). Taken together, ASD 

probands mainly converged on upregulation of fundamental pathways such as RNA-related 

and cell cycle-related functions.

5. Convergence of transcriptomic changes and heritable variations in ASD

To evaluate how known risk genes were affected in organoids, we then intersected macro 

and normo DEGs with a set of 324 ASD risk genes identified in four recent large whole-

exome and genome sequencing studies (Fig. 4A). This set included genes carrying rare 

de novo and inherited variants3, 5, 6 and a complementary list of genes disrupted by 

ultra-rare inherited variants7. Among the 324 ASD risk genes, 111 were macro-DEGs and 

47 were normo-DEGs (including 35 genes in both sets), an overall ~50% overlap (Fig. 

4A). Significant enrichment among DEGs at TD30/60 was stronger for macro-ASD (Fig. 

4B). Consistently, the SFARI ASD-related gene list (~900 genes) overlapped with 289 

organoid DEGs and was also more significantly enriched in macro- than in normo-DEGs 

(Fig. 4A,B). EN-PP and CP-mixed DEGs were significantly enriched in ASD risk genes 

and SFARI genes, highlighting the importance of the EN-PP transient cell population for 

ASD risk/etiology (Fig. 4B). The expression of risk genes was altered in both progenitors 

and neuronal cells of macro-ASD, including a number of upregulated cortical excitatory 
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lineage genes also dysregulated in the adult cerebral cortex of ASD individuals (e.g., 

BCL11A, TCF4) as well as downregulated genes with a score of 1 in the SFARI database 

(including SATB1, ANK2, MAP1A, TCF7L2 or NRXN1, Fig. 4C). Interestingly, except for 

CNTNAP2 which was DEG in both cohort (Extended Data Fig. 4B), macro-ASD DEGs did 

not include any rare risk genes specifically associated with ASD and macrocephaly such 

as CHD849–51; NOTCH2NL52; PTEN15, 53; CNTNAP252; KCTD1354, and HNF1B55. In 

relation to observed changes in proliferation of RG cells, risk genes related to chromatin 

organization (e.g., TOP2A, NCAPG2, SMC2, etc.) were upregulated in macro DEG at TD0. 

This reinforces the already advanced hypothesis that ASD can stem from disruption in 

progenitor cells functions and is not restricted to alterations in neuronal cells or synaptic 

genes56. Overall, this pointed to a certain degree of convergence between ASD risk genes 

identified from rare syndromic forms of ASD and changes in developmental transcriptome 

in idiopathic forms of ASD.

Finally, we investigated whether DEGs in organoids were potentially attributable to genomic 

variations carried by iPSC lines from ASD probands in our cohort (Supplementary Fig. 

8). We selected rare putatively disruptive coding variants identified in ASD lines, absent 

from the corresponding father’s genomes, and affecting syndromic ASD genes or genes 

that are differentially expressed in either macro-ASD or normo-ASD (Supplementary Fig. 

8; Supplementary Table 1, T4–5). Although we identified 33 coding variants of interest, 

most of the affected genes had inconsistent differential expression throughout cell types 

and stages between the affected ASD proband and its father, suggesting that the variant 

didn’t lead to a consistently strong effect on gene expression. In addition, the direction of 

change didn’t systematically match with the expected effect of the variant (i.e., increased 

expression for deleterious variant). Finally, differential expression in ASD-father pairs didn’t 

necessarily correspond with a confident DEG at the cohort level in the same cell type(s) 

and stage(s). Overall, these data show that the large majority of DEGs were not explained 

by rare coding variants in our cohort, suggesting that observed DEGs are a consequence of 

alterations in upstream transcriptional cascades or are caused by a combination of common 

or non-coding variants and epigenomic modifications requiring further investigation.

Discussion

Organoid models of early brain development have revealed key normative aspects of 

human brain biology and can be used to unveil altered molecular mechanisms in 

neurodevelopmental disorders. Here, we used a guided organoid approach to reproduce 

the neural cell diversity of the developing human forebrain. We describe the generation 

of excitatory neurons of the putative preplate (EN-PP) and those of the dorsal cortical 

plate (EN-DCP) and characterize how changes in these lineage differentiation programs 

in organoids distinguish the pathophysiology of ASD with or without macrocephaly. 

We observed an opposite disruption of the balance between EN-PP and EN-DCP in 

macrocephalic and normocephalic ASD probands, stemming from divergent expression of 

transcription factors driving cell fate during early cortical development. Furthermore, a 

significant overlap between altered transcripts and reported ASD risk genes affected by 

rare variants suggests a degree of gene convergence between rare forms of ASD and the 

developmental transcriptome in idiopathic ASD.
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ASD is known to be among the most heritable of all neuropsychiatric conditions57, 58, 

yet only a few loci have been associated with ASD in the largest GWAS study to date 

encompassing over 30,000 individuals59. To mitigate the unknown effect of heterogeneous 

genetic backgrounds, we compared throughout our study ASD male probands to their 

unaffected fathers in a paired family design. By processing pairs concurrently, we also 

minimized batch effects characteristic of organoid preparation and sequencing.

While we found some common transcriptomic signatures when investigating macro- 

and normo-ASD cohorts all together, these signatures converged on a few genes with 

limited pathophysiological implications. This included an upregulation in genes related 

to translation, which is compatible with other transcriptomic studies implicating mRNA 

binding, splicing and translation in ASD2, 60, 61. RNA processing has also been previously 

associated with rare inherited ASD genes identified through large scale WGS studies2, 60, 61. 

Apart from this point of convergence, separating our cohort based on the head circumference 

of the ASD proband revealed two drastically different alterations in neurodevelopment, 

suggesting that head circumference may define two separate subtypes of ASD.

The major point of divergence in the two head size ASD cohorts was in how excitatory 

neurogenesis was disrupted. As compared to their respective controls, macrocephalic ASD 

showed an exuberant production of excitatory neurons of the cortical plate (EMX1- and 

FEZF2-positive EN-DCP) to the detriment of the early preplate (EN-PP) and inhibitory 

neuron lineages (IN). On the contrary, in the normocephalic ASD cohort an opposite 

pattern emerged with an increase in EN-PP and a decrease in EN-DCP signature. We found 

no evidence of accelerated or delayed differentiation in the two ASD cohorts, however, 

genes promoting self-renewal were upregulated and genes promoting differentiation were 

downregulated in macrocephalic ASD. These observations support a model (Extended 

Data Fig. 10) where progenitors derived from normocephalic ASD probands choose to 

generate more preplate neurons and prematurely exit the cycle, whereas progenitors from 

macrocephalic ASD probands bias fate choice towards radial glia expansion and exuberant 

cortical plate excitatory neuron neurogenesis. Altogether, our study suggests that changes 

in early transcriptional programs dictating cell fate choices in progenitor cells during 

the earliest stage of corticogenesis underlie altered neurodevelopmental trajectories in 

individuals with ASD. ASD has been previously linked to increased cortical surface area in 

longitudinal imaging studies of at-risk infants, a phenotype directly linked to ASD severity 

in both infancy and in the preschool period13. Our findings indicate that cortical surface 

area hyper-expansion and macrocephaly in ASD, although manifested in the first year of 

life, may be related to a much earlier dysregulation of the proliferation versus differentiation 

choice in radial glia leading to its expansion during the fetal period.

While this is arguably the largest study modeling development in idiopathic ASD, the 

number of studied individuals (n=26) is still limited. Also, in order to include more 

families in the study we could not investigate sister clones from the same individual, 

precluding an investigation of clone-to-clone variations upon the individual’s phenotype. 

We, however, excluded a major influence of reprogramming method, age at biopsy, and 

other sources of technical variations on our transcriptome results, showing that, in agreement 

with prior studies62, the influence of genetic background on cell differentiation programs is 
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the strongest driver of cell composition and gene expression differences across samples. 

The mentioned limitations warrant further investigation in a larger cohort to confirm 

the neurobiological mechanism(s) linking brain size with idiopathic ASD and its clinical 

severity.

A general alteration in EN and IN neurogenesis has been proposed in studies of penetrant 

ASD genes in organoids or of postmortem cortex from ASD individuals18, 48, 63, 64. Around 

half of the genes differentially expressed in transcriptomic studies of adult postmortem ASD 

brains48, 64 were also differentially expressed in our study, however the direction of change 

was typically unrelated. One interesting point of convergence is that we noted a general 

decrease in cortical area-specific transcripts in organoids (Extended Data Fig. 6B), which 

is consistent with the flattening of transcriptomic differences across cortical regions found 

in the adult cortex of ASD individuals47, 48. However, since cellular context are drastically 

different between early development and adulthood and head circumference needs to be 

also evaluated in adult postmortem data, further meta-analyses are required for a proper 

comparison.

The neurobiological mechanisms identified here also converged to a certain extent with 

rare genetic liability for ASD, since risk genes from recent genomic studies and the 

SFARI database were enriched among DEGs of macrocephalic ASD, and particularly 

so in early neuronal cells. However, while we identified deleterious coding mutations 

involving syndromic ASD genes in our ASD cohort, we excluded that any coding variant 

solely drove the observed transcriptomic alterations in our cohort of ASD probands. 

Thus, we hypothesize that differential gene expression in ASD organoids was mostly 

driven by alterations in multiple common and/or non-coding variants and their downstream 

consequences, highlighting the importance of deciphering genomic regulation in early neural 

development to identify causative variants associated with ASD phenotype(s). We believe 

that our organoid model provides a platform for identifying such variants and linking 

them to developmental neurobiological mechanisms for both idiopathic and syndromic 

ASD. Future studies coupling phenotypical observations with molecular alterations in 

organoids, genomics, postnatal neuroimaging, and clinical phenotypic data in a large cohort 

of both idiopathic and syndromic ASD will be crucial to define how the spectrum of 

neurodevelopmental regulatory cascades observed in organoid studies creates the spectrum 

of autism in children.

Methods:

Patient recruitment and clinical information.

The probands in the current study were recruited from a larger pool of participants evaluated 

through several research projects at the Yale Child Study Center Autism Program, the 

Yale Autism Center of Excellence (ACE) and Yale Social and Affective Neuroscience of 

Autism Program (SANA). Informed consent was obtained from each participant enrolled in 

the study according to the regulations of the Institutional Review Board and Yale Center 

for Clinical Investigation at Yale University. Subjects were reimbursed for travel expenses 

and given a small token for their participation. The participants’ autism symptom severity 

was assessed using the Autism Diagnostic Observation Schedule (ADOS)65, the Social 
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Responsiveness Scale (SRS-2)66 and Autism Diagnostic Interview (ADI-R)67. Verbal and 

nonverbal functioning was assessed with the Mullen Scales of Early Learning (MSEL)68, 

or Differential Ability Scales- Second Edition (DAS-II), or Wechsler Abbreviated Scales 

of Intelligence (WASI-II)69. Adaptive skills were assessed using the Vineland Adaptive 

Behaviors Scale – Second Edition (VABS-II)70. Diagnosis of ASD was assigned by a 

team of expert clinicians based on a review of medical and developmental history and 

comprehensive psychological and psychiatric assessments.

Analysis of germline genome.

We sequenced the whole genome of every individual iPSC line used in this study to 

about 30X coverage and analyzed their genomes for putatively functional SNVs and CNVs 

affecting ASD syndromic genes as defined by the SFARI database71 (https://gene.sfari.org). 

Reads were aligned with BWA and SNVs were called with BWA. The effect of SNVs 

was predicted with Variant Effect Predictor72. Only SNVs with putative HIGH effect were 

considered. CNVs were called with CNVpytor73, 74 using 10 kbp bins. SNVs and CNVs 

frequent in human population (above 0.1% allele frequency) were filtered out. Genomic 

results are reported in Supplementary Table 1.

iPSCs reprogramming and maintenance.

Skin biopsies were collected from the inner side of the upper arm and fibroblast primary 

cultures were selectively expanded as previously described18, 75 using the explant method 

and DMEM high glucose-based media supplemented with 10% fetal bovine serum. iPSC 

lines were generated, either in-house or at the Yale Stem Cell Center Reprogramming 

Core. Three families were reprogrammed by retroviral infection using the four canonical 

transcription factors as previously described18, 75 and all the others by a viral-free episomal 

reprogramming method76.

For family U10999, urine was collected using the midstream clean catch method. Bladder 

epithelial cells from the urine samples were isolated and cultured following published 

protocols77 and iPSC lines from urine cells were derived using previously published 

integration-free methods78. Briefly, four small molecule compounds are added during the 

early stage of reprogramming to enhance the iPSC production efficiency. These four small 

molecules are: 1) CHIR99021, a GSK3b inhibitor; 2) A-83–01, a transforming growth factor 

b (TGF-b)/Activin/Nodal receptor inhibitor, both shown to enhance reprogramming of cells 

transduced with OCT4 and KLF4; 3) Y-27632, a specific inhibitor of the ROCK family 

of protein kinases, which improves the reprogramming efficiency in the presence of PD, 

CHIR99021 and A-83–01; 4) PD0325901, a MEK inhibitor, which has been shown to 

stabilize the iPSC state.

All iPSC lines included in this study have fulfill standard criteria of successful 

reprogramming, which include (i) immunocytochemical expression of pluripotency 

markers (NANOG; SSEA4; TRA1–60); (ii) expression of known hESC/iPSC markers 

(SOX2, NANOG, LIN-28, GDF3, OCT4, DNMT3B) by semi-quantitative RT-PCR; (iii) 

downregulation of exogenous reprograming factors.
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Fibroblast derived and urine derived iPSC lines were grown in mTESR1 media (StemCell 

Technologies) on dishes coated with matrigel (Corning Matrigel Matrix Basement 

Membrane Growth Factor Reduced) and propagated using Dispase (StemCell Technologies).

Fibroblasts, urine epithelial cells and iPSC lines have been deposited to the NIMH Stem Cell 

Resource at Infinity BiologiX LLC.

Forebrain Organoid differentiation.

For the differentiation of iPSC lines into forebrain organoids we developed a high 

throughput organoid protocol. Briefly, this protocol involves culture in suspension, starting 

with 3D iPSC culture, under continuous spinning to favor nutrient penetration into the cell 

aggregates. Organoids were induced into forebrain by dual SMAD and WNT inhibition, 

maintained in FGF/EGF for 7 days and terminally differentiated in terminal differentiation 

(TD) medium (neurobasal medium supplemented with BDNF and GDNF) for up to 100 

days. Non-defined components such as feeder layers, co-culture with other cell types, serum 

or Matrigel were not used.

Undifferentiated iPSC colonies were treated for one hour with 5 μM Y27632 compound 

(Calbiochem), before dissociation with Accutase (Millipore, 1:2 dilution in PBS 1X). A 

total of 4 million dissociated cells were seeded in each well of a 6 well plate in 4 ml 

of mTeRS1 and 5 μM Y27632 compound and cultured on orbital shaker at a speed of 

95 rpm (Fig. S1A). After 2 days in suspension, forebrain neural induction (day 1) of 3D 

iPSC aggregates was started in mTeSR1 medium supplemented with 10μM SB431542, 

1μM LDN193189 and 5μM Y-27632. At day 2 of neural induction, media was changed 

to KSR medium (KSRM) in KO DMEN containing 15% Knockout Serum Replacement 

(KSR) (Gibco), 1:100 L-Glutamine, 1:100 non-essential amino acids (NEAA) (Gibco), 

1:100 Pen/Strep (Gibco), and 55 μM β-Mercaptoethanol (2-ME) and supplemented with 

10μM SB431542, 1μM LDN193189, 2μM XAV939 and 5μM Y-27632. On day 5, neural 

induction medium (NIM) in DMEM/F12 containing 1% N2 supplement (Invitrogen), 2% 

B27 without vitamin A (Invitrogen), 1:100 NEAA, 1:100 Pen/Strep, 0.15% Glucose and 

1:100 Glutamax (Gibco), was added at 25% NIM and 75% KSRM ratio and supplemented 

with 10μM SB431542, 1μM LDN193189. On day 7, media was changed to 50% NIM and 

50% KSRM ratio, supplemented with 10μM SB431542, 1μM LDN193189. From day 9 to 

day 16, 100% NIM was supplemented with FGF2 (10 ng/ml) and EGF (10 ng/ml). Terminal 

differentiation was started at day 17 (TD0) in terminal differentiation medium (TD medium) 

using NEUROBASAL medium supplemented with 1% N2, 2% B27 (without vitamin A), 

15 mM HEPES, 1:100 Glutamax, 1:100 NEAA and 55 μM 2-ME. This medium was 

supplemented with 10 ng/ml BDNF (R&D), 10 ng/ml GDNF (R&D). Half of the medium 

was changed twice a week. Around TD10 organoids were transferred from 2 to 3 wells of a 

6 well plate to a 10 cm dish in 20 ml of TD medium supplemented with BDNF/GDNF and 

the speed of the orbital shaker was decreased to 80 rpm. After terminal differentiation day 

30 (TD30), BDNF and GDNF were removed from the medium, and organoids were kept in 

TD medium without factors.
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Immunostaining and data analysis.

Representative organoids from each preparation were fixed (4% PFA in PBS for 2–4h), 

cryopreserved (sucrose 25%, overnight), embedded in O.C.T. (Sakura) and frozen on 

dry ice before conservation at −80°C. Serial cryosections were obtained (12–16 μm). 

Immunostaining was performed by incubating sections in blocking solution (PBS, 10% 

Donkey Serum, 1% Triton-100, 1h) followed by primary (overnight, 4°C) and secondary 

antibodies (1–2h, Jackson ImmunoResearch or ThermoFisher Scientific) incubation. Slides 

were then mounted (VECTASHIELD, Vector Labs) and imaged on Zeiss microscope with 

an apotome module quipped with a ZEN 3.3 (ZEN pro) software. Antibody list: BCL11B 

(rat, 1:500, Abcam), EOMES (rabbit, 1:1000, Abcam), FOXG1 (rabbit, 1:200, Takara), 

FOXP2 (goat, 1:200, Santa Cruz), GAD1 (mouse, 1:200, Chemicon), HOPX (mouse, 

1:50, Santa Cruz), HuC/D (mouse, 1:200, Invitrogen), KI67 (rabbit, 1:500, Vector Labs), 

OTX2 (goat, 1:200, R&D Systems), PAX6 (mouse, 1:200, BD Bioscience), RELN (mouse, 

1:100, MBL), SOX1 (goat, 1:100, R&D Systems), TBR1 (rabbit, 1:500, Abcam), TLE4 

(rabbit, 1:1000, gift of Stefano Stifani, Montreal Neurological Institute, McGill University, 

Montreal), TTR (sheep, 1:100, Bio-rad), NEUROD2 (rabbit, 1:500, Abcam). Each staining 

was repeated on multiple independent sections across at least 6 independent organoid 

preparation from different individuals from at least 3 different families. For quantification, 

3 macrocephalic ASD families (for NEUROD2 and EOMES quantifications) and 5 

macrocephalic ASD families (for Ki67 quantification) were used for immunocytochemical 

analyses and a minimum of 3 organoids per individual was analyzed. Images were acquired 

randomly, to cover the entire extent of the organoid. Quantification of the average number 

of NEUROD2, EOMES and Ki67 positive cells was performed using Fiji software using 

the BioVoxxel plug-in under the Fiji analysis software platform. The relative amount of 

NEUROD2+, EOMES+ or Ki67+ cells was calculated as a percentage of total DAPI+ cells. 

Statistical analyses were done by unpaired t-test on the control and ASD groups, considering 

all datapoints. Data are presented as box and whisker plots, using the Tukey method in 

GraphPad Prism 9.

scRNA-seq isolation, library prep and sequencing.

Representative organoids (10–100 spheres) were collected, rinsed with PBS and dissociated 

in Accutase (1:2 in PBS) for 10 min (early stages) to up to 30 min (late stages) with 

gentle mechanical dissociation to obtain a single-cell suspension. Cell concentration was 

adjusted (in TD medium) to meet 10X Genomics requirement for capturing 10,000 single 

cells. Single cell isolation and library preparations (10X Chromium System, v3 Chemistry) 

followed by sequencing (HiSeq4000, 250M reads per library) were performed at the Yale 

Center for Genome Analysis (YCGA).

Processing Individual Libraries.

YCGA processed scRNA-seq data from each library using Cell ranger (10X Genomics) 

3.0 and 3.1 (along the course of data generation) and provided fastq files by cell ranger 

mkfastq and output from cellranger count. For each library, the gene-by-cell UMI count 

matrix was imported into R package Seurat v4.079 for further analysis. Genes were excluded 

if expressed in fewer than 30 cells. Cells were excluded if one of the following criteria was 
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met: fewer than 500 genes were expressed, over 10% of reads were mapped to mitochondrial 

genome, UMI count in the cell was beyond 2 standard deviations of the average UMI count 

per cell. Mitochondrial genes and ribosomal protein-coding genes were then removed. Next 

cell-cycle scoring was done following the online vignette (https://satijalab.org/seurat/v3.1/

cell_cycle_vignette.html), which computed G2M and S phase scores. The raw count matrix 

was then normalized by SCTransform with three covariates regressed out—total UMI count 

per library, detected genes per library and difference between the S and G2M phase scores.

Integrating Core Libraries, clustering cells and constructing trajectories.

The filtered count matrices of 72 core libraries were retrieved from respective Seurat 

objects, merged and imported to R package Monocle 380, 81 to create a monocle 

object. Following the online documentation (https://cole-trapnell-lab.github.io/monocle3/

docs/introduction/), the combined dataset was processed including normalization, removal 

of unwanted covariates, i.e., total UMI count per library, detected genes per library and 

difference between G2M and S phase scores, and dimension reduction by UMAP. Cells were 

then clustered using function cluster_cells with resolution of 1e-5 (which was chosen to 

generate a reasonable number of cell clusters for later annotation). Single-cell trajectories 

were constructed using functions learn_graph and order_cells. To determine the starting 

cells to assign pseudotime zero, cell types were predicted using R package Garnett (https://

cole-trapnell-lab.github.io/garnett/docs/)82. The known markers of neurodevelopment listed 

in Supplementary Table 3, T4, and 1,000 cells were randomly sampled from each core 

library to train a classifier. The classifier was then applied to the full dataset to predict the 

cell type for each cell. Based on the predicted cell types, the node on the principal graph that 

contains the most radial glia cells from TD0 samples was assigned the starting point of the 

trajectory.

This trajectory analysis followed by unsupervised clustering identified 43 cell clusters, 

including 37 clusters connected along a central trajectory (Fig. 1A). To ensure reliable 

downstream analyses of gene expression, we excluded 6 clusters that either presented low 

cell number, were disconnected from the central trajectory, or were composed of only few 

libraries (Extended Data Fig. 1B–C). We excluded as well two libraries (i.e., 10536 family at 

TD0) since the proband presented low fractions of annotated cells (Supplementary Table 2, 

T2). The remaining 70 scRNA-seq datasets were used for downstream analyses.

Annotating cell types in core libraries.

Seurat objects of 72 core libraries were merged following the online vignette (https://

satijalab.org/seurat/articles/integration_introduction.html) to create an integrated dataset. 

Briefly, reciprocal PCA was applied to SCTransform normalized data for the dimension 

reduction, and top 3000 genes with variable expression were selected for anchor finding 

and data integration. Cells were assigned to clusters based on Monocle analysis (described 

in the previous section), and then cluster markers were identified by applying FindMarkers 

function with default parameters to SCTransform-corrected data. Clusters were annotated 

by intersecting cluster markers with a curated list of known markers of neurodevelopment 

(T3 in Supplementary Table 3), including markers of cell type and regional identity of the 

forebrain.
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Annotating cell types by reference mapping.

Each additional library (“replicate” and “additional” in Fig. S3C–E, T3–T4 in 

Supplementary Table 2) was processed in Seurat as described, then assigned cluster or 

cell types by transferring information from the integrated core dataset using Seurat functions 

FindTransferAnchors and TransferData (dims = 1:30) as described in the online vignette 

(https://satijalab.org/seurat/articles/integration_mapping.html). The integrated Seurat object 

of 70 core libraries (after excluding two outliers, see Results) was split into two reference 

datasets (cells from TD0 and cells from TD30/TD60) for annotating new datasets from the 

respective stage. This approach was found to produce more sensible cell composition across 

cell types in the query datasets.

Detecting differential gene expression.

To report differential gene expression consistent between ASD families among each cohort, 

differential gene expression was first conducted pairwise and then aggregated into a unique 

DEG result as described below, which was used for interpretation and analysis (referred as 

“DEG” in main text, Fig. 3 and all related figures; reported in Supplementary Table 5).

First, pairwise differentially expressed genes between each pair of samples from the same 

family (ASD son vs control father) were identified in each cell type and at each stage 

(TD0, TD30, TD60) separately. For each test, genes expressed in at least 10% of cells from 

either sample were included and the numbers of cells included were matched between the 

two samples by down-sampling (T1, T2 in Supplementary Table 5). ASD versus control 

differential expression was then evaluated using the R package glmGamPoi83. The merged 

UMI count matrix of all included cells and genes was fit into Gamma-Poisson generalized 

linear model and subject to quasi-likelihood ratio test. Genes were defined as differentially 

expressed in the pair if absolute log2 fold change was above 0.25 (i.e., abs(log2FC) > 0.25) 

and BH-adjusted p-value below 0.01 (i.e. adj_pval < 0.01).

From those pairwise results, we derived a unique set of DEGs for each ASD cohort in 

each cell type and at each TD stage (referred to as “DEG” in figures, tables and text), as 

reported in T3 in Supplementary Table 5. To do so, we first considered genes affected in 

at least 3 families with the same direction of change (i.e. sign of log2FC in the pair). To 

account for conflicting results between families, we then computed an “n.effective” value 

as the difference between the number of supporting families and the number of conflicting 

families (dot size in Fig. 3C–D) (e.g. a gene upregulated in 3 families and downregulated 

in 1 family would have the same “n.effective”=2 as a gene downregulated in 5 families and 

upregulated in 3 families). In addition, “average log2FC” was computed as the mean of all 

pairwise log2FC (excluding cases of infinite values corresponding to pairs where the gene 

is not detected in one sample) and “average adj_pval” was computed as the geometric mean 

of all pairwise adj_pval (after adding a small pseudo value of 1e-323). Then genes reported 

as DEG met the following criteria: n.effective >= 2 ; average log2FC >= 0.1 for upDEG 

or average log2FC<= −0.1 for downDEGs; average adj_pval < 0.05. Finally, DEGs were 

considered high confidence if “n.effective” was at least half of the total tested families or 

standard confidence otherwise.
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Since results from TD30 and TD60 showed a strong overlap (Extended Data Fig. 8), a 

combined TD30/60 analysis was also conducted with the same method to gain additional 

power. For “n.effective”, supporting families were counted only if the direction of change 

was consistent between TD30 and TD60 in cases were the gene was significantly affected at 

both stages.

Similar analysis was done to identify shared DEGs across ASD from both cohorts (Extended 

Data Fig. 9; T4 in Supplementary Table 5) with higher stringency to account for the 

increased number of families evaluated (n=13), including: “n.effective” >=7 (i.e. more 

than half the number of families), supporting families from both cohorts (macrocephalic 

ASD and normocephalic ASD), and requiring that the DEG was not observed in both 

control families DEGs (CtrlFam 7978, 8090, Supplementary Fig. 6). Additionally, for each 

stage, cell type and direction of change the significance of the number of shared DEG 

obtained was tested by permutation analysis: gene names were randomly permuted in each 

pairwise results and DEG analysis was repeated for 100 permutations to retain cases were 

significance was higher than expected by chance (i.e. p-val < 0.01). Pairwise differential 

expression results per family were then plotted in Extended Data Fig. 9.

Enrichment in GO terms or in external datasets.

Each set of DEG separated by stage, cohort, cell type and direction of change was tested for 

term enrichment using the R package anRichment. The background list included all genes 

tested for differential expression for each set. Tested sets included GO and BioSystems 

collections included in the package (the latter including terms from KEGG and Reactome). 

After filtering for FDR < 0.01 and Intersect size (nCommonGenes) >= 3, results are reported 

in Supplementary Table 6. For Extended Data Figure 5, terms with effectiveSetSize < 1500 

genes were filtered for redundancy (removing less significant sets presenting identical lists 

of intersecting genes) and top15 terms meeting Bonferroni-corrected p-value < 0.1 were 

plotted. For cases were no terms met requirement, top3 most significant terms were plotted 

instead.

Enrichment for other selected gene sets (in Fig. 4B, Fig. 3E, Extended Data Fig. 6C, or 

Supplementary Fig.7B,E), were calculated using the R package GeneOverlap. The list of 

genes expressed in each cell type and tested for DEG was used as background for the 

enrichment and FDR-corrected Fisher exact test’s p-value were reported.

Cell count analysis (compositional data analysis).

Cell type counts per library for the 11 cell types were analyzed as compositional data84. 

Counts were divided by library total cell count and normalization was done by centered 

log ratio transformation: CLR(p)= log(p) −mean(log(p), with p: cell type proportion). 

Proportions are inherently susceptible to spurious correlation and CLR-transformation has 

been described to be more robust for regular statistical analyses84, 85. To deal with missing 

cell types in some libraries and allow systematic log-transformation, zero-replacement 

strategy was performed using function cmulRepl from R package zcomposition86.

Euclidean distance between samples was computed in CLR space (i.e. Aitchison distance)84 

and used for hierarchical clustering with ward.D2 method (Fig. 2A). To identify cell types 
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contributing to sample-to-sample variation in cell composition, principal component analysis 

was performed in the CLR space using TD30 and TD60 samples and sample’s coordinates 

(PC1, PC2) and cell types’ rotations values were used to generate the biplot in Fig. 2D. To 

compute an averaged cell composition (Fig. 2C and Supplementary Fig. 3A,D,G,J,L), the 

geometric mean of each cell type proportion across libraries was calculated and resulting 

values were plotted in bar plots summing to one to estimate the composition of an “average” 

sample85.

To estimate the differences in cell type proportions between ASD proband and controls (Fig. 

3D, Extended Data Fig. 2B–C) or for other variables of interest (Supplementary Fig. 3B, E, 

H, K, M), paired t-test using CLR values was computed in each cell type at each stage and 

p-value (R function t.test) and effect size (cohens_d function, package rstatix) were reported. 

Due to low sample size (n=5–8) and the variable nature of proportion, threshold for FDR 

correction of p-value was set at 0.1, with EN-PP decrease (FDR = 0.047) and RG increase 

(FDR = 0.079) in macrocephalic ASD at TD30 meeting significance level. For plotting 

Fig.3D, a random sampling of 1000 cells per library used in each corresponding category 

were plotted in the UMAP space and colored by cell type with the t-test result.

Compositional data analysis was also validated using Bayesian model as an alternative to 

CLR-based statistics through the recently published tool scCODA87. Both cluster level and 

cell type-level counts were imputed to confirm organoid stage and ASD vs. control effect 

in cell composition (Supplementary Fig. 4). For each test, default options were used and 

FDR threshold was set at 0.1. Reference cluster was either set automatically by the software 

or set to the same cluster to generate results with the same reference across comparisons. 

Comparisons were blocked by family and analysis was conducted separately for stages and 

cohorts (model formula indicated in plots). Estimated effect size of the estimate (log2FC) is 

reported.

Correlation analysis to identify neuron-predictor genes (Fig. 2E–F).

Genes expressed in the 6 progenitor cells (i.e., RG-hem, RG-tRG, RG, RG-oRG, RG-LGE 

and MCP) were correlated with the neuronal abundance of each of the 5 neuronal cell 

type (EN-DCP, EN-PP, IN, CP-mixed, IPC/nN) using all TD30 and TD60 libraries (n=48 

from core datasets, excluding TD0 which presented limited amount of neurons). For gene 

expression, SCT-transformed average expression values per sample in each progenitor were 

used (from Seurat). To ensure correct estimation of expression level in each cell type, 

library that presented less than 10 cells were not considered. To avoid genes with low 

or library-specific expression, only genes that had non-zero expression values in at least 

5 libraries and were detected in at least 5% of the cells in 25% of the libraries were 

considered (total genes considered among all progenitors: 11,601). Neuronal abundance was 

defined as the number of cells for each neuron divided by the sum of all neuronal cells 

(e.g., EN-DCP / (EN-DCP + EN-PP + IN + CP-mixed + IPC/nN)). This fraction estimates 

the overproduction of a neuronal fate over all neurons (and not its overall proportion, if 

the denominator was the sum of all cells). After filtering cases with less than 15 samples 

remaining were excluded. For each pair of progenitor gene and neuronal abundance tested, 

spearman’s correlation coefficient and p-value were computed using the R function cor.test 
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(Exp, Ratio, method=“spearman”, exact=F) and reported in Supplementary Table 4. In 

addition to neuronal abundance, correlation was also estimated for neuronal balances. 

Balances were defined as the ratio between the number of cells in two cell types (e.g. 

EN-PP/EN-DCP in Extended Data Fig. 2G, reported in Supplementary Table 4, T2).

Additional comments on this analysis.—The presence in the results of this 

correlation analysis of many important transcription factors known to be associated with 

neurogenesis and neuronal lineage determination (e.g. EMX1, LHX2, DLX2 or PROX1 in 

Fig. 2G) confirmed its validity as an unsupervised method to identify progenitor transcripts 

associated with each neuronal cell type overproduction. Among the genes significantly 

associated, some were also identified as cluster markers of the corresponding neuronal 

cell type (e.g. NEUROD6, indicated in Supplementary Table 4), suggesting that RG start 

expressing transcripts characteristic of the neuronal cell type being produced, as reported 

in previous studies24. The observed degree of correlation also suggests that the number 

of cells detected by scRNA-seq is a correct estimate of cellular composition, carrying 

equivalent biological meaning as gene expression. Indeed, if the capture rate of a neuron was 

affected by technical/stochastic effect during scRNA-seq process, gene expression of known 

patterning TFs in progenitor and quantified neuronal proportions would be decorrelated. 

Although this analysis can only be conducted in presence of many scRNA-seq samples 

to obtain accurate correlation estimate, it is particularly useful in organoid models to 

understand how transcriptomic state of progenitors relate to neurogenesis and neuronal 

diversity and fates.

Comparison with bulk RNA-seq data.

RNA from bulk tissue (Supplementary Fig. 5) was obtained in a partially overlapping set 

of samples (Supplementary Table 2, T1 and T6; including 60 samples with both bulk and 

single cell RNA-seq data). RNA was extracted from more than 20 dissociated organoids 

per sample (Arcturus PicoPure RNA isolation kit, appliedbiosystems, cat. 12204–01) and 

sequenced at 40M reads per sample (YCGA platform for library preparation with rRNA 

depletion, paired-end 100bp reads sequencing on Illumina Hiseq/Novaseq). Reads were 

aligned to GRCh38 using STAR88 and gene counts were estimated using featureCounts89 

and GENCODE annotation V33 (https://www.gencodegenes.org/). Sequencing batch effects 

were removed using ComBat-seq90. Filtering, normalization and differential expression tests 

were done using edgeR91 as recommended91. Normalized log2RPKM from bulk RNA-seq 

data were compared to scRNA-seq data in identical samples (Supplementary Fig. 5A–F). 

Spearman correlation of log2RPKM between pairs from 11 cases of technical replicates of 

organoid preparation were used to assess batch-to-batch reliability in Supplementary Fig. 5G 

(“same individual, same clone, different batch” from 4 different families).
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Extended Data

Extended Data Fig. 1. Characterization of the forebrain organoid preparation (Related to Fig. 1).
A. Outline of the forebrain organoid differentiation protocol with collection points (stages) 

(see Methods for description and abbreviations). This protocol used XAV939 (WNT 

inhibitor), SB431542 (TGFß/SMAD inhibitor), LDN193189 (BMP/SMAD inhibitor) to 

guide differentiation towards forebrain and avoided uncharacterized components such as 

feeder layers, co-cultures with external cell types, serum or matrigel.

B. Full UMAP with all 43 clusters (generated from 72 samples involving 26 independent 

iPSC lines).

C. Proportion of libraries in each cluster. Of note, the last six excluded clusters are generated 

mostly from one library.

D. Contribution of each TD stage to cells in each cluster.

Jourdon et al. Page 20

Nat Neurosci. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E. UMAPs colored by expression levels of additional key genes of neurodevelopment 

(scaled from low (grey) to high (purple)).

F. Correlation of cluster markers between organoids and fetal brain scRNA-seq clusters from 

Bhaduri et al. (2020). The percent of dividing cells in organoids clusters (%Div) is defined 

as the percentage of cells enriched for markers of the S, G2 or M phases of the cell cycle. 

Organoid clusters’ cell type annotation colors same as C.

G. Correlation of cluster markers between organoid clusters and fetal brain clusters from 

Nowakowski et al. (2017). Organoid clusters’ cell type annotation colors same as C.

Extended Data Fig. 2. Cell composition analysis reveals relationships between cell types (Related 
to Fig. 2).
A. Correlation by stage between MCP and IN cell proportions (normalized as centered log 

ratios, CLR) showing an anticorrelation between the abundance of the two fates. Linear 
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regression line and its standard error band is plotted, and Spearman correlation coefficient 

and p-value (two-sided) are indicated in each plot.

B. Correlation by stage between EN-DCP and EN-PP cell proportions (CLR-normalized) 

showing an anticorrelation between the abundance of the two neurons at TD30/60. (plotted 

as in A)

C. Boxplot showing the distribution per organoid stages (i.e., TD0, TD30, TD60) of 

pairwise distance in cell type composition from scRNA-seq analyses between any 2 samples 

(“unrelated”, in blue) and between samples from the same family differentiated together 

(“family pairs”, in red). (Boxplot: center line= median, box limits= upper and lower 

quartiles, whiskers= 1.5x interquartile range; dots= all values). P-value of a Wilcoxon test 

evaluating the differences between the two means is indicated above.

D. Bar plots to compare cell type compositions in each pair of core and replicated scRNA-

seq datasets.

E. Dot plots to display Pearson’s correlations of per-cell-type expression between each pair 

of core and replicate dataset. Commonly detected genes between each pair are used for 

computing the correlation coefficient in each cell type (color coded as in C).

F. Heatmaps to display Pearson’s correlations of per-cell-type expression between each 

10789–01 TD30 dataset (core and replicate) and all core datasets at TD30.

G. Top 30 RG genes associated in both directions with the balances of EN-PP/EN-DCP cells 

(top) and IN/EN-DCP (bottom), as shown by the absolute Spearman’s correlation coefficient 

(y axis, FDR < 0.05) between the expression of the indicated gene in RG and the cell ratio 

(EN-PP/EN-DCP) using data from all samples (n=48). TFs are in bold, SFARI genes are 

flanked by asterisks and members of signaling pathways are in italic. The complete set of 

data are shown in Table S4.
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Extended Data Fig. 3. Differential cell composition analysis between paired ASD and controls 
(Related to Fig. 2 and 3).
A. Bar plots of cell type composition for all ASD family pairs, including the 10 core families 

and the 3 additional families i03, S1123 and 11251 (Supplementary Table 2, T3 “additional” 

dataset). To integrate new samples with the core analysis presented in main Fig. 1 and 2, 

cell type identification for the additional scRNA-seq libraries were obtained using “label 

transfer” function from Seurat package.

B. Dot plots showing effect size (Cohen’s d, x axis) and p-value (y axis) of a two-sided 

paired t-test evaluating differences in normalized cell type proportions (centered log ratio) 

between ASD probands and controls, separated by cohorts (macro: n=8 pairs; normo: n=5 

pairs) and stages. Grey dashed line=pval<0.1, green dashed line=pval<0.05; FDR < 0.1 are 

indicated by a star.

The strongest cell composition changes can be observed at TD30 in Macrocephalic ASD 

with an increase of RG and EN-DCP, balanced by a decrease of EN-PP and, with less 
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significance, a decrease in IN. While they do not meet statistical significance, trends are 

almost reverted in normo-ASD, with a decreased EN-DCP at TD60 (p-val=0.084), and a 

corresponding increase in CP-mixed (pval=0.078), MCP (pval>0.1) and EN-PP (pval>0.1). 

Compositional data analysis was also verified using a second approach, Bayesian modeling, 

confirming the significance of the opposite EN-DCP imbalance observed in macro and 

normo-ASD (Supplementary Fig. 4)

C. UMAP plot colored by the effect size of the difference in cell composition between ASD 

probands and controls separated by cohort and stage. Cells were subsampled to 2000 per 

library and colored by effect size, as reported in B. In this representation, the change in cell 

proportion is put in perspective with the actual number of cells present in each cell types 

(i.e., large changes in small cell types have less influence on the final composition).

D. Line plots showing pairwise differences between ASD and controls in cell distribution 

along pseudotime axis (x-axis) for the EN-DCP and EN-PP neuronal cell types (refer to 

Fig. 1A for pseudotime trajectory plot). Only pairs with more than 50 cells belonging to the 

cell type in both individuals are plotted. Pseudotime dimension in scRNA-seq reflects the 

progression of cells along differentiation/maturation processes. Although some differences 

can be noted, differences are not consistent across organoid stage or families in either cell 

type, suggesting the observed differences in B-C are not explained by major differences in 

maturation.

E. Overall proportion of cells in the S, G2 or M phase of the cell cycle (phase classification 

based on gene expression using the Seurat pipeline, Methods) separated by stage, cohorts 

and ASD diagnosis colored by family.

F. Heatmaps of differences in division scores. Division score in each cell type was calculated 

as indicated for each sample and the difference between proband and their respective control 

is reported for each stage and cell type combination. Higher proportion of cells actively in 

the cell cycle (i.e., S, G2 or M phase base on cell cycle gene expression) in the proband 

compared to the control are indicated by red portion of the gradient, while lower proportion 

are on the blue portion. Neuronal cells (i.e., EN-DCP, EN-PP, IN, CP-mixed) were majorly 

in G1 phase (reflecting a postmitotic state) and therefore not compared for this analysis. 

Scale was saturated at 2.5 in both direction and cases where the difference could not be 

estimated were removed (blank spaces).

Note that, both over all cells and in RG cells, proliferation is up in macrocephalic ASD 

across 7 out of 8 families at TD0 and TD30 with different degrees. To a lesser extent, 

there is also an increase across all cells in the 4 normocephalic ASD at TD0. Altogether, 

this suggests changes in cell division could underlie gene expression differences outlined in 

Main Fig.3.
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Extended Data Fig. 4. Top 15 high confidence up/down DEGs in volcano plots for both cohorts 
and stages. (Related to Fig. 3)
A–D Volcano plots for macrocephalic ASD DEGs at TD0 (A) and TD30/60 (C) and for 

normocephalic DEGs at TD0 (B) and TD30/60 (D). Top 15 (based on average log2-fold 

change) high confidence DEGs in each direction are indicated. Among them, known 

markers of neurodevelopment are in bold and SFARI genes are in green. Full DEG results 

are in Supplementary Table 5. The geometric mean of BH-adjusted p-values of the DEG 

tests (two-sided quasi-likelihood ratio test for each ASD-Ctrl pairs, see Methods) is plotted 

in y-axis (in −log10 scale).
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Extended Data Fig. 5. GO term enrichment of ASD DEG sets (related to Fig. 3).
A–D. Enrichment of DEG in GO terms or pathways from KEGG (K) or Reactome (R) 

for macrocephalic DEGs at TD0 (A) and at TD30/60 (B) and for normocephalic DEGs at 

TD0 (C) and TD30/60 (D). DEG sets were separated by direction of change (upregulated/

downregulated) and cell types. Dot size indicates the number of DEGs within each GO term/

pathway. Color indicates FDR-corrected p-value for the enrichment (one sided Fisher exact 

test). Annotations terms from enrichment results were first filtered out based on FDR < 0.01, 

nCommonGenes >=3 and effectiveSetSize < 1500. Top 15 terms ranked by significance 

were selected to be plotted for each cell type (Methods). To ease consultation, grey boxes 

were added to group terms similar pattern of enrichment across the cell types. See also 

Supplementary Table 6.
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Extended Data Fig. 6: Intersection of ASD DEGs with cluster markers of EN and fetal brain 
derived cortical area-specific markers (Bhaduri et al 2021) (related to Fig. 3).
A. Dot plot showing log2FC differential expression results in the IPC/nN cell type (left) for 

genes identified as specific cluster markers of EN-PP and EN-DCP clusters as indicated by 

dots on the right side (clusters are referred by numbers as shown in the initial clustering in 

Main Fig. 1A; pct.exp= percentage of cells expressing the gene in the corresponding cluster. 

Specific cluster markers were defined as cluster markers with average log-fold change > 

0.25, BH adjusted-pvalue < 0.01 (Wilcoxon rank sum test) and pct.1/pct.2 > 1.2 in no more 

than 2 clusters; see full cluster marker list in Supplementary Table 3). The panel show that 

IPC/nN cells are showing a differential expression in cluster markers compatible with a 

shift in fate preference in ASD probands (increase in EN-DCP in macro and in EN-PP in 

normo-ASD).

B. Dot plots showing enrichment of cortical area-specific markers in upregulated (upDEG) 

or downregulated (downDEG) ASD DEGs at TD30/60 separated by cohort and cell types. 
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Cortical area-specific markers from fetal brain major cell type were selected and matched 

to corresponding organoid cell type (“RG” for RG-related cell type, “IPC” for IPC/nN and 

“Neuron” for neuronal cell types, as reported in Table S8 of Bhaduri et al for “mid” fetal 

stage).

Overall the there is a stronger downregulation of area-specific genes at TD30/TD60 in both 

cohorts. However, upregulated DEGs in macro-ASD are notably more enriched in genes 

specific to V1 area, which, put together with an enrichment of genes marking PFC in 

downDEGs (notably in RG) could point to a differential area-specification in macro-ASD.

C. To further investigate the upregulation of V1 area markers, the most significant areal 

markers differentiating PFC and V1 cortical areas in fetal brain (y axis: “PFC-enriched”, or 

“V1-enriched”) were selected (main figure in Bhaduri et al.) and ASD DEG results from our 

study were plotted as a differential expression heatmap (as in main Fig. 3C).

When considering this limited list of important genes, both important V1-enriched and 

PFC-enriched genes are found upregulated (e.g. LHX2/TENM4/BCL11A for V1 and 

NEUROG1/2/HOPX/PAX6 for PFC) and downregulated (NR2F1/WNT7B/NPY for V1 or 

FOS/CTNNB1 for PFC), which suggest that area misspecification alone do not account for 

the full phenotype. Note that most of those cortical area marker genes have several other 

canonical functions in neurodevelopment (see for instance alternative annotations in known 
marker list in Supplementary Table 3 in our study).
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Extended Data Fig. 7: Immunocytochemistry for NEUROD2, EOMES, SOX1 and Ki67 in 
macrocephalic ASD derived-organoids. (Related to Fig. 3)
(A-B). Representative images of NEUROD2 immunostainings showing 5 different organoids 

of the macrocephalic ASD family 07 (A) and a second macrocephalic ASD family 10530 

(B).

(C-D). Representative images of EOMES immunostainings showing 3 different organoids of 

the macrocephalic ASD family 07 (C) and 3 different organoids of a second macrocephalic 

ASD family S8270 (D). Scale Bar: 100 μm. (E). Representative images of Ki67 (red) and 

SOX1 (blue) proliferating cells, showing 2 different organoids of the macrocephalic ASD 

family 10789. Scale bar: 100 μm.

(F) Box and whisker plots (including minima, maxima and median values) showing 

immunocytochemical quantification of Ki67 positive cells in organoids of the 5 

macrocephalic ASD family pairs core dataset (S8270, 07, 10789, S9230 and 10530); n=10 

iPSC lines derived from biologically independent subjects. Tukey method was used to plot 
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boxes (25, 50, and 75th percentiles) and whiskers (minima, maxima); mean value for Ctrl 

and ASD groups is shown as “+”; median value for Ctrl and ASD groups is shown as center 

line; **: p-value < 0.01, unpaired two-sided t-test (p=0.0083).

Extended Data Fig. 8: Comparison of ASD DEGs obtained from TD30 and from TD60 (Related 
to Fig. 3).
A,B. Heatmap of differential expression results of known markers of neurodevelopment (as 

in Fig. 3C of the main manuscript) separated by stage (TD30 and TD60) for macro-ASD 

DEG (A) and normo-ASD DEGs (B). As in the main figure, n.effective represent the 

number of concordant family pairs minus the number of discordant family (the direction 

of reference being the direction observed in a majority of pairs). Dots are colored by the 

average log2FC (all pairs included).

C. Bar plot of DEG counts colored by overlap status between ASD DEG results from TD30 

and TD60 for both cohorts. “specific”=DEG only at one stage, “concordance”=DEG at both 
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stage with same direction of change, “discordance”=DEG at both stage but with opposite 

direction of change. There is a minority of discordant DEGs across the 2 time point for 

either cohort, suggesting stability in DEG results across time.

D,E. Heatmap of differential expression results for discordant cases between TD30 and 

TD60 in ASD DEG results. Discordant cases (boxed) were selected for each cohort and 

results for all cell types are plotted for reference. Known markers of neurodevelopment are 

indicated in bold (Supplementary Table 3). Except for C1orf61, most discordant genes are 

limited to a unique cell type and DEGs is in the lower range of FC, and with the exception of 

FEZF2, do not include lineage specific genes for EN and IN.

Full DEG results for TD30 and TD60 separated is included in Supplementary Table 5.

Extended Data Fig. 9: Shared DEGs between all ASD proband across both cohorts (Related to 
Fig. 3).
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A. Bar plots showing number of shared ASD DEGs by stage and cell type. “* p-val < 0.01” 

indicates if the obtained number of shared DEGs was significant by permutation test (i.e., 

value above maximum number of shared DEGs observed across n=100 permutations of gene 

names in paired DEG results, Methods).

B–D. Heatmap of pairwise ASD vs Control log2FC for shared ASD DEGs at TD0 (B), 

TD30 (C) and TD60 (D) separated by cell type. Cell types selected have a significant 

number of shared DEG by permutation analysis (A). All shown values meet FDR < 0.01. 

SFARI genes are indicated in green, known markers of neurodevelopment are underlined 

and TF in bold (no TF were found in those lists). Genes involved in cell cycle (GO:0007049) 

are indicated in brown.

E, F. Protein-protein interaction networks (STRING analysis, edge=confidence of the 

interaction) for the union of downDEG (E) and upDEG (F) from B-D, with selected 

enriched term indicated by node color (FDR from STRING indicated in color legend). Note 

the limited annotation for downDEGs (see also T5 in Supplementary Table 6).
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Extended Data Fig. 10. Schematic of the potential mechanisms driving cortical plate alteration in 
ASD during early neurogenesis in organoids.
Top: differentiation of cortical radial glial cells into preplate excitatory neurons, with 

later generation of excitatory neurons that will form the 6-layered neocortex, splitting the 

preplate into marginal zone (layer 1) and subplate. Middle and lower panels: alterations in 

excitatory neurogenesis in ASD. In macrocephalic ASD, radial glial cells re-enter the cell 

cycle rather than differentiating into preplate, expanding the surface of the future cortical 

plate, and eventually give rise to an increased number of excitatory neurons of the cortical 

plate. In normocephalic ASD, radial glial cells escape the cell cycle early to generate 

an increased number of preplate excitatory neurons, resulting in a relative depletion of 

progenitors for cortical plate of excitatory neurons. Abbreviation: MZ: marginal zone, SP: 

subplate, SVZ: subventricular zone, PP: preplate, VZ: ventricular zone, CP: cortical plate.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reproducing early forebrain differentiation in organoids.
(A) UMAP plots colored by the 37 clusters, pseudotime trajectory (grey lines) with origin 

in cluster 34 (arrowhead), and main annotated cell types (core dataset: 72 samples from 

26 individuals, see also Extended Data Fig. 1 & Supplementary Fig. 2). Color code and 

abbreviations for cell types are used in all figures. (B-D) Heatmaps of gene expression 

level for selected known markers of neural cell types (B), neuronal subpopulations (C) 

and regional markers of forebrain (D) across clusters. Expression values are normalized 

per gene and displayed only if at least 5% of the cluster’s cells expressed the gene. (E) 
UMAPs colored by expression level of genes supporting cell type annotations (low=grey 

to high=purple). (F) Representative immunostaining of sliced organoids for forebrain 

(PAX6, FOXG1), progenitor (PAX6, TLE4, HOPX, SOX1), neuronal (HuC/D), EN (TBR1, 

BCL11B, FOXP2, TLE4), IPC (EOMES), IN (GAD1) and MCP (TTR, OTX2) molecular 

markers at TD30. Bottom left and center images were generated from adjacent sections 
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of the same organoid showing co-localization of TTR/OTX2 in medial choroid plexus-like 

structure (Ch, dashed line) distinct from FOXG1+/EOMES+/HuC/D+ cortical plate-like 

structure, including ventricular zone structures (vz). Scale Bar: 100 μm. Abbreviations: 

RG: radial glia, with RG-hem, RG-oRG, RG-tRG, RG-LGE denoting hem, outer, truncated 

and lateral ganglionic eminence RG, respectively; IPC: intermediate progenitors cells; EN: 

excitatory neurons, nN: newborn neurons, EN-PP: EN of the preplate; EN-DCP: EN of the 

dorsal cortical plate; CP-mixed: cortical plate mixed neuronal cells ; IN: inhibitory neurons; 

MCP: medial cortical plate ; Cell Div.: cell division ; Epend.: Ependymal cells; choroid 

pl./Ch: choroid plexus.
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Figure 2. Organoid cell composition and its relationship with radial glia’s gene expression.
(A) Hierarchical clustering of samples based on cell type composition, annotated with stage, 

ASD diagnosis and family cohort with the corresponding cell type proportions shown as 

bar plots. (B) UMAP plots colored by cell types separated by stage of collection. (C) Bar 

plots of the average proportions of cell types by stage. (D) Principal component biplot of 

cell proportions for TD30 and TD60 samples with contribution to each PC shown as vector 

colored by cell type (See also Extended Data Fig. 2A,B). (E) Scaled average expression 

level in RG cells of 3 forebrain TFs (dot color gradient) in relation to EN-DCP and IN 

CLR-normalized cell proportions (x and y axis, respectively) at TD30/TD60. Each dot 

represents one sample where the gene is detected. (F) Outline of the analysis linking RG 

gene expression to neuronal cell abundance by detecting gene expression in progenitors 

that correlates with the proportions of a neuronal subtype in TD30/60 samples (result in 

Supplementary Table 4). (G) Top 40 “neuron predictor genes” whose expression in RG 
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correlates positively with the abundance of the 3 main neuronal subtypes in organoids (FDR 

< 0.05). TFs are in bold, members of signaling pathways are in italic and SFARI genes are in 

green (See also Extended Data Fig. 2G).
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Figure 3. Differential gene expression between ASD and controls organoids points to opposite 
fate alterations in each head-size cohort.
(A) Counts of DEGs between ASD and controls per cell type in the macrocephalic cohort 

(“macro DEG”) and normocephalic cohort (“normo DEG”). Confidence level indicated by 

saturation level (see Methods, Supplementary Table 5, Extended Data Fig. 4). Number 

of ASD-control pairs evaluated in each cell type is indicated below the bar (total of 8 

macrocephalic and 5 normocephalic pairs). (B) Intersection between macro ASD and normo 

ASD high confidence DEG. (C-D) Heatmaps of average log fold change for DEGs that 

are known markers of neurodevelopment (Supplementary Table 3) in DEGs by selected cell 

types, stage and cohort. “n.effective” (dot size) is defined as the difference between number 

of concordant and discordant pairs (see Methods; blue=decreased in ASD, red=increased 

in ASD). (E) UMAP plots colored by the effect size of the difference in normalized cell 

proportion between probands and controls (paired t-test, *=FDR < 0.1) (see also Extended 

Data Fig. 3B,D). These differences were confirmed by Bayesian model-based analyses 
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(Supplementary Fig. 4). (F) Enrichment of neuron-predictor genes (defined in Fig. 2F,G) 

in DEGs for each progenitor cell types (x axis) (FDR of Fisher’s exact test, y axis). 

Dashed grey line: FDR=0.01. (G) Box plots showing immunocytochemical quantification 

of NEUROD2 (top) and EOMES (bottom) in organoids of n=3 macrocephalic ASD family 

pairs (S8270, 07 and 10530). The Tukey method was used to plot boxes (25, 50 and 

75th percentiles), whiskers (minima, maxima) and outliers (dots: value > 1.5 interquartile 

range from 25th or 75th percentiles); mean value shown as “+”. P-values by unpaired two-

sided t-test (NEUROD2=0.0055; EOMES<0.0001). (H,I) Representative images of organoid 

sections at TD30 immunostained for NEUROD2+ IPC, SOX1+ RG progenitors, HuC/D+ 

neurons (H) and PAX6+ forebrain RG , EOMES+ IPC and BCL11B+ EN (I). White boxes 

= locations of zoomed-in images (bottom panels in H); Dashed line = section border; scale 

bar= 100 μm (See also Extended Data Fig. 7).
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Figure 4. ASD risk genes identified from rare variants studies and SFARI dataset are enriched in 
macro DEGs.
(A) Euler Diagrams showing how many of the “ASD risk genes” identified in 4 large 

scale genomic studies are presents in macro and normo ASD DEGs (union of all DEGs 

across organoids stages and cell types), with similar diagram for SFARI genes (subset of 

SFARI genes with score=1 indicated). Note that Wilfert et al only reports genes absent 

from SFARI database at time of publication. (B) Dot plot of enrichment results between 

ASD risk genes, SFARI genes or their union (“All”) with ASD DEGs from our study. 

Enrichment was calculated for the union of DEGs across cell types (“all cells”) and for 

each cell type DEGs separately. Dot size is number of genes in intersection. Color gradient 

is FDR-corrected p-value (one-sided Fisher’s exact test; “ns” if FDR >= 0.05) (C) Dot 

plot heatmap showing average fold change for “ASD risk genes” in macro or normo 

DEGs in our study. “n.effective” (dot size) indicates the difference between the number 

of concordant and discordant families for the tested change in expression (blue=decreased in 

ASD, red=increased in ASD). Genes plotted are high confidence DEG with n.effective > 2 

in at least one cell type (TF in bold, SFARI genes in green).
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