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ABSTRACT The growing transition to digital microbiology in clinical laboratories creates
the opportunity to interpret images using software. Software analysis tools can be designed
to use human-curated knowledge and expert rules, but more novel artificial intelligence
(AI) approaches such as machine learning (ML) are being integrated into clinical microbi-
ology practice. These image analysis AI (IAAI) tools are beginning to penetrate routine
clinical microbiology practice, and their scope and impact on routine clinical microbiology
practice will continue to grow. This review separates the IAAI applications into 2 broad
classification categories: (i) rare event detection/classification or (ii) score-based/categorical
classification. Rare event detection can be used for screening purposes or for final identifica-
tion of a microbe including microscopic detection of mycobacteria in a primary specimen,
detection of bacterial colonies growing on nutrient agar, or detection of parasites in a
stool preparation or blood smear. Score-based image analysis can be applied to a scoring
system that classifies images in toto as its output interpretation and examples include
application of the Nugent score for diagnosing bacterial vaginosis and interpretation
of urine cultures. The benefits, challenges, development, and implementation strategies of
IAAI tools are explored. In conclusion, IAAI is beginning to impact the routine practice of
clinical microbiology, and its use can enhance the efficiency and quality of clinical microbiol-
ogy practice. Although the future of IAAI is promising, currently IAAI only augments human
effort and is not a replacement for human expertise.
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Images often serve as primary results in clinical microbiology, which are then interpreted.
Examples include stained microscopic slide preparations, microbial colony morphology on
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nutrient agar, and growth in antimicrobial susceptibility tests. Although these images are tra-
ditionally viewed using analog approaches with the human eye and interpreted with the 
human mind, the growing transition to digital microbiology in clinical laboratories creates 
the opportunity to interpret images using software. These software analysis tools can be 
designed to use human-curated knowledge and expert rules (1), but more novel Artificial 
Intelligence (AI) approaches such as machine learning (ML) are being integrated into clinical 
microbiology practice. These image analysis AI (IAAI) tools are beginning to penetrate routine 
clinical microbiology practice, and their scope and impact on routine clinical microbiology 
practice will continue to grow.

A cursory PubMed search for the term “artificial intelligence” produces over 180,000 
results from the last decade. The amount of software development and the number of medi-
cal studies using AI can feel overwhelming, and only a small number of these studies will be 
reviewed in this manuscript. Some authors have written to introduce AI to the novice (2), and 
others have described AI applications specific to laboratory medicine or described clinical 
microbiology informatics in general (3, 4). This minireview is not meant to be a general 
introduction into AI methodology nor an exhaustive report of the opportunities to use 
AI
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FIG 1 Typical flow of development and clinical validation of a supervised machine learning tool for use as 
an in silico diagnostic device in the analysis of image data. Blue boxes (1 and 3) represent steps requiring 
expert clinical microbiology input and evaluation. Yellow box (2) represents algorithm development 
performed by data scientists. Step 1 requires data curation and labeling, and this labeled data serves as 
input for the training of the data algorithm. Step 2 uses the annotated data to train, validate, and test 
the machine learning algorithm. Iterative in silico training and validation steps are performed, and the 
algorithm is tuned to perform optimally. Then, an independent test set is analyzed to confirm the algorithm 
is performing as expected in silico. Once the algorithm development is complete, the algorithm is essentially 
locked into its final state. In Step 3, the performance of the final algorithm is evaluated in the clinical 
laboratory as an in silico diagnostic device. If the algorithm performs well in the real-world clinical laboratory 
validation attempt, then the algorithm can be implemented as an in silico diagnostic device and used for 
patient care purposes.

in clinical microbiology. Instead, this brief review discusses a selection of publications that 
describe IAAI applications designed for use in routine clinical microbiology practice. This 
review is intended to provide the reader with an overview of the current state and select 
details relevant to clinical microbiology practice, such as approaches to algorithm develop-
ment and considerations for clinical validation (Fig. 1). Certain AI terminology are empha-
sized where the authors feel these details could be helpful to the reader in their future 
interactions with IAAI in clinical microbiology practice (Box 1).

OPPORTUNITIES FOR ARTIFICIAL INTELLIGENCE IN CLINICAL MICROBIOLOGY

Modern technologies facilitate the creation and storage of large amounts of digital data, 
but traditional data analysis tools often seem insufficient to thoroughly analyze these expan-
sive data sets. AI algorithms can be trained to recognize patterns and draw inferences from 
data, including image data. ML is one approach that automates and streamlines analysis 
of large data sets. Rather than a single entity, ML denotes computer systems that can learn 
and adapt without explicit instructions. In clinical microbiology, ML can make predictions 
about antibiotic susceptibility or discover new determinants of antimicrobial resistance (5–7). 
ML can also enhance the quality and efficiency of image interpretation in clinical microbiology, 
which is the focus of this minireview.

USING ARTIFICIAL INTELLIGENCE TO INTERPRET IMAGE DATA
In clinical microbiology practice, image analysis can be performed using static 

“snapshot” images as input data (e.g., nutrient agar petri dish) or using a set of images 
encompassing an entire microscope slide (i.e., whole-slide image [WSI]). IAAI uses the 
image data as an input and then produces an output classification based on a set of 
rules that can be as simple as expert-determined rules-based logic (8). However, super-
vised ML uses a different approach wherein unprocessed data (e.g., digital image) are 
interpreted using a complex algorithm that has been developed by using a set of accu-
rately annotated images as its reference standard. Various types of algorithms are 
included within the broad category of supervised ML, but one commonly used 
approach is the convolutional neural network (CNN), which works particularly well for
IAAI. CNN mimics the neural networks of the human optical cortex by interconnecting 
convoluted algorithms (8).

The development of a supervised ML algorithm includes 3 stages: training, validation,
and testing (Fig. 1). Once the ML algorithm development is complete, then a clinical
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Definitions and descriptions of key terms

Artificial intelligence: Computer algorithms or software designed to perform simple (e.g.,
expert rules) or complex (e.g., image analysis) interpretations of data, which traditionally
have been interpreted by humans.
Machine Learning: A type of artificial intelligence algorithm that is commonly used in
contemporary practice and which is developed without human input of explicit logic rules
but instead is developed by enabling the computer to draw inferences directly from data.
Deep Learning: A type of machine learning that uses multiple layers of nodes in its neural
network.
Neural Network: Computing system inspired by the optic cortex of animal brains that use a
collection of nodes loosely modeled on neurons and their numerous interconnections.
Multiple inputs can influence the output of a node, and the output of a node can act as an input
for multiple other nodes.
Convolutional Neural Network: A type of neural network that uses convolution mathematical
operations in the design of the algorithm. These convolutional neural networks are commonly
used in contemporary image analysis artificial intelligence software.
Supervised learning: A type of machine learning that relies on human insight. For
example, a microbiologist might label photomicrographs as containing or not containing a
certain microbe of interest, and those labeled images could then be used as a data source for
developing a machine learning algorithm to identify the microbe in a photomicrograph.
Unsupervised learning: A type of machine learning that does not rely on human insight for
classification. For example, grouping images based on their similarity and differences can be
performed using an unsupervised approach.
Precision (data science): Precision is calculated by dividing a machine learning algorithm’s
true positive results by all positive results reported. In laboratory medicine, this equation is
the same as that which is used to calculate positive predictive value.
Precision (clinical microbiology): Precision describes the repeatability of achieving the same
or similar test results.
Recall (data science): Recall is calculated by dividing a machine learning algorithm’s detected
true positives by all true positives. In laboratory medicine, this equation is the same as that which
is used to calculate sensitivity or positive percent agreement.
Training data set (machine learning): Input data that is used for the initial development
of a machine learning algorithm.
Validation data set (machine learning): The machine learning model created using the
training data set is evaluated using different data, the validation data set. The findings from the
validation are considered, and human intervention is used to create minor changes (aka “tune”)
the algorithmwith the intention of optimizing the algorithm’s performance.
Test data set (machine learning): The machine learning model that has been trained and
validated is assessed using a final independent data set. This final independent data set
is the test data set.
Clinical Validation (clinical microbiology): Evaluation or establishment of the performance
characteristics of a test using clinical samples, wherein the performance characteristics are
ultimately deemed acceptable or unacceptable for use as a diagnostic device.
Feature. In image analysis artificial intelligence, features are classified by the algorithm. Features
can be low-level characteristics like edges or colors, or they can be high-level characteristics
comprised of low-level features like a colony or an acid-fast bacillus. A low-level feature is the
most primitive component of an image that can be useful in classification, and a high-level
feature includes the component of an image that can be classified as amicrobial entity.
Rare event detection. Identification of only a single high-level feature within an image is
needed in order to classify the image as abnormal.
Score-based or Categorical classification. Interpretation of the image is not directly linked
to the presence or absence of a single high-level microbial feature within the image, but either
the image as a whole (categorical) or multiple microbial features within the image (score-
based) are considered to determine whether the image is interpreted as normal or abnormal.

Minireview Journal of Clinical Microbiology

validation can be performed. A developed ML algorithm can be considered an in silico diag-
nostic (ISD) device or Software as a Medical Device (SaMD) (9), and it should be clinically and 
technically validated similarly to an in vitro diagnostic (IVD) device before it is deployed for 
clinical use to inform patient care decisions.
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When using an ISD IAAI device, the input image(s) serve as the laboratory results, and 
the algorithm’s output is the interpretation of the results. IAAI ISD applications can vary 
depending on the diagnostic need, but for simplicity and clarity, this review separates the 
IAAI applications into 2 broad classification categories: (i) rare event detection/classification 
or (ii) score-based/categorical classification.

RARE EVENT DETECTION
IAAI can be used to detect rare events. Rare event detection can be used for screening 

purposes or for final identification of a microbe. Results can be qualitative or quantitative. 
Examples of rare event detection IAAI include microscopic detection of mycobacteria in a pri-
mary specimen, detection of young bacterial colonies growing on nutrient agar, or detection 
of parasites in a stool preparation and/or blood smear.

Mycobacteria detection in primary specimens. Mycobacterium spp. are small (2 to 
5 m  m), acid-fast bacilli (AFB) that require acid-fast staining for routine microscopic visual 
detection. AFB detection for anatomic pathology applications has been developed. 
Pantanowitz et al. created IAAI to screen for AFB in WSI (10). The algorithm consisted of 
a patch-based approach where each WSI was divided into non-overlapping image fragments 
(i.e., “patches”) that were qualitatively interpreted as either positive or negative for AFB. This 
design was repeated twice; first with a more sensitive approach, followed by a more specific 
approach to reduce false positive results. When using the area under the receiver operating 
characteristic curve (AUC) as the marker of algorithm performance, the more sensitive algo-
rithm  when  used alone yielded 95%  AUC,  the more specific algorithm when used alone 
yielded 92% AUC, and the 2 algorithms when used in series yielded a 96% AUC, which out-
performed the use of  a  single algorithm.

Positive patches were digitally circled in the WSI, so a human expert user could view the 
feature of interest. The study concluded that IAAI improved mycobacterial detection regard-
less of the number of bacilli present in the tissue, and the algorithm facilitated shorter 
review duration and decreased perceived effort by the human reader compared to manual 
review using conventional light microscopy. This algorithm-assisted approach resulted in 
similar specificity to pathologist microscope review and review using WSI, but improved sen-
sitivity, which yielded fewer false negative interpretations. A significantly higher percentage 
of algorithm-assisted reviews were classified by pathologists as easy (93.5%) compared with 
manually screening slides with a microscope (43.8%) or manually reviewing WSI (38.4%).

IAAI could be used to screen primary samples in the clinical microbiology lab for AFB 
using either light or fluorescence microscopy. Two studies described the use of MetaSystems 
(Altlussheim, Germany) to analyze fluorescent scans as the data inputs for AFB detection 
(11, 12). The human time needed to interpret each slide was reduced by 90% when using 
AI support, but the accuracy of the AI was not the same as analog slide review. At the slide 
level, the AI had high sensitivity (97%) but low specificity (13%) (11). Using an expert human 
to review digital images identified by the algorithm as “suspected AFB” helped improve the 
specificity over using the algorithm alone. The specificity improved from 13% to 89%. One 
conclusion by the Stanford group was that low resolution in combination with suboptimal 
focus likely impaired the algorithm’s performance. Optimal image focus and adequate reso-
lution of the potential microbe are perpetual challenges when using digital microscopy for 
clinical microbiology applications (13). This challenge persists regardless of whether the in-
terpreter is a human or computer.

Bacteria colony detection. IAAI of photos of nutrient agar could be used to shorten 
time to organism detection, decrease the time required to review culture plates, and/or 
increase the accuracy of the interpretation of the growth. Faron et al. used IAAI to iden-tify 
vancomycin-resistant enterococcus (VRE) colonies from images of more than 100,000 agar 
plates using routine bacteriology automation equipment (14). The trained algorithm 
identified the blue colonies growing on the chromogenic VRE media. The reference stand-
ard used in the study was a manual human interpretation of the same culture plates. The 
IAAI had imperfect negative percent agreement (90%) when compared to the manual 
refer-ence method; however, 4.8% (499/10,348) of the “false positive” IAAI determination 
were identified to be false negative results using the reference method (manual human
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interpretation) when reviewed more closely. The IAAI algorithm had perfect negative predic-
tive value with no false-negatives identified compared to the reference method, which 
enabled 84% (87,979/104,730) of the cultures to be identified as negative for VRE using IAAI.

Ova and parasite detection. Identification of parasites in stool specimens is labor-
intensive and requires high technical competence. In the United States, the pretest probabil-
ity of a true ova and parasite (O&P) infection is low, requiring hours of expert microbiologists’ 
time per positive finding. Mathison et al. developed a deep learning CNN to detect parasites 
on trichrome-stained fecal samples (15). Slides were digitized at an �82.4 magnification with 
0.1214 micron per pixel resolution. Fields were scanned at 3 different depths, and the soft-
ware selected the most in-focus plane from the Z-stack. The scanned fields were stitched 
together to form the complete scanned image. A total of 127 positive slides trained the 
software to identify a panel of common parasites: Giardia duodenalis cyst, Giardia duodenalis 
trophozoite, Blastocystis spp., Dientamoeba fragilis, Entamoeba non-hartmanni trophozoite, 
Entamoeba hartmanni trophozoite, Chilomastix mesnili trophozoite, Endolimax nana, and
Iodamoeba buetschlii trophozoite. The trained model also identified red blood cells, white 
blood cells, and yeast to help to prevent the algorithm from potentially misidentifying 
those cell types as parasites.

Human experts supplemented the ML algorithm at clinical implementation as the IAAI 
ISD device screened WSI data for parasites, but confirmation of the parasites was performed 
by the human expert before reporting. Excellent positive and negative agreement (99% PPA 
and 98% NPA) occurred between the AI-augmented workflow and traditional manual micros-
copy at the specimen-level. The AI model, however, had a 32-fold lower limit of detection 
compared to the traditional manual workflow. Precision-recall plots evaluated the model’s 
continued performance after the machine learning validation stage which yielded a total 
recall of 83% to 92%, depending on accepted confidence scores (16).

In daily clinical practice, Mathison et al.’s AI-augmented  workflow assisted medical 
laboratory scientists and parasitologists, and the performance data (positive and negative 
agreement) incorporated human experts in the workflow (15). For example, if the model 
flagged slides containing  parasites, the  glass slides were  manually  reviewed  by  a  medical
laboratory scientist for confirmation and sent to a trained parasitologist for final identification. 
Likewise, occasional suspicious false positive slides were manually reviewed by medical labora-
tory scientists, and slides lacking parasites required a shorter duration of human review before 
confirming the absence of parasites. This AI-augmented approach to identifying and charac-
terizing rare events has the potential to positively impact efficiency in high volume laboratory 
settings.

Blood parasites. The diagnosis of babesiosis requires not only a qualitative identifi-
cation of the organism, but also a quantitative determination of the percent of parasitemia. 
Some authors developed IAAI algorithms to automate the detection and quantification 
processes. Durant et al. trained an IAAI model with binary image classification that calculated 
the percent parasitemia from a clinical validation set (17). The model demonstrated high 
precision in the development training and testing; however, the clinical validation phase 
identified false positive errors, which were attributed to rouleaux, which was not adequately 
encountered in the development phase. This scenario highlights the need for rigorous 
clinical validation and quality monitoring regardless of how an algorithm performs in 
the test environment.

Similar to babesiosis, malaria requires organism identification and quantitative determi-
nation of percent parasitemia. The World Health Organization (WHO) originally created a 
55-slide set for their External Competence Assessment of Malaria Microscopists (ECAMM)
program, which later was used as a clinical validation to evaluate the performance of a
fully automated malaria diagnostic IAAI platform, EasyScan GO. The EasyScan GO was
developed using more than 500 slides from 11 countries. In the WHO reference set, EasyScan 
GO accurately detected the presence or absence of malaria in 33/35 (94% sensitivity) of the 
slides with parasites, and it detected no false positives cases (20/20; 100% specificity). In the 
cases in which malaria was detected, the IAAI identified parasite quantitation within 25% of 
the reference count in half of cases (18). The EasyScan GO algorithm met criteria for the 
highest accreditation level (1) according to the ECAMM evaluation slide set rubric. The
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algorithm was less successful at species identification accuracy (82.9%), corresponding with 
a lower accreditation level (2). The authors concluded that the EasyScan GO platform could 
be a valuable tool for assessing subsequent serial blood smears for parasitemia when assess-
ing treatment efficacy.

Although IAAI systems are not yet routinely used in malaria diagnosis and monitoring, 
algorithms have been developed and have demonstrated performance on par with expert 
parasitologists. It is likely that IAAI will play a future role in clinical laboratory detection and 
monitoring of malaria.

SCORE-BASED OR CATEGORICAL CLASSIFICATION
Besides rare event detection, image analysis can be applied to a scoring system that clas-

sifies images in toto as its output interpretation. The interpretation is not necessarily directly 
linked to the presence or absence of a single feature in the image.

Nugent score for classification of bacterial vaginosis. Bacterial vaginosis (BV) is a 
disruption of the normal microbiome resulting in an inappropriate overgrowth of anaerobic 
bacteria. The reference standard for laboratory diagnosis of BV is the Nugent score by Gram 
stain (19). The Nugent score uses the semi-quantification of Gram-positive rods, Gram-nega-
tive coccobacilli, and curved Gram-negative rods on Gram stain, which ideally correlates 
with Lactobacillus spp., Gardnerella spp., and Mobiluncus spp., respectively. The Nugent score 
corresponds to categories with clinical interpretations; score 0 to 3 (Lactobacillus spp. domi-
nant; consistent with normal microbiome), score 4 to 6 (mixed morphotypes indicative of 
altered vaginal flora), and score 7 to 10 (absence of Lactobacillus spp.  and predominance of  
other morphotypes diagnostic of BV).

Wang et al. developed a CNN model (NugentNet) that analyzed and scored vaginal 
Gram stains (20). The model was trained using more than 23,000 images and validated 
using another 5,000 images. The software NugentNet was able to interpret 100 images 
in 2.4 s. After tuning the model by retraining the CNN to accurately interpret images originat-
ing from different laboratories (e.g., cameras with variable white balances and resolutions), 
the model showed diagnostic improvement in sensitivity (24% increase), specificity (9.5%
increase), and accuracy (10.2% increase) when compared to the original CNN model trained 
on data from a single laboratory using a single camera. The accuracy of NugentNet (75.1%) 
rivaled an average human reader composite interpretation reference standard including 
medical laboratory scientists and obstetricians. NugentNet was less sensitive than the average 
human reader (89.0% versus 94.9%) in detecting BV, but was more specific (85.0% versus 
74.6%). In general, the model performed slightly below in sensitivity, specificity, and accu-
racy (89.0%, 85.0%, and 75.1%) when compared to an obstetrician (94.4%, 93.9%, and 
80.9%); but it was more specific and accurate when compared to the average medical 
laboratory scientist (96.5%, 62.2%, and 68.5%).

This performance demonstrates a general truth that is observed in well-performing 
IAAI, in which the software learns to interpret as the average of the expert users who 
supervised the categorization of the reference images. For this reason, it is essential to use 
expert-curated images for IAAI algorithm training to enable the highest quality algorithm 
performance.

Bacterial culture interpretation. Bacteriology automation includes digital image 
capture of nutrient agar plates as part of standard of care clinical microbiology practice 
(21). Software to detect rare events from culture plates exists, which may enable earlier 
or more sensitive detection of growth on chromogenic media used for screening and 
classification of mixtures using urine chromogenic media (14, 22–27). Digital plate reading 
software has the potential to automate the interpretation of primary cultures using 
non-chromogenic media as well. Copan WaspLab (Brescia, Italy), BD Kiestra (Drachten, 
Netherlands), and Clever Culture Systems APAS (Zurich, Switzerland) offer IAAI solutions 
to aid in the classification of growth for bacterial cultures including urine cultures. APAS 
uses an approach that classifies urine culture plates based on colony counts, and this sys-
tem was the first to receive FDA clearance for using IAAI for culture plate interpretation 
(28, 29). Copan markets PhenoMatrix (30, 31) and BD markets a Urine Culture App (32, 33), 
which support a medical laboratory scientist in the interpretation of bacterial growth (or no
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growth) on agar media from primary specimens. These BD and Copan solutions detect 
colonies, enumerate them, and classify them. Then, expert rules create decision trees based 
on the number of colonies, variety of colony types, and features of the colony (e.g., color). 
This classification by IAAI with an overlay of expert rules can help to create workflow effi-
ciency in the laboratory (30).

Other groups found similarly high sensitives when using image software to quantify 
and differentiate bacterial colonies on chromogenic agar. Faron et al. created an image 
analysis model that demonstrated high sensitivity (99.8%) for bacterial colony growth 
detection with less specificity (68.5%) when compared to manual reading for growth 
detection (quantitation agreement at the 10,000 CFU/mL interpretive breakpoint point 
was 88.9%) (25). With the assistance of IAAI, the average result time decreased for both 
positive and negative results (25). One study reported success with automated plate 
reading software using MacConkey agar, demonstrating high sensitivity (99.8%) for 
growth detection and acceptable specificity for screening culture growth (72%) (31).

Another study demonstrated the ability to forgo the supervised feature annotation 
where an IAAI algorithm is trained to identify and classify individual colonies on a 
plate. Instead of training the algorithm to accurately detect, enumerate, and classify 
colonies on a plate (which subsequently requires expert rules to yield an interpreta-
tion), the images were instead analyzed and classified in toto without specifically teach-
ing the IAAI algorithm how to count colonies or discriminate mixed growth (34).

Antimicrobial susceptibility interpretation. IAAI can be used to aid in antimicrobial 
susceptibility testing. Investigators attempted to manually measure disk diffusion zones of 
inhibition using the BD Kiestra digital images (35), but at this time, the measurement is not 
yet automated by AI with the BD Kiestra system. Copan Radian (36–39), SIRscan (40), and 
BioMic V3 (Giles Scientific, New York, NY) (41, 42) offer IAAI support for measurement of disk 
diffusion zones of inhibition. BioMic V3 (https://www.biomic.com/broth-microdilution.html) 
and Sensititre Vizion (ThermoFisher; Waltham, Massachusetts) use IAAI for interpretation of 
broth microdilution susceptibility testing (43).

BENEFITS OF IAAI
IAAI implementation in microbiology laboratories can decrease result turnaround times, 

decrease hands on time, and in some cases improve sensitivity of detection. In one study, 
enhanced workflow using bacteriology automation in combination with IAAI yielded an esti-
mated decrease in hands on time of 80% for negative cultures (44). In another study using 
IAAI, a 4 h decrease in time-to-results was achieved for urine cultures (25). IAAI assisted algo-
rithms can also decrease perceived work effort and substantially shorten operator time 
required to detect rare events (10).

Often IAAI algorithms demonstrate high sensitivity and negative predictive value, 
so negative results (e.g., no growth on culture or no amebae identified in a stool exam) 
are highly reliable and could potentially be reported without human intervention or manual 
review. Streamlining the workflow for managing positive results from IAAI applications could 
enhance quality and efficiency as medical laboratory scientists and clinical microbiologists 
can potentially focus on pathogen identification and avoid some of the fatigue that is associ-
ated with arduous review of negative samples.

CHALLENGES OF IAAI
The quality of the specimens and images should be carefully considered when attempt-

ing to use IAAI as an ISD device. Like humans, IAAI algorithms may reject or not process 
insufficient quantity specimens or specimens with poor preparation (44). It is important 
that unusual samples or samples not encountered in adequate quantity during IAAI devel-
opment are not inaccurately given an errant interpretation by an AI platform (17). Changing 
the resolution, brightness, and physical area of sampling can impact IAAI interpretation (20). 
Although some studies reported blurriness as a criterion for rejection, other platforms inter-
preted data even if images were out of focus (17, 18, 44, 45). Background artifact may also
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impact IAAI’s ability to reliably assess specimens and the presence of other disease processes
may become confounding variables (17).

Suitable image resolution poses a challenge when implementing IAAI in the clinical
microbiology lab. For example, Wang et al. recreated their original CNN model to a new
CNN model, NugentNet, adding more convolutional layers to adapt to the resolution of
Gram stains obtained with different cameras in different laboratories (20). Gardnerella
vaginalis image data essentially disappeared once the image size was compressed to
224� 224 pixels. The new model increased the resolution to 1,024 � 768 pixels to maintain
G. vaginalis detection.

Minireview Journal of Clinical Microbiology

Although IAAI algorithms can improve sensitivity, accuracy is not always significantly 
improved (10). Increased sensitivity can lead to false positive findings that ultimately skew 
IAAI findings (16). IAAI model developers can influence the sensitivity and specificity of models 
by training multiple models, implementing algorithms and picking the best fit, and adjusting 
the pretest probability to influence statistical performance (17). IAAI models are more accurate 
when trained with large data sets (17). Finding ample testing samples can take significant 
time and effort and may not be available during the development period (10).

IAAI models have the potential to learn and grow, which may lead them to deviate 
from their initial validation testing. However, learning IAAI approaches are likely not to 
be used in clinical practice without discrete clinical validation phases used to verify the 
performance of the ISD after each iterative software change. Thorough clinical valida-
tion is imperative (16), and even reliable IAAI are likely to use a human review to dou-
ble-check and verify important diagnostic findings. Currently, IAAI fits best into routine 
clinical practice when used to augment medical laboratory scientist and clinical micro-
biologist efforts and not to replace them. These IAAI tools are not yet used routinely as 
ISD devices that operate without human review of positive samples.

In addition to technical challenges of IAAI described above, limitations in laboratory 
personnel’s expertise in AI and the lack of widely implemented equipment capable of 
routine automated image-capture are two barriers slowing the development and imple-
mentation of IAAI tools in clinical microbiology practice.

FUTURE CONSIDERATIONS
Imagining the future impact of AI on clinical microbiology labs. Unrealized opportu-

nities remain for IAAI to impact the clinical microbiology lab. We expect IAAI to play a major 
role in routine workflows in clinical microbiology over the coming decade (15, 46). The high 
sensitivity and NPV of IAAI tools can be used to screen out negative samples, which can 
make high volume workflows more efficient and decrease time spent on labor-intensive 
tasks. IAAI tools could also be used to provide support in austere settings where on-site exper-
tise is limited but digital clinical microbiology workflows are present (47). Additionally, IAAI 
software can be designed and used as part of a laboratory’s quality management system 
to double-check manual image interpretations (44, 46).

Although IAAI will create efficiency and improve quality, we do not anticipate IAAI 
to solve the staffing shortages that have been felt in clinical microbiology labs for decades 
(48, 49). Currently, IAAI systems require human expertise to develop, validate, and maintain 
them. We expect this interdependent relationship between IAAI and human expertise to 
remain the standard of practice for the foreseeable future when using IAAI as an ISD device.

Preparing for IAAI implementation opportunities. Clinical microbiology laboratory 
personnel should work to become familiar with the IAAI applications and recognize 
that IAAI will likely become part of standard of care in clinical microbiology practice 
during this decade (49). One forthcoming application of IAAI in the clinical microbiology lab 
is quality assurance and passive quality monitoring. Specifically, IAAI can facilitate quality 
assurance for a variety of laboratory tests including PCR, lateral flow assays, and bacterial 
plate cultures (34, 46, 50). We expect IAAI to expand the possibilities of quality assurance 
beyond what is currently implemented or imagined for bacteriology and microscopy, and 
clinical microbiologists should look for opportunities to use IAAI to improve quality and 
efficiency.
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Standardized approaches that can be used for clinical validation of IAAI ISD devices
are beginning to be imagined. When considering developing and/or implementing an
IAAI tool as an ISD, clinical microbiologists should be informed by best practices that
have been identified by others who have already attempted clinical validation (Fig. 1)
and current U.S. Food & Drug Association guidance (51). The reader is referred to the stud-
ies of Mathison, Wang, and Alouani for good examples of how to approach IAAI validation
(15, 20, 34).

CONCLUSION

IAAI is beginning to impact the routine practice of clinical microbiology. The use of
IAAI can improve the efficiency and quality of clinical microbiology practice. IAAI can
augment human effort but is not a replacement for human expertise. Future studies
should continue to describe the successes and failures of the development and clinical
validation of IAAI ISD devices, so we can collectively learn how to use IAAI in clinical microbi-
ology to maximize the benefit it can provide.
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