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Abstract: Ethnomedicinal plants are important sources of drug candidates, and many of these plants,
especially in the Western Ghats, are underexplored. Humboldtia, a genus within the Fabaceae family,
thrives in the biodiversity of the Western Ghats, Kerala, India, and holds significant ethnobotanical
importance. However, many Humboldtia species remain understudied in terms of their biological
efficacy, while some lack scientific validation for their traditional uses. However, Humboldtia sanjappae,
an underexplored plant, was investigated for the phytochemical composition of the plant, and
its antioxidant, enzyme-inhibitory, anti-inflammatory, and antibacterial activities were assessed.
The LC-MS analysis indicated the presence of several bioactive substances, such as Naringenin,
Luteolin, and Pomiferin. The results revealed that the ethanol extract of H. sanjappae exhibited
significant in vitro DPPH scavenging activity (6.53 ± 1.49 µg/mL). Additionally, it demonstrated
noteworthy FRAP (Ferric Reducing Antioxidant Power) activity (8.46 ± 1.38 µg/mL). Moreover,
the ethanol extract of H. sanjappae exhibited notable efficacy in inhibiting the activities of α-amylase
(47.60 ± 0.19µg/mL) and β-glucosidase (32.09 ± 0.54 µg/mL). The pre-treatment with the extract
decreased the LPS-stimulated release of cytokines in the Raw 264.7 macrophages, demonstrating the
anti-inflammatory potential. Further, the antibacterial properties were also evident in both Gram-
positive and Gram-negative bacteria. The observed high zone of inhibition in the disc diffusion
assay and MIC values were also promising. H. sanjappae displays significant anti-inflammatory,
antioxidant, antidiabetic, and antibacterial properties, likely attributable to its rich composition of
various biological compounds such as Naringenin, Luteolin, Epicatechin, Maritemin, and Pomiferin.
Serving as a promising reservoir of these beneficial molecules, the potential of H. sanjappae as a
valuable source for bioactive ingredients within the realms of nutraceutical and pharmaceutical
industries is underscored, showcasing its potential for diverse applications.

Keywords: Humboldtia sanjappae; LC-MS analysis; radical scavenging; anti-inflammatory activity;
cytokine release

1. Introduction

Humans have always battled with various infections. In addition to these, recent decades
have witnessed a significant increase in the occurrence of various non-communicable dis-
eases. These diseases have been associated with increased mortality globally. The changes
in lifestyle comprising dietary changes and reduced physical activity have resulted in a
sudden increase in the number of patients. The role of oxidative stress and inflammation is
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impeccable in the onset of these diseases. Oxidative stress, the imbalance between the gener-
ation of reactive molecules and its scavenging, plays significant roles in non-communicable
diseases [1]. Together with this, numerous studies have established that inflammation has
a role in the progression of different diseases. The link between inflammatory response
and the onset of different cancers such as ovarian cancer and pancreatic cancer has been
studied well [2,3]. Recent studies suggest that neuroinflammation in Alzheimer’s will
escalate the disease progression Recently, studies on Gynostemma pentaphyllum (Thunb.)
Makino demonstrated a protective effect against the inflammation [4,5]. New therapies
indicate that the anti-inflammatory treatments associated with cardiovascular disease are a
promising strategy to bring down the succession of the disease [6]. Inflammatory processes
in the host defense system should be highly regulated, and the loss of control is problem-
atic. So, the inflammatory molecules have become the primary target for the prevention
of various diseases, in which the main signaling pathways such as the nuclear factor-κB
(NF-κB) signaling pathway, Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling
pathway might be brought under control to prevent the diseases [7–9]; the JAK/STAT is
focused on more because this pathway is associated with the pathogenesis of different
inflammatory diseases such as Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease
(IBD) [10,11]. Even though inflammation is an evolutionarily conserved mechanism for the
organism’s survival [12], it is essential to control the prolonged release of anti-inflammatory
mediators to prevent the development of various diseases [13]. Different natural products
have recently been investigated and have given satisfactory results in this respect [14,15].
Excess inflammation in the body will lead to the development of Reactive Oxygen Species
(ROS); if the concentration of the same exceeds a limit, the body will not be able to neutral-
ize the same [16]. Due to this reason, pharmaceutical and food industries have considerably
used natural products with antioxidant capabilities, and herbal products that promote
health have also become highly popular in recent years [17,18].

It has been discovered that several plant medicines have a variety of pharmacological
properties, including antioxidant, anti-inflammatory, anticancer, neuroprotective, and
hypolipidemic properties [8,19,20]. These activities are attributed to the non-nutritive
chemicals present in the plants [10]. Findings from studies conducted in mice suggest that
the leaves of Hemigraphis alternata exhibit anti-inflammatory, anti-nociceptive, and anti-
diarrheal activities [21]. These kinds of phytochemicals are reported in several plant families
such as Lamiaceae, Zingiberaceae, Malvaceae, Acanthaceae, and Apocyanacea [22,23].
Fabaceae is one such family with an abundance of different phytochemicals which are good
in curing various diseases [24].

The genus Humboldtia belongs to the family Fabaceae. The plants of the particu-
lar genus are well known for their traditional uses and pharmacological properties [25].
Research has been conducted on certain species of Humboldtia, revealing their rich phyto-
chemical composition. These plants have been found to contain valuable phytochemicals,
including phenols, flavonoids, saponins, tannins, terpenoids, cardiac glycosides, apigenin,
steroids, phlobatannins, and more [26–28]. In the realm of traditional medicine, the bark
of Humboldtia species held curative significance, being employed to address conditions
such as biliousness, leprosy, ulcers, and epilepsy and acting as an anticonvulsant [29]. The
remediation of biliousness, impurities in the blood, ulcers, and epilepsy all involved the
preparation of a decoction from the bark powder [30].

Humboldtia brunonis Wall, Humboldtia unijuga Bedd., and Humboldtia vahliana Wight are
well known for their pharmacological efficiency and their antioxidant, anti-inflammatory,
anticancer, antimicrobial, and anti-depressant effects [28,29,31–33]. H. brunonis fulfilled
roles as a styptic, demulcent, anthelmintic, ulcer remedy, stomachic, astringent, and treat-
ment for menstrual and urinary issues [34]. Furthermore, the local populations residing
in Karnataka’s Shiradi and Bisle Ghats harnessed the leaves and bark of H. brunonis for
arthritis and diabetes treatments, a practice detailed by Prasad and Kumar [26]. It was
documented that the H. brunonis bark and leaves were utilized for addressing wounds,
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menstruation disorders, and overgrowth issues [35]. Humboldtia unijuga, referred to as
‘palakan’ by the Kani tribes in Agasthyamala, was employed to treat ailments such as
headaches, chickenpox, and snake bites [36]. It has been discovered that the plant possesses
Erythrodiol-3-acetate and 2,4-di-tert-butylphenol, which have been demonstrated to exhibit
anti-inflammatory and anticancer properties [25].

The plant species Humboldtia sanjappae, belonging to the Fabaceae family, and its
related species exhibit a diverse range of pharmacological properties [28,29,31–33]. How-
ever, the phytochemical constituents and pharmacological effects of this plant remain
largely unexplored. Currently, there are no existing reports on the antioxidant and anti-
inflammatory activities of this plant, and data regarding its phytochemical composition
are also lacking. Consequently, this study represents a pioneering effort to investigate the
phytochemical profile of the plant and evaluate its potential antioxidant, enzyme-inhibitory,
anti-inflammatory, and antibacterial properties. To identify the bioactive phytochemicals,
LC-MS analysis is employed as a key analytical technique.

2. Results and Discussion
2.1. Quantitative and Qualitative Estimation of Phytochemicals in H. sanjappae

The H. sanjappae extract was analyzed using LC-MS, which indicated the presence
of flavonoids, including Naringenin, Luteolin, and Pomiferin, as well as phenols such as
Epicatechin and Maritemin (Figure 1, Table 1). Flavonoids and phenolic substances not
only have antioxidant properties, but they also work well as anti-inflammatory agents [37].
Various studies provide support for the immune-modulating effects of polyphenols and
flavonoids. Seed polyphenols extracted from Nigella sativa L. were evaluated for their
analgesic and anti-inflammatory properties. The study findings demonstrated that these
polyphenols effectively reduced paw edema induced by carrageenan [38]. Concentrated
extract derived from Dendrobium loddigesii Rolfe, rich in polyphenols, was administered
to treat diabetic mice. The outcomes indicated that this extract exhibited the capability to
lower blood glucose levels, reduce body weight, decrease levels of low-density lipoprotein
cholesterol, and elevate insulin levels within the mice [39]. Flavonoids are part of the cate-
gory of polyphenolic natural compounds, encompassing over 4000 identified variations.
The advantageous biological effects of flavonoids are unquestionably intertwined with
their structural composition and properties, rendering them prime contenders for pharma-
ceutical development. Numerous inflammatory molecules such as TNF-α, IL-1, IL-6, IL-17,
and IFN-γ, released via the activation of various signaling pathways, primarily the NF-κB
pathway, have been demonstrated to be inhibited upon administration of flavonoid [40].
Scientists detected that supplementation of Epicatechin potentially contributed to reducing
inflammation and enhancing insulin sensitivity in visceral adipose tissue of high-fat fed
mice [41]. The presence of phytochemicals such as Epicatechin in the plant may be respon-
sible for its observed antidiabetic activity. However, additional experiments and studies
are necessary to validate this hypothesis and confirm the specific compounds and mecha-
nisms involved in the plant’s potential benefits for diabetes management. Certainly, the
antioxidant properties of the extract can play a crucial role in managing oxidative stress in
individuals with diabetes. As diabetes can cause substantial cellular damage, including in
the brain, combating oxidative stress with antioxidant compounds becomes important [42].
By reducing oxidative stress, the extract’s antioxidant properties may help protect cells,
mitigate damage, and contribute to improved overall health in diabetic patients.
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Table 1. LC−MS analysis and chemical composition of H. sanjappae. 
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2 3.773 579.15 579.15 Procyanidin B7 

579.14, 
443.15, 
383.12, 
227.17 

578.14 C30H26O12 
 

3 4.166 289.07 289.07 (−)−Epicatechin 
289.07, 
226.07 

290.08 C15H14O6 
 

4 4.633 513.14 513.14 2″,6″−Di-O-acetylononin 
513.14, 
289.07 

514.15 C26H26O11 
 

5 5.908 494.24 494.24 Ryanodine 
494.23, 
189.07 

493.23 C25H35NO9 
 

6 5.919 465.16 465.16 Pomiferin 
421.16, 
213.07 

420.16 C25H24O6 

 

7 6.312 549.22 549.22 Cymorcin diglucoside 
431.10, 
253.03 

490.21 C22H34O12 
 

8 8.763 287.05 287.06 Maritimetin 
287.05, 
283.15, 
267.15 

286.05 C15H10O6 
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Several investigators have noted natural substances’ anti-inflammatory properties,
including multiple preclinical experiments [43–46]. As a result, we infer that the antioxidant
and anti-inflammatory properties exhibited by the ethanol extract of H. sanjappae must be
due to the presence of various phytochemical components such as polyphenols, flavonoids,
isocoumarins, etc., and also that these many different phytochemicals in plants offer a
valuable source of antimicrobial compounds with immense therapeutic potential [47].
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Antibiotic-resistant bacteria have emerged as a significant global health concern [48,49].
Plants have long been renowned for their antibacterial powers as nature’s medicine [50].
Polyphenols and essential oils, among other bioactive substances, have powerful antibacte-
rial properties [30,51–53]. Adopting plant phenomena might open the way for innovative
and long-lasting antibacterial treatments because traditional antibiotics are becoming less
effective, leading to a pressing need for the development of new and effective antimicrobial
agents. In this context, the rich diversity of plant species provides a vast array of bioac-
tive compounds that can be explored for their antimicrobial properties. Polyphenols and
flavonoids possess well-documented antimicrobial properties [54,55], exhibiting inhibitory
effects against a broad spectrum of bacteria [55,56].

Our research has supplied substantiating proof of the elevated levels of these com-
pounds in the ethanol extract of H. sanjappae. Specifically, the total phenolic content
measured at 378.77 ± 6.62 µg equivalent per milligram and the total flavonoid content
recorded at 204.76 ± 6.10 µg equivalent per milligram both emphasize the concentration
within the extract (Table 2). Given its rich content of polyphenols and flavonoids, the extract
from H. sanjappae shows promise as a potential source for the development of novel antibi-
otics. Considering its antimicrobial potential, the polyphenol- and flavonoid-rich extract of
H. sanjappae warrants further exploration in the search for new antibiotic compounds.

Table 2. The total polyphenol and flavonoid contents of H. sanjappae ethanol extract.

Assay µg Equivalent/mg of Extract

Total phenolic content 378.77 ± 6.62
Total flavonoid content 204.76 ± 6.10

2.2. In Vitro Antioxidant Activities of H. sanjappae Extract

Species of the Fabaceae family consist of phytochemicals responsible for the plant’s
antioxidant potential [57]. The different genera of the family are established as having an-
tioxidant potential [58]. In vivo studies of Tamarindus, a related genus of Humbodtia, showed
that it exhibits potent antioxidant activity [59], and the antioxidant potential of species within
the genus Humboldtia has been previously explored, and their effectiveness has been re-
ported [27,31]. The IC50 value of H. sanjappae bark extract in the anti-DPPH radical scavenging
assay was shown to be 6.53 ± 1.49 µg/mL. Likewise, Table 3 shows other antioxidant activity
in Ferric Reducing Antioxidant Power, represented by its value of 8.46 ± 1.38 µg/mL. The
antioxidant properties of the plant must be assigned to the different phytochemicals present
in the extract; those bioactive compounds identified from LC-MS analysis are listed in the
Table 1. For example, previous studies demonstrated that anticancer properties of Epicatechin
are linked to its antioxidative potential [60]. Another component present in the extract is
Luteolin, which is found in glycosylated forms in a variety of vegetables and fruits and is
classified within the flavone subclass of flavonoids. Its documented effects include in vivo
anti-inflammatory [61], antioxidative [62–64], antidiabetic [61], antimicrobial [65], and anti-
cancer [66,67] activities. The antioxidant properties of Naringenin [68,69], Morindone [70,71],
Capsanthin 5,6-epoxide [72,73], and Ganoderic acid F [74] have been previously established.
Therefore, these compounds could potentially account for the robust antioxidant activity
observed in the extract. Oxidative stress plays a critical role as an independent factor in the
development of numerous chronic diseases, including cancer, diabetes, and cardiovascular
diseases [75–78]. Therefore, the antioxidant properties found in the plant extract can be
beneficial in the management of diseases that are linked to oxidative stress.
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Table 3. In vitro antioxidant and antidiabetic activities of H. sanjappae expressed as IC50 values (µg/mL).

Activity
IC50 Value(µg/mL)

HSE Ascorbic Acid Acarbose

DPPH scavenging 6.53 ± 1.49 2.11 ± 0.25 >200
FRAP value 8.46 ± 1.38 4.15 ± 0.47 >200
α-amylase 47.60 ± 0.19 33.92 ± 2.54 122.18 ± 3.08

α-glucosidase 32.09 ± 0.54 29.85 ± 2.01 103.45 ± 2.68

2.3. Enzyme Inhibitory Properties of H. sanjappae Ethanol Extract

The extract was examined for its enzyme-inhibitory properties against key enzymes
associated with type 2 diabetes mellitus, namely α-amylase and α-glucosidase. The IC50
value for the inhibition of α-amylase and α-glucosidase by the extract was determined
to be 47.60 ± 0.19 µg/mL and for the inhibition of β-glucosidase, 32.09 ± 0.54 µg/mL
(Table 3). The standard antidiabetic drug acarbox exibited an IC50 value of 122.18± 3.08 and
103.45 ± 2.68 µg/mL against α-amylase and α-glucosidase enzymes, respectively. Hence,
the plant extract contains stronger antidiabetic compounds compared to the acarbose.
The α-amylase and α-glucosidase are enzymes that play crucial roles in carbohydrate
metabolism and are frequently targeted by antidiabetic medications [79]. Indeed, the
inhibition of α-amylase and α-glucosidase by the H. sanjappae extract may contribute to
its potent antidiabetic activity. By inhibiting these enzymes involved in carbohydrate
metabolism, the extract can potentially help regulate blood glucose levels and manage
diabetes effectively. The enzyme-inhibitory properties are well corroborated by the major
bioactive substances observed in the plant using LC-MS analysis. Epicatechin, Luteolin,
and Naringenin were reported to inhibit the α-amylase and α-glucosidase in in vitro and
animal model studies [80,81]. In addition, the reports clearly indicated the antidiabetic
properties of these bioactive compounds in independent studies.

2.4. Anti-Inflammatory Activity of H. sanjappae

The anti-inflammatory activity of the extract was evaluated using Raw 264.7 macrophages
as the model. Raw 264.7 cells stimulated with lipopolysacchride (LPS) are a widely utilized
cellular model of inflammation [82]. The lipopolysaccharide is the cell wall component of
most of the Gram-negative bacteria; the LPS stimulates the macrophage in a toll-like-receptor-
dependent manner [83]. In the present study, the normal macrophage was estimated for the
level of IL-1β, and it was estimated to be 64.6 ± 1.9 pg/mg protein. However, there was
observed a significant elevation in the IL-1β levels upon stimulation with the lipopolysac-
charide to 573.4 ± 4.5 pg/mg protein. The increased level of IL-1β is an indicator of in-
flammation in the cellular conditions [84–86]. However, the pre-treatment of macrophages
with the different doses of HSE resulted in a significant reduction in IL-1β levels (Table 4).
The pre-treatment of Raw 264.7 cells with 5 µg/mL of HSE resulted in cellular IL-1β lev-
els of 403.7 ± 6.2 pg/mg protein (p < 0.01). Similarly, the pre-treatment with 10 µg/mL
(298.5 ± 8.4 pg/mg protein) and 20 µg/mL of HSE (156.2 ± 3.4 pg/mg protein) resulted
in lower IL-1β levels (p < 0.001). The reduction in IL-1β levels is indicative of the anti-
inflammatory potential of the HSE at the respective treatment doses.

Together with IL-1β, IL-6 was also found to significantly influence the inflammation
in macrophages [87,88]. IL-6 has a major role in the innate immune defense systems [89];
however, the same molecule is associated with the progression of various diseases [90,91].
The level of IL-6 in the untreated macrophages without LPS stimulation was estimated
to be 133.4 ± 5.8 pg/mg protein; however, the exposure of LPS elevated the cellular IL-6
levels to 628.5 ± 8.2 pg/mg protein. On the contrary, the level was brought down by the
treatment with 5 and 10 µg/mL of H. sanjappae extract, which reduced the cellular IL-6 levels to
507.1 ± 8.1 (p < 0.05) and 388.4 ± 2.8 pg/mg protein (p < 0.001). In the highest concentration
of H. sanjappae extract treatment, the IL-6 was estimated to be 291.3 ± 6.6 pg/mg protein
(p < 0.001).
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Table 4. Anti-inflammatory activity of H. sanjappae extract against lipopolysaccharide-induced
activation of Raw 264.7 cells and comparison with standard aspirin (1 mM).

IL-1β
(pg/mg Protein)

IL-6
(pg/mg Protein)

TNF-α
(pg/mg Protein)

NO
(µM/mg Protein)

Untreated 64.6 ± 1.9 133.4 ± 5.8 115.2 ± 3.1 10.7 ± 0.64
LPS Control 573.4 ± 4.5 628.5 ± 8.2 856.0 ± 11.2 75.2 ± 2.1

Aspirin (1 mM) 147.5 ± 5.1 *** 209.5 ± 9.1 *** 247.5 ± 6.3 *** 22.7 ± 1.7 ***
HSE 5 µg/mL 403.7 ± 6.2 ** 507.1 ± 8.1 * 715.2 ± 8.8 * 58.8 ± 3.4 *
HSE 10 µg/mL 298.5 ± 8.4 *** 388.4 ± 2.8 *** 602.8 ± 5.2 *** 42.3 ± 1.9 ***
HSE 20 µg/mL 156.2 ± 3.4 *** 291.3 ± 6.6 *** 493.7 ± 6.4 *** 30.7 ± 2.5 ***

* indicates significant variation with respect to LPS control (p < 0.05); ** indicates higher significant variation with
respect to that of LPS control (p < 0.01), and *** indicates highest significant variation with respect to that of LPS
control (p < 0.001). All the results are indicated as mean ± standard deviation of six independent experiments.

The TNF-α levels are crucial for the survival and proliferation of various cancer
cells [92]. The cytokine is also important in the progression events of cancers including
metastasis and stemness [93]. The level of TNF-α in the untreated and unstimulated Raw
264.7 macrophages was estimated to be 115.2 ± 3.1 pg/mg protein. However, the level was
elevated to 856.0 ± 11.2 pg/mg protein upon stimulation by the LPS. This clearly indicated
the induction of acute inflammation in the experimental condition. In 5 µg/mL H. sanjappae
treated macrophages, the level of TNF-α was reduced to 715.2 ± 8.8 pg/mg protein. A
similar decrease in the TNF-α level was also noted in the 10 and 20 µg/mL H. sanjappae
treatment, which brought down the TNF-α level to 602.8 ± 5.2 and 493.7 ± 6.4 pg/mg
protein.

The nitric oxide level is also an important inflammatory indicator in cells; the inducible
nitric oxide synthase is an enzyme responsible for the overwhelming load of nitric oxide in
the body [94]. Despite its physiological and immunological importance, nitric oxide is often
associated with chronic inflammation and is thereby involved in many of the degenerative
diseases [95]. The level of nitric oxide in the untreated macrophage cells was estimated
to be 10.7 ± 0.64 µM/mg protein. The level was increased to 75.2 ± 2.1 µM/mg protein
in the macrophages exposed to LPS. Interestingly, the level was brought down by the
pre-treatment with the 5 µg/mL of HSE (58.8 ± 3.4 µM/mg protein). In the 10 µg/mL
of H. sanjappae extract treatment, the NO level was estimated to be 42.3 ± 1.9 µM/mg
protein, and, in the 20 µg/mL HSE treatment, it was further reduced to 30.7 ± 2.5 µM/mg
protein. Hence, it is clearly indicated that the pre-treatment with different doses of HSE
dose-dependently reduced the inflammatory insults in cultured macrophages.

Pathogen-associated molecular pattern molecules (PAMPs) or damage-associated
molecular pattern molecules (DAMPs) are the two types of molecules that trigger the
production and release of IL-1β. LPS is the main outer surface membrane component
and is a highly potent PAMP which stimulates innate or natural immunity in various
eukaryotic cells [96]. LPS-induced inflammatory responses are linked to the production of
ROS in cells [97]. H. sanjappae extract was found to possess anti-inflammatory potential in
a dose-dependent manner (Table 4). In vitro analysis revealed that it inhibits nitric oxide
(NO) radicals. The inflammatory insults caused by LPS are prevented in cells pre-treated
with H. sanjappae extract, and cytokine level is also reduced as a result. Interleukin-1β
(IL- 1β) is a potent proinflammatory cytokine vital in the host cell defense reaction to
infection [98]. After LPS stimulation, macrophages were shown to have a considerably
higher level of IL-1β; however, pre-treatment with H. sanjappae extract at various dosages
dramatically reduced the IL-1β levels in the macrophages. Like IL-β, interleukin-6 (IL-6)
and tumor necrosis factor-α (TNF-α) are significant mediators of innate immunity [99]. LPS
also elevated the level of these cytokines. Application of the H. sanjappae extract reduced
the elevated levels of TNF-α and IL-6.

The bioactive flavonoids present in the H. sanjappae extract such as Epicatechin, Lu-
teolin, and Naringenin might play an important role in the anti-inflammatory potential
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of the plant. Independent studies have reported the anti-inflammatory potential of these
bioactive flavonoid molecules in cultured macrophages and animals [37].

To further explain the mechanism of anti-inflammatory activity, the expression of
genes NF-KB and COX2 was assessed. Compared to the untreated LPS control, the
H. sanjappae extract treatment significantly brought down the expression of NF-KB and
COX2. The expression of NF-KB is a crucial event in inflammation, and it is associated
with various diseases including cancers. Likewise, the COX2 is a well-known inflammatory
enzyme associated with the production of prostaglandins. The expression of COX2 is also
evident in different forms of cancers (Figure 2).
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2.5. Antibacterial Activity of H. sanjappae

The antibacterial activity of H. sanjappae is being documented for the first time, while
antimicrobial properties of H. brunonis have previously been reported [100]. Previous
studies have investigated the antimicrobial potential of different extracts from H. brunonis,
where the methanolic extract of the leaves [101] and aqueous extract of stem and leaf [33]
exhibited significant antibacterial activity. It is worth noting that many species within
the genus have not been extensively studied in this regard. Therefore, there remains a
considerable knowledge gap regarding the antimicrobial potential of the majority of species
within the genus. The present study observed a significant antibacterial activity of the plant
against different pathogenic microbes (Table 5). The highest activity was observed against
Pseudomonas aeruginosa (24.1 ± 0.3 mm) followed by Salmonella enterica (22.1 ± 0.1 mm).
The lowest activity was observed against E. coli (18.5 ± 0.2 mm). The standard antibiotic
gentamicin (20 µg) had growth inhibition zones of 21.7 ± 0.5, 22.1 ± 0.1, 19.7 ± 0.2, and
20.5 ± 0.2 mm against E. coli, P. aeuginosa, S. aureus, and S. enterica, respectively. Likewise,
the minimum inhibitory concentration was found to be highly effective against P. aeruginosa
(0.625 ± 0.02 mg/mL) followed by Salmonella enterica (1.00 ± 0.01 mg/mL). The lowest
activity was observed against E. coli (1.50 ± 0.01 mg/mL). The MIC values of gentamicin
were found to range between 0.325 and 0.625 mg/mL (Table 5).

Table 5. Efficacy of H. sanjappae (HSE) as an antimicrobial agent estimated using disc diffusion
method and minimum inhibitory concentrations and comparison with gentamicin (GM).

Bacteria

Zone of Inhibition (mm) MIC Concentration (mg/mL)

HSE GM
(20 µg) HSE GM

Escherichia coli 18.5 ± 0.2 21.7 ± 0.5 1.50 ± 0.01 0.325
Pseudomonas aeruginosa 24.1 ± 0.3 22.1 ± 0.1 0.625 ± 0.02 0.325

Staphylococcus aureus 20.6 ± 0.3 19.7 ± 0.2 1.25 ± 0.04 0.625
Salmonella enterica 22.1 ± 0.1 20.5 ± 0.2 1.00 ± 0.01 0.625

All the results are indicated as mean ± standard deviation of six independent experiments.
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3. Materials and Methods
3.1. Humboldtia sanjappae Collection and Extraction

The Humboldtia sanjappae plant samples were collected on 12 December 2022 from
Ernakulam District, Western Ghats of Kerala (10.04829◦ N, 76.8399◦ E). The mature leaves
and the bark of the plants collected were carefully cleaned of all kinds of dust via washing.
These materials were dried under shade for 21 days and powdered using a mixer grinder;
the powder was extracted with 100% ethanol. About 5 g of each material was subjected to
6 h of extraction. All the extracts were evaporated to dryness using a rotary evaporator,
and extract yield was calculated for the same.

3.2. Phytochemical Analysis of Humboldtia sanjappae

A preliminary phytochemical analysis of all samples was performed to determine the
presence of biologically important secondary metabolites such as alkaloids, flavonoids,
terpenoids, steroids, carbohydrates, saponins, etc. All tests were conducted following the
conventional procedures described by Yadav, Agarwala, and Harborne [102,103]. The total
phenolic content (TPC) and the total flavonoid content (TFC) were determined spectropho-
tometrically. TPC was found using the Folin–Ciocalteu reagent assay [104]. A standard
curve was constructed using Gallic Acid standards. TPC was measured in Gallic Acid
Equivalents (GAE). TFC was determined using an aluminium chloride colorimetric as-
say [105]. The flavonoid content was estimated using the standard quercetin calibration
curve. TFC was measured in terms of quercetin equivalents.

The LC-MS analysis was carried out according to the previous methods of House
et al. [106]. Briefly, the HR-LCMS-Q-TOF analysis was carried out using Agilent 1290
UHPLC system (Agilent Technologies, Santa Clara, CA, USA). Accurately, 10 µL of the
extract was injected into the system, and the run was carried out using water (0.1% formic
acid v/v) (A) and methanol (B) as solvents. The gradient elution mode was used as follows:
1–10 min 95% A, 10–20 min 75% A, 20–25 min 50% A, 25–30 min 30% A, 30–40 min 95% B.
The flow rate was set at 0.3 mL/min, and pressure was 1200 bar.

3.3. Analysis of the Antioxidant Activity of H. sanjappae Ethanol Extract

The antioxidant activities were assessed by evaluating the scavenging potentials of
various radicals, such as diphenyl picryl hydrazyl (DPPH) and FRAP (Ferric Reducing
Antioxidant Power). These methods allow for the measurement of the ability of the tested
samples to neutralize or reduce these radicals, providing insights into their antioxidant
properties [96,97]. A solution of DPPH was prepared by dissolving it in methanol at a
concentration of 0.1 mM. Varying concentrations of the extract were mixed with the DPPH
solution. The resulting mixture was then incubated in a dark environment at a temperature
of 30 degrees Celsius for 20 min. The change in absorbance of the solution was measured
and used to estimate the percentage inhibition [96]. The stock solutions consisted of a
300 mM acetate buffer (prepared by dissolving 3.1 g of sodium acetate and 16 mL of acetic
acid) with a pH of 3.6, a 10 mM TPTZ (2, 4, 6-tripyridyl-s-triazine) solution
(3.12 mg/mL) in 40 mM HCl, and a 20 mM FeCl3 solution (3.25 mg/mL). To prepare
the fresh working solution, 25 mL of acetate buffer, 2.5 mL of TPTZ solution, and 2.5 mL of
FeCl3 solution were mixed together. The resulting solution was warmed at 37 ◦C before
use. For the FRAP assay, a test sample of varying concentrations was mixed with 2.80 mL
of the prepared FRAP solution. The mixture was allowed to react for 30 min under dark
conditions. After the incubation period, the absorbance of the colored product, known as
the ferrous tripyridyltriazine complex, was measured at a wavelength of 593 nm [98]. The
control in the experiment refers to the reaction mixture in which the test sample was not
added.
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3.4. Analysis of the H. sanjappae Ethanol Extract on Activities of Enzymes

To assess the enzyme-inhibitory properties of the test samples, specific enzymes related
to diabetes and secondary diabetic complications were targeted. The inhibitory effects on
α-amylase [45] and α-glucosidase [46] were examined using standard procedures.

3.5. Effect of H. sanjappae Ethanol Extract on Lipopolysaccharide-Induced Anti-Inflammatory
Activity in Macrophages

The murine Raw 264.7 cells were seeded at 1× 107 cells/mL in a 24-well plate containing
complete growth media. The H. sanjappae extract was diluted in RPMI-1640 media at different
concentrations (5, 10, and 20 µg/mL). A standard anti-inflammatory compound, aspirin, was
also used as positive control at a concentration of 1 mM. The cells were then treated with
lipopolysaccharide (LPS) at a concentration of 1 µg/mL for 24 h. The levels of inflammatory
cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α were measured
using PeproTech ELISA kits. The production of nitric oxide in the media by the macrophages
was quantified biochemically using the Griess method [106]. The gene expression of NF-KB
and Cyclooxygenase 2 was determined by real-time PCR according to the ∆∆CT method.
Briefly, the total RNA was isolated, and cDNA was synthesized using standard kits from
Takara (Banglore, India). The real-time PCR analysis was carried out using the temperature
cycle of 95 ◦C (melting temperature) for 15 s, 60 ◦C (annealing temperature) for 45 s, and
73 ◦C (extension temperature) for 30 s. The cycle was repeated 40 times, and CT values were
calculated using the Applied Biosystems 7300 software. The primer sequences used in the
study are listed in Supplementary Table S5.

3.6. Antibacterial Activity of H. sanjappae Ethanol Extract

The antibacterial activity of H. sanjappae was estimated in terms of the disc diffusion
method according to the methods of Webber et al. [107]. The extracts were placed in circular
discs and kept in the bacterial culture plate at 80 mm distance to one another. The growth
inhibition zone in each of the bacterial cultures was determined and expressed as zone
of inhibition in mm. The MIC value was determined according to the previous methods
of Morgan et al. [108]. The gentamicin was used as a standard antibacterial agent at a
concentration of 20 µg.

3.7. Statistical Analysis

The data were represented as mean of three independent experiments with triplicate
analysis. The statistical operations were carried out using GraphPad Prism 7.0.

4. Conclusions

Most of the species in the genus Humboldtia have not been evaluated for their phar-
macological potential despite their relevance in ethnomedicine. The present study for
the first time reports the phytochemical composition and antioxidant, antimicrobial, and
anti-inflammatory activities of H. sanjappae, a native of the Western Ghats of India. The
study concludes that the plant has strong antioxidant properties in terms of radical scav-
enging and reducing potentials, and it is also effective as an antibacterial agent. Further,
the extract inhibited the cytokine levels in Raw 264.7 macrophages, which is indicative of
its anti-inflammatory properties. Enzymes such as α-amylase and α-glucosidase are im-
portant in controlling how our bodies absorb carbs and are frequently targeted by diabetic
drugs [79]. Indeed, the potent antidiabetic actions of HSE may be connected to its capacity
to inhibit α-amylase and α-glucosidase. The extract may help regulate blood sugar levels
and successfully manage diabetes by inhibiting certain carbohydrate-processing enzymes.

By carefully studying and testing, we have clearly shown that bark extract of
H. sanjappae made with ethanol is really good at reducing inflammation, controlling di-
abetes, fighting bacteria, and acting as an antioxidant. These different benefits not only
highlight how valuable H. sanjappae is, but also remind us that using plants for medicine has
always been a great way to create a variety of medicines. There are many examples from
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history where medicinal plants have led to big changes in medicine. For example, aspirin,
which comes from the bark of the willow tree (Salix alba L.), changed how we manage
pain and helped develop other drugs such as NSAIDs (non-steroidal anti-inflammatory
drugs) [109]. Additionally, the Madagascar periwinkle plant (Catharanthus roseus L.) gave
us vinblastine and vincristine, powerful compounds that have really changed how we treat
cancer [110].

Significantly, more than half of the drugs utilized worldwide in modern pharmaceu-
ticals have their origins in natural sources [111,112]. The worldwide commercial success
of established and effective pharmaceuticals taken from many plant kinds demonstrates
the importance of medicinal plants as potential drug reservoirs. Quinine, an anti-malarial
alkaloid derived from the bark of Cinchona officinalis L., is one example. Furthermore, chloro-
quine, derived from quinine, not only modulates inflammatory autoimmune responses but
has recently shown promise in anticancer therapy [112,113].

The polypharmacological potential of H. sanjappae, as evidenced by its diverse array
of beneficial properties, aligns perfectly with this lineage of discovery. Its capacity to
simultaneously tackle a range of health factors—spanning from inflammation and diabetes
to bacterial infections and oxidative stress—resonates with the holistic approach of medici-
nal plants. These qualities offer the potential for more complete and refined therapeutic
treatments, acknowledging the complexities of human health.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28196875/s1. Table S1: Qualitative analysis
of phytochemicals present in different extracts of Humboldtia sanjappae; Table S2: Percentage yield of
different extracts of H. sanjappae; Table S3: Antioxidant activity of different extracts of H. sanjappae;
Table S4: Total phenol and total flavonoid contents of different extracts of H. sanjappae; Table S5: The
forward and reverse primer sequences of different genes used for real-time PCR analysis.
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