Skip to main content
. 2023 Oct 5;15(19):4000. doi: 10.3390/polym15194000

Table 5.

Regression analysis for the dependent variable wood yellowness (Y).

N = 24 Regression Summary for Dependent Variable: Y
R = 0.9866, R2 = 0.9733, Adjusted R2 = 0.9708
F (2.21) = 383.06, p < 0.0000, Std. The Error of Estimate: 1.3641
b* b t(21) p-Value
Intercept −5.7726 ± 0.7337 −7.8675 0.0000
L* 1.1630 ± 0.0537 0.6633 ± 0.0306 21.6611 0.0000
b* −0.2555 ± 0.0537 −0.2388 ± 0.0502 −4.7595 0.0001
N = 24 Regression summary for dependent variable: Y
R = 0.7141, R2 = 0.5099, adjusted R2 = 0.4364
F (3.20) = 6.9361, p < 0.0022, Std. The error of estimate: 5.9908
Intercept 23.7871 ± 3.6857 6.4540 0.0000
Yi(Ac) −0.6029 ± 0.2488 −0.0810 ± 0.03343 −2.4238 0.0250
Yi(Et) 0.0597 ± 0.1978 0.0080 ± 0.0264 0.3022 0.7656
Yi(Et-To) −0.1702 ± 0.2786 −0.0214 ± 0.0351 −0.6109 0.5481