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Abstract

Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and 

human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, 

which catalyze metabolic transformations of small molecules and modifications of proteins. To 

better understand these biological processes, chemical proteomic approaches, including activity-

based protein profiling, have been developed to interrogate protein function and enzymatic activity 

in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances 

for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development 

of chemoproteomic approaches for characterizing protein function and enzymatic activity within 

bacteria remains an active area of research, and continued innovations are expected to provide 

breakthroughs in understanding bacterial biology.
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1. Introduction

Bacteria are a ubiquitous unicellular lifeform, playing important roles in global nutrient 

cycling[1] and in causing infectious disease. Bacteria are important industrially in 

the production of a variety of products, ranging from fermented foods[2] to biologic 

pharmaceuticals.[3] As such, gaining a deeper understanding of bacterial physiology, 

pathogenesis, and metabolism are important to improving manufacturing, sustainability, and 

human health.

Many important bacterial activities in these settings are regulated by bacterial proteins and 

enzymes. These roles range from essential functions, such as cell envelope biosynthesis, 

to more specialized processes, including pathogenesis and signal transduction.[4] The 

importance of bacterial proteins in these numerous contexts warrants novel technologies 

for understanding their activity.

Chemical proteomics has emerged as a powerful technique for profiling protein function 

and enzymatic activity. Activity-based protein profiling (ABPP) enables the labeling, 

enrichment, and identification of specific proteins of interest within complex mixtures using 

an activity-based probe (ABP, Figure 1a). Typically, the ABP contains an electrophilic 

moiety that reacts with a nucleophilic active site residue, which forms an irreversible 

covalent adduct with the enzyme.[5–9] The appendage of a fluorophore, followed by 

resolution by gel electrophoresis, to these protein adducts enables imaging of active 

enzymes by in-gel fluorescence. Alternatively, an affinity tag, such as biotin, can be 

appended, which allows for the enrichment of active enzymes that can be further 

characterized by mass spectrometry-based proteomics. These fluorescent and affinity tags 

can be appended directly to the probe itself,[5,6,8] or to the protein adduct through a 

bioorthogonal reaction.[7,9]

Photoaffinity probes are important for determining the cellular targets of compounds that 

noncovalently bind to proteins (Figure 1b).[10] Whereas ABPP depends on chemoselectivity 

of the probe warhead, photoaffinity labeling relies on the selective uncaging of a 

promiscuous photolabile moiety that is generated photochemically and reacts with nearby 

proteins, enabling their capture and identification. Alternatively, a cell-permeable probe or 

so-called chemical reporter can be metabolized, wherein it is then incorporated into other 

biomolecules (Figure 1c). The same analyses and mass spectrometry (MS)-based workflow 

for ABPP are also used in these cases and typically involves visualization of covalent protein 

labeling in situ or pull-down and protein identification using MS-based proteomics (Figure 

1d). These three strategies – ABPP, photoaffinity labeling, and metabolic labeling – have 

been key for interrogating bacterial biology using chemical proteomics (Figure 1).

This review highlights specific biological processes in bacteria and contributions of 

chemical proteomics to understanding these processes. The discussion of works on 
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chemoproteomic profiling of mammalian proteins and its application to studying interactions 

with bacterial biomolecules,[11] serine hydrolases,[12] and reactive sites in the human 

proteome[13] have been reviewed elsewhere. Rather, this review highlights seminal 

technologies for chemoproteomic profiling of bacterial proteins in specific processes and 

the mechanistic biological studies that these technologies have enabled.

2. Interrogating Prokaryotic Physiology

2.1 Probing Cell Wall Biosynthesis

The bacterial cell envelope is an important barrier for protecting bacteria from the 

environment. Whereas the cell envelope of Gram-positive bacteria is characterized by a 

thick peptidoglycan wall surrounded by the cell membrane, Gram-negative bacteria possess 

inner and outer membranes with a thinner peptidoglycan wall between these membranes.
[14] In both cases, peptidoglycan (PG) strands are cross-linked to form a rigid barrier 

(Figure 2a).[14] Bacterial cell envelope biosynthesis is essential to cell replication. Indeed, 

numerous clinically important antibiotics act by disrupting cell wall biosynthesis.[15] β-

lactam antibiotics are an important class of antibiotics that act as suicide inhibitors of 

enzymes involved in PG biosynthesis, such as penicillin binding proteins (PBPs).[16] PBPs 

catalyze the cross-linking of PG strands through transpeptidation, and β-lactam antibiotics 

inhibit these transpeptidases (Figure 2a).[17] β-lactams specifically disrupt peptidoglycan 

strand cross-linking by acting as electrophilic substrate analogs.[15] The utility of the β-

lactams and related electrophilic scaffolds have enabled numerous ABPP studies of cell wall 

biosynthesis.

Competitive ABPP has emerged as a useful tool for profiling the selectivity of antibiotics 

that inhibit cell wall biosynthesis and has led the development of selective probes for 

probing PBP activity. The fluorescent penicillin analog, BOCILLIN-FL,[18] is a broad-

spectrum covalent inhibitor of PBPs that enables ABPP by in-gel fluorescence. Competitive 

ABPP with BOCILLIN-FL has allowed the rapid characterization of probe selectivity. 

For example, selectivity profiling of a bioorthogonal analog of meropenem, Click-MEM 

(Figure 2b), has been investigated in Bacillus subtilis, which selectively labeled PBP3 and 

PBP5.[19] Clickable β-lactone ABPs have also been evaluated in Streptococcus pneumoniae, 

in which selectivity depended on linker and click handle identity heavily shaped the 

selectivity profile, leading to the development of D-Phe-BL (Figure 2b), which selectively 

labeled PBP2x and PBP2a.[20] In both cases, proteomic analysis of probe-enriched samples 

corroborated the selectivity profiles of these probes in B. subtilis[19] and S. pneumoniae.[20] 

Overall, advances in the activity-based profiling of PBPs has led to the development of 

selective probes to monitor the activity of specific PBPs during bacterial cell growth and 

division.

More broadly, chemoproteomic profiling of β-lactam-binding proteins has validated 

additional cellular targets of β-lactams. The characterization of a β-lactam probe library 

by click chemistry-based chemoproteomics in a panel of bacteria successfully identified 

differential PBP selectivity based on the β-lactam core.[22] However, proteomic analysis 

also revealed additional enzymatic targets, including β-lactamases and ClpP, a caseinolytic 
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protease that regulates virulence.[22] This chemoproteomic study unveiled the potential for 

targeting bacterial virulence with antibiotic scaffolds.

Chemoproteomic profiling with β-lactam probes has also revealed novel antibiotic resistance 

mechanisms. Chemoproteomic profiling using clickable β-lactam probes in methicillin-

susceptible Staphylococcus aureus (SA) and methicillin-resistant S. aureus (MRSA) strains 

allowed for identification of enzymes that confer resistance to β-lactam antibiotics in 

MRSA.[23] Specifically, the active enzymes profiled in MRSA included two novel β-

lactamases: a novel metallo-β-lactamase and serine hydrolase β-lactamase.[23] Although 

β-lactamases are a hallmark resistance mechanism,[15] the presence of these enzymes in 

MRSA contrast the previously characterized model of β-lactam resistance wherein altered 

PBP binding sites that have a lower affinity for β-lactams.[14]

In addition to forming cross-links that create the rigid cell wall, peptidoglycan precursors 

are linked to lipid II (Figure 2a), which allows for transport of peptidoglycan from the 

cytoplasm to exterior side of the cell membrane.[24] The identification of proteins involved 

in these processes is important for gaining a deeper understanding of bacterial cell wall 

biosynthesis. Bacteria successfully incorporated peptidoglycan precursor Photo-DP (Figure 

2b), which validated the interaction of lipid II with PBP1a/b in live cells.[21]

ABPP has also unveiled novel mechanisms of action for antimicrobial compounds. For 

example, the investigation of a clickable, photocrosslinking vancomycin analog in SA 

and Enterococcus faecalis identified novel binding partners.[25] Especially salient in SA, 

vancomycin was found to inhibit an autolysin domain in a cell wall biosynthetic enzyme.[25] 

This inhibitory action was identified as a novel resistance mechanism, as autolysin activity 

is necessary for the bactericidal effects of cell wall biosynthesis inhibitors.[15] Many natural 

products contain electrophilic scaffolds, such as α,β-saturated carbonyl groups. As a result, 

these compounds were hypothesized to be protein-reactive electrophiles. Using clickable 

analogs, chemoproteomic profiling of the nucleoside antibiotic showdowmycin[26] and 3-

methylene-γ-lactones[27] were shown to target enzymes involved in cell wall biosynthesis in 

SA.

Overall, bacterial cell growth and division are essential processes to sustaining bacterial life. 

The biosynthesis of the cell wall is one aspect of growth that has been extensively examined 

using ABPP. Strategies for profiling bacterial cell envelope biosynthesis have built on 

electrophilic scaffolds in antibiotics that inhibit cell wall biosynthesis in actively replicating 

bacteria. Advances in ABPP of cell wall biosynthesis have illuminated new mechanisms 

for antimicrobial resistance and previously unidentified cellular targets. Additionally, 

photoaffinity labeling strategies have also aided in the chemoproteomic identification of 

enzymes involved in cell wall biosynthesis and antibiotic resistance.

2.2 Probing Lipid Homeostasis

Lipid membranes form an additional protective barrier for cells. Chemoproteomic studies 

have provided significant insights into the role of serine hydrolases in prokaryotic lipid 

metabolism. These studies have been important for understanding lipid and membrane 

homeostasis in mycobacteria.
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The membrane composition of mycobacteria, such as Mycobacterium tuberculosis (Mtb), 

differs in that it contains a distinctive outer membrane outside of its peptidoglycan 

wall composed of mycolic acid-containing glycolipids, termed the mycomembrane 

(Figure 3a).[31] Disrupting membrane biosynthesis is an important strategy for treating 

mycobacterial infections.[32] In order to identify mycomembrane-interacting proteins, 

clickable diazirine analogs of glycosylated very long-chain fatty acids were synthesized 

and characterized in Mycobacterium smegmatis.[28] N-x-AlkTMM–C15 (Figure 3b) was 

successfully incorporated into the membrane, allowing for chemoproteomic profiling of 

mycolate-interacting proteins.[28] Proteomic analysis identified known mycomembrane 

proteins and new homologs of membrane remodeling enzymes.[28]

Target validation of cell wall and membrane biosynthesis inhibitors in Mtb has also 

benefited from chemoproteomic tools. A β-lactone bearing a long-chain alkyne-containing 

tail (EZ120P, Figure 3b) has been investigated as a mycolic acid biosynthesis inhibitor.[30] 

ABPP and subsequent proteomic analysis validated EZ120P as a covalent inhibitor of 

the Pks13 thioester domain, which is responsible for glycosylation of mycolic acids.[30] 

Furthermore, this covalent inhibitor synergistically inhibited growth of M. smegmatis when 

co-administered with vancomycin.[30] Competitive ABPP has also been used to identify the 

protein targets of antimycobacterial compounds. After screening a triazole urea library for 

Mtb growth inhibition, competitive ABPP with fluorophosphonatebiotin (FP-biotin, Figure 

3b) identified a variety of serine hydrolase targets, including mycolyltransferases, lipases, 

and a thioesterase, which were inhibited by these compounds.[33] Subsequent biochemical 

studies validated these targets and induced cell morphologies similar to known cell wall 

biosynthesis inhibitors.[33] Competitive ABPP with FP-biotin (Figure 3b) and analogs of 

cyclipostin and cyclophostin similarly identified inhibitors of cell wall biosynthesis in M. 
abscessus.[34]

A hallmark of Mtb infection is nonreplicative persistence,[35] which can lead to recurrent 

infection.[36] Owing to the importance of dormancy during infection, chemoproteomic 

studies have focused on understanding the changes in enzymatic activity during dormancy. 

Using a clickable tetrahydrolipistatin analog, serine esterase activity was profiled in 

Mycobacterium bovis undergoing replicative growth and nonreplicative persistence.[37] 

Proteomic studies identified persistent lipase and thioesterase activity across growth 

states, although the activity of many lipases decreased during dormancy and increased 

after recovery from dormancy.[37] Among the lipases downregulated during nonreplicative 

conditions, ectopic expression of lipase H induced increased levels of long-chain fatty acid 

triglycerides after recovery from dormancy and decreased susceptibility to the bactericidal 

effects of tetrahydrolipistatin.[37]

As nonreplicative dormancy occurs under hypoxic conditions,[35] global serine hydrolase 

ABPP activity in Mtb has also been profiled under hypoxic and aerobic growth 

conditions.[38] Although overall serine hydrolase activity decreased under hypoxia, global 

serine hydrolase profiling identified active enzymes involved in membrane biosynthesis 

during persistence.[38] Subsequent biochemical characterization revealed that these serine 

hydrolases included novel serine proteases.[38] Esterase profiling using fluorogenic probes 
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identified additional esterases that are active under hypoxia, which were previously 

unidentified.[39]

ABPP studies on serine hydrolases in Mtb have also identified a subset of serine hydrolases 

involved in lipid metabolism that are important for Mtb growth.[29] After identifying 

chloroisocoumarin inhibitors of Mtb growth, the characterization of a resistant strain 

revealed that the ability to biosynthesize phthiocerol, a cell wall-associated fatty alcohol, 

conferred resistance to the most potent inhibitor, JCP276 (Figure 3b).[29] Competitive ABPP 

using FP-biotin and a clickable analog, BMB034, (Figure 3b) revealed numerous lipases and 

other enzymes involved in lipid metabolism as targets of JCP276 (Figure 3b).[29] Further 

analysis showed that the inhibitor, along with previously reported antitubercular compounds, 

targeted a common set of serine hydrolases.[29]

Additionally, ABPP has enabled profiling of active enzymes in extreme environments. Live-

cell chemoproteomic profiling of serine hydrolases in thermophilic archaea revealed lipases 

active at high temperatures and highly acidic conditions.[40] This advance was notable due 

to previous ABPP studies in archaea being performed under non-native conditions in lysates.
[40,41]

Altogether, the lipid membrane is an important protective barrier that exhibits considerable 

diversity between different prokaryotes. Chemical proteomic characterization of serine 

hydrolases has identified numerous enzymes involved in lipid metabolism. Further, in Mtb, 

these studies have revealed potential targets for drug development.

2.3 Probing Protein Homeostasis

The maintenance of protein homeostasis in bacteria is characterized by the precise regulation 

of protein synthesis and degradation.[42] Chemoproteomic studies of protein homeostasis 

have yielded insights into these anabolic and catabolic processes. Whereas chemoproteomic 

methods for studying protein biosynthesis have focused on the use of bioorthogonal 

noncanonical amino acid tagging (BONCAT), chemoproteomic studies of proteolysis have 

focused on the ClpXP system.

Chemical proteomic methodologies for studying protein synthesis have relied on the ability 

to label proteins with noncanonical amino acids (ncAAs). BONCAT is a versatile tool for 

labeling newly synthesized proteins with unnatural amino acid analogs that can undergo 

bioorthogonal labeling reactions (Figure 4a).[43] A variety of suitable amino acids have 

been characterized (Figure 4b). The incorporation of ANL (Figure 4b) in Escherichia coli 
(E. coli) facilitated selective click chemistry-based imaging and proteomic enrichment in 

mixed bacterial populations and during bacterial infection.[44] Furthermore, this proteome 

labeling strategy can be utilized with AHA (Figure 4b) in a variety of environmental 

bacteria and enabled the study of protein synthesis rates in response to heat shock.[45] 

Similarly, the incorporation of PEP[46] and AOA[47] (Figure 4b) into Salmonella enterica 
serovar Typhimurium (STm) have allowed selective proteome labeling and imaging during 

macrophage co-infection.[47] Continued synthetic efforts[48] towards novel bioorthogonal 

ncAAs also provide further advances in this area.
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Amino acids encoding photoaffinity handles have also been extended to study protein-

protein interactions (PPIs). This strategy has provided insight into the roles of protein 

chaperones in maintaining protein homeostasis by identifying refolding partners. Through 

the design and incorporation of DiZPK (Figure 4b), which bears a diazirine moiety, into 

a protein of interest, PPIs were captured through photoaffinity labeling and proteomic 

analysis.[49] This methodology profiled client proteins of the acid stress chaperone HdeA 

during E. coli acid stress.[49] In this study, the substitution of DiZPK at different positions 

of His6-tagged HdeA allowed for the expression of photo-crosslinking HdeA variants in 

E. coli. The incorporation of a His6-tag into this protein enabled the visualization of photo-

crosslinked complexes by Western blotting and enrichment of the PPI partners. Proteomic 

analysis identified the chaperones SurA and DegP as cooperative partners of HdeA that aid 

protein refolding during recovery from acid stress. This platform was successfully extended 

to enteropathogenic E. coli, STm, and Shigella flexneri.[50] Analogous acid stress studies of 

HdeA in S. flexneri identified novel refolding partners of this protein chaperone.[50]

The ClpP and Lon protease systems are two widely distributed systems in bacteria that 

regulate cellular protein abundance.[42] Whereas Lon protease is characterized by its 

recognition and degradation of unfolded proteins, ClpP-mediated proteolysis is characterized 

by its utilization of specific degrons.[42] Compared to Lon protease, which unfolds its 

substrates, ClpP relies on complexing with other proteins, such as ClpX, that carry out 

substrate unfolding.[51] In addition, ClpP protease is an important virulence factor in Listeria 
monocytogenes (Lm) and SA, making it a potential target for antimicrobial therapies.[52]

ABPP studies of β-lactone probe libraries in Listeria species identified β-lactones as ClpP 

inhibitors.[55,57] In Lm, VLP (Figure 5a) was identified as a selective inhibitor of ClpP1 

and ClpP2.[55] Biochemical characterization found VLP labeling of ClpP1 only occurred in 

the presence of ClpP2, which led to the identification of a heterooligomeric complex.[55] To 

understand the mechanism of VLP labeling, additional biochemical and ABPP studies of 

the oligomeric complex revealed ClpP1 contains a less active catalytic triad that is activated 

by oligomer formation with ClpP2.[58] Crystallographic analysis of the oligomers provided 

further insight into the formation of the catalytically active ClpP1/ClpP2 complex.[58]

Similarly, in SA, the evaluation of a β-lactone ABP library identified a ClpP-selective 

inhibitor D3 (Figure 5a), which was validated by proteomic identification and inhibited 

virulence in cellular assays.[54] Further optimization of the β-lactone scaffold led to 

the development of a highly selective ClpP inhibitor in SA, which had low toxicity in 

mammalian cells.[59] Noncovalent inhibitors of ClpP have also been developed.[56] The 

crystal structure of one of these inhibitors with ClpP showed that binding induced active site 

distortions that moved His123, which prevented participation in the Asp-His-Ser catalytic 

triad.[56] Further scaffold optimization led to the development of a highly potent inhibitor 

AV286 (Figure 5b), and chemoproteomic profiling by photoaffinity labeling with AV321 

(Figure 5b) validated ClpP as the primary cellular target.[56]

Whereas ClpP proteases are nonessential in Lm and SA, ClpP proteases are essential in 

Mtb.[53] In search for novel antimycobacterial compounds, a library of β-lactones was 

screened for antimycobacterial activity in Mtb and M. smegmatis, which identified MClpP-i 
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(Figure 5a) as the most potent inhibitor.[53] The clickable analog of MClpP-i, MClpP-yne 

(Figure 5a), validated ClpP1 and Clp2 as cellular targets in M. smegmatis. Biochemical and 

proteomic analysis with recombinant ClpP2 from Mtb corroborated that MClpP-i inhibits 

ClpP2 by acylating the active site serine residue.

Overall, chemical proteomic strategies for studying bacterial protein homeostasis encompass 

tools for characterizing protein biosynthesis, PPIs, and protein degradation. BONCAT-based 

platforms have yielded insights into protein biosynthesis and the role of chaperones during 

cellular stress. Additionally, chemoproteomic tools to understand protein degradation in 

bacteria have focused on the ClpP protease system.

2.4 Posttranslational Modifications

Posttranslational modification (PTM) of proteins is an important mechanism for regulating 

protein activity and localization. Chemical proteomic tools have successfully identified 

PTMs in bacteria during infection in host and microbial proteins. Clickable fatty acids, 

such as Alk-14 (Figure 6), first served as metabolic reporters of protein fatty acylation and 

identified fatty acylated proteins in E. coli.[60] Chemoproteomic profiling of the Clostridium 
difficile lipoproteome using YnMyr[61] (Figure 6) identified novel signal peptidases involved 

in surface protein shedding.[62] Genetic and pharmacological inhibition studies showed that 

these signal peptidases regulated lipoprotein shedding, a necessary process for sporulation.
[62]

STm is an enteric pathogen that causes millions of gastrointestinal illnesses each year.[63] 

STm encodes two genomic islands, SPI-1 and SPI-2, that regulate invasion and encodes 

genes important for invasion into the intestinal lumen and host cells.[64] Genetic regulation 

of SPI-1 is mediated by HilA, a transcription factor.[64] Short-chain fatty acids (SCFAs), 

such as butyrate, that are produced by the gut microbiota attenuate infection, thereby 

conferring colonization resistance.[65] Chemoproteomic profiling using Alk-3 (Figure 6) 

revealed that this colonization resistance mechanism occurs through HilA butyrylation.[66] 

Butyrylation of HilA downregulated SPI-1 gene expression and attenuated infection in vivo. 

Furthermore, this mechanism inhibited STm virulence in vitro and in vivo using acylating 

salicylic acid analogs.[67]

During bacterial infection, the host inflammatory response involves the coordinated 

production of signaling molecules by immune cells. One such signaling molecule is 

itaconate, which modulates inflammatory responses in macrophages.[68] Itaconate is an 

α,β-unsaturated carboxylic acid that is electrophilic at the β position and may act as an 

alkylating Michael acceptor. Itaconate also attenuates bacterial infection.[68] To examine 

the role of itaconate in STm infection, chemoproteomic profiling with C3A (Figure 6) in 

STm characterized alkylated cysteine residues on STm proteins.[69] One notable target of 

itaconate alkylation was isocitrate lysase, which is important for carbon metabolism in the 

absence of glucose, and itaconate was shown to inhibit this enzyme in STm.

Inflammation produces a variety of reactive oxygen species that can modify redox-

sensitive protein residues. Cysteine is susceptible to numerous oxidation states (Figure 

7a). Unoxidized cysteine residues are susceptible to alkylation (Figure 7a), which is 
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quantifiable by click chemistry-based proteomics using IA-alkyne (Figure 7b).[70,71] The 

attenuation of cysteine alkylation by IA-alkyne can be due to treatment with a cysteine-

reactive ligand[72,73] or due to cellular redox changes. To identify redox-sensitive cysteine 

residues in bacterial pathogens, quantitative proteomics with IA-alkyne was utilized in 

Pseudomonas aeruginosa (PA) and SA treated with hydrogen peroxide.[74] The identified 

proteins containing redox-susceptible cysteines included signaling proteins involved in 

metabolic regulation and quorum sensing, which were validated with additional phenotypic 

characterization.

The role of redox environment changes have also been investigated in photosynthetic 

bacteria. Changes in redox-sensitive cysteine residues in Synechococcus 7002, a 

photosynthetic bacterium, was investigated during varying CO2 availability over time.[75] 

Proteome-wide cysteine labeling with Mal-RMP and IAM-RMP probes (Figure 7b) showed 

that the temporal dynamics of reduced cysteine residues in proteins cycled upon CO2 

replenishment. These temporal dynamics depended on whether the bacterium was growing 

in carbon-starved conditions. Temporally resolved proteomics showed protein redox changes 

in response to CO2 varied across processes including transcription, photosynthesis, and 

secondary metabolism. This platform was extended to study light-to-dark transitions under 

carbon and nitrogen limitation in Synechococcus 7002, which identified additional redox-

sensitive proteins.[76]

In an analogous approach, chemoproteomic profiling of thiol oxidations in Cyanothece sp. 

strain ATCC 51142 revealed widespread changes in cysteine redox states in response to 

oxidative stress.[77] This cyanobacterium produces hydrogen gas through nitrogen reduction 

using dinitrogenase enzymes.[78] Temporally resolved proteomics showed increased 

cysteine oxidation across numerous proteins during oxygenic photosynthesis, following 

the formation of reactive oxygen species.[77] Interestingly, however, these global levels of 

cysteine oxidation subsequently decreased following hydrogen production.[77] These results 

implicate nitrogen reduction as a mechanism for combating oxidative stress.[77] Altogether, 

these studies highlight cysteine redox changes as an important mechanism for bacterial 

protein regulation in response to environmental stimuli.

Studies in bacterial protein phosphorylation have focused on two-component systems, 

which are important in coordinating bacterial responses to environmental stimuli. Briefly, 

these systems act through the stimulation of a protein histidine kinase (PHK), which 

undergoes autophosphorylation at a histidine residue, followed by phosphate transfer to an 

aspartate residue on a response regulator protein (Figure 8a–b).[79] The response regulator 

protein then typically activates the transcription of target genes and is dephosphorylated. 

The phosphorylated residues are highly reactive, electrophilic intermediates, presenting a 

challenge for reliable monitoring of activity at the protein level.

To overcome this challenge, initial proteomic studies for monitoring PHK signaling relied on 

a less reactive, thiophosphate analog of ATP, whose thiophosphate adduct hydrolyzes much 

more slowly (B-ATPγS, Figure 8c). The pendant fluorophore of B-ATPγS enabled activity-

based profiling of PHK phosphorylation.[80] Furthermore, this activity-based profiling 

strategy probed phosphate transfer to a response regulator using purified proteins.[80] 
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Biochemical studies showed that thiophosphate analogs are bound similarly and are 

hydrolyzed more slowly, whereas the introduction of sterically bulkier moieties to the 

γ-phosphate decreased binding.[84] Additional ATP probes with biorthogonal handles, such 

as probe O (Figure 8c) expanded on this methodology.[81]

Chemoproteomic profiling of phospho-aspartate modifications has emerged as a 

complementary strategy for studying two-component systems. While glutamate and 

aspartate residues are nucleophilic and react with nitrilimines generated from photolyzed 

2,5-disubstituted tetrazoles,[85] phospho-aspartate residues are highly electrophilic. 

Hydroxylamine ethers are suitable nucleophiles for trapping acyl phosphate intermediates, 

which identified novel phosphorylation sites and quantification of E. coli protein 

phosphorylation changes in response to osmotic stress using DBHA (Figure 8d).[82]

Chemical proteomic studies in PA also identified a two-component system for PA virulence 

in response to dynorphin, a mammalian cellular stress hormone. After characterization 

of dynorphin-induced pyocanin induction, photoaffinity labeling with dynorphin analogs 

identified ParS, a two-component sensor kinase, as a target PA protein of dynorphin that 

mediates PA virulence.[86] Subsequent quantitative phospho-aspartate profiling studies then 

identified the response regulator that relays the ParS signal.[83] Specifically, quantitative 

proteomics with HA-yne (Figure 8d) identified that dynorphin induces phosphorylation 

of CprR, cationic peptide resistance regulator, in PA.[83] Taken together, chemoproteomic 

strategies for studying two-component systems have overcome significant methodological 

challenges and have successfully been applied to sensory responses in systems relevant to 

environmental and infection contexts.

Chemoproteomic tools for the characterization of PTMs have facilitated the study of 

acylation, alkylation, redox modifications, and phosphorylation. These PTM profiling 

approaches have revealed previously unknown protein modifications that are important 

for regulating enzymatic and transcriptional activity. These tools have elucidated novel 

host-pathogen interactions and colonization resistance mechanisms, highlighting their utility.

3. Interrogating Bacterial Pathogenesis

Chemical proteomic strategies have been utilized for identifying proteins involved in 

bacterial pathogenesis. Specifically, chemoproteomic profiling has identified transcription 

factors that regulate virulence, aided in the discovery of inhibitors of virulence factors, and 

led to the discovery of novel virulence factors.

Quorum sensing is an important cell-cell communication process in bacteria, regulating 

group behaviors including biofilm formation and virulence factor production (Figure 9a).[90] 

Quorum sensing is regulated by small molecule autoinducers whose detection frequently 

promotes its own biosynthesis, leading to an amplified group response at high cell densities.
[90] Due to its role in regulating virulence, the design of small molecule quorum sensing 

modulators has emerged as an active area of research.[91] Photoaffinity labeling has been 

successfully employed as a strategy for the chemoproteomic profiling of quorum sensing 

receptors, as the probe photo-AHL produced similar phenotypic effects to 3-oxo-C12- AHL 
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and labeled its cognate receptor (Figure 9b).[88] Short-chain AHL analogs have also been 

developed as photoaffinity probes for quorum sensing receptors.[92] ABPP studies with FP-3 

(Figure 9b) validated the role of fimbrolides as inhibitors of autoinducer biosynthesis in 

Vibrio harveyi.[89]

Photoaffinity labeling has also been used to validate the cellular target of a quorum sensing 

inhibitor in Vibrio vulfinicus, an opportunistic bacterial pathogen that causes sepsis.[93] In 

an effort to attenuate V. vulfinicus virulence, a high-throughput screen of small molecules 

identified a diarylsulfone, quorumycin, that inhibited collagenase activity (Figure 9b).[87] To 

identify the target of this diarylsulfone, a photoaffinity analog QM-yne (Figure 9b) identified 

SmcR, which was validated as a quorum sensing transcription factor.[87] Further studies 

showed that quorumycin attenuated infection in a rabbit model.[87]

Chemical proteomics has also been important in validating the cellular targets for inhibitors 

of Mtb virulence. For example, Hip1 is a serine hydrolase that attenuates activation of innate 

immunity during infection.[94] The development of fluorogenic probes for monitoring Hip1 

activity enabled the screening of a small-molecule library to identify inhibitors of Hip1.[95] 

The selectivity of these inhibitors for Hip1 relative to host proteins was examined by ABPP, 

with the most promising inhibitors showing few off-target effects on host proteins within 

macrophages.[95] These inhibitors also successfully inhibited Hip1 in live Mtb cells and in 

macrophages infected with Mtb.[95]

ABPP with broad-spectrum FP probes has enabled the discovery of novel virulence factors 

in SA[96] and V. cholerae.[97] These virulence factors, both of which are serine hydrolases, 

have diverse distribution, biochemical activities, and mechanisms of regulation. Because 

ABPP identifies catalytically active enzymes, chemoproteomic profiling identified these 

virulence factors despite their disparate biological characteristics.

Global ABPP of SA serine hydrolases with FP-TMR (Figure 10a)[98] was used 

in conjunction with competitive ABPP to identify serine hydrolases susceptible to 

pharmacological inhibition.[96] Proteomic identification using FP-biotin (Figure 3b) and 

subsequent genetic knockout studies of the enriched proteins identified novel FP-binding 

serine hydrolases, termed Fph proteins. Biochemical characterization of the most-enriched 

protein, FphB, demonstrated it is a fatty acid esterase whose activity is stimulated by 

macrophages.[96] Furthermore, profiling with a FphB-selective fluorescent ABP, JCP251-bT, 

showed activity in pathogenic SA strains and a non-pathogenic Staphylococcus species 

(Figure 10b).[96] Lastly, genetic disruption of FphB attenuated SA infection in mice, [96] and 

the structure of FphB was also characterized.[99]

Building on this discovery, additional fluorescent triazoleurea ABPs were identified 

as FphE-selective probes.[100] These FphE-selective probes facilitated single-cell 

characterization of activity and demonstrated FphE activity in different SA strains depended 

on growth conditions. FbhE, along with FphB and FphH, have also been identified as the 

cellular target of oxadiazolones that inhibit the growth of MRSA.[101]

Active Fph homologs are found across numerous Staphylococcus spp., including 

Staphylococcus epidermis,[102] a commensal skin bacterium that regulates skin barrier 
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integrity.[103] Accordingly, the effects of SA FphB inhibitors on commensal S. epidermis 
strains were characterized.[102] Although inhibitors of SA FphB also inhibited S. 
epidermis homologs in commensal skin, further studies showed that genetic deletion and 

pharmacological inhibition did not affect growth or colonization in vitro and in vivo, 

respectively. Overall, ABPP in Staphylococcus species has led to the discovery and 

characterization of FP-binding serine hydrolases. Further biological characterization will 

provide insights into the role of these enzymes during infection.

In addition, ABPP with FP-TAMRA (Figure 10a) and FP-biotin (Figure 3b) of cecal fluid 

in a rabbit model of V. cholerae infection uncovered novel serine proteases.[97] Among the 

V. cholerae proteases identified in the rabbit infection model, an in vivo activated protease 

(IvaP) was active in clinical choleric stool samples (Figure 10c). IvaP was found to undergo 

extensive proteolytic processing, decrease the activity of host serine hydrolases, and alter 

cecal lipid contents. Further biochemical studies investigated the maturation mechanism of 

IvaP,[104] demonstrating that IvaP undergoes extensive intramolecular proteolytic processing 

at N- and C-terminal domains. This autoproteolytic processing depended on growth phase 

and was also regulated by an N-terminal inhibitor peptide domain. These studies also 

validated that IvaP inhibits intelectin binding to V. cholerae through proteolytic degradation 

(Figure 10c), which may play a role in intestinal immunity.

Overall, while ABPP has aided in the discovery and validation of modulators of bacterial 

pathogenesis, it has also uncovered diverse enzymes that drive virulence. Further functional 

characterization of these enzymes will elucidate their role in pathogenesis, as well as in 

non-infectious contexts.

4. Interrogating Prokaryotic Metabolism

4.1 Carbohydrate Metabolism

Carbohydrates are an important source of energy for prokaryotes, and the catabolism of 

simple carbohydrates has been extensively characterized in bacteria at the biochemical 

and genetic level.[105] Initial chemoproteomic methodologies for profiling bacterial 

carbohydrate metabolism focused on photoaffinity labeling strategies of enzymes that 

degrade disaccharides. Specifically, clickable benzophenone photoaffinity probes first 

enabled chemoproteomic profiling of exo-α-glucosidases in cellular lysates, which was also 

suitable for labeling yeast exo-α- glucosidases.[106]

Prokaryotes can degrade a variety of complex carbohydrates, which has led to application 

of bacterial enzymes to convert complex carbohydrates into feedstock chemicals.[107] To 

explore these applications, ABPP has been utilized to characterize bacterial catabolism of 

chitin.[107] In Cellvibrio japonica, this chemoproteomic platform allowed for the temporal 

resolution of chitinase activity and provided insight into how chitin-degrading enzymatic 

activity changes with carbon source availability. Chemoproteomic profiling of bacterial 

cellulose metabolism demonstrated the diversity of enzymes involved in this process. In 

Clostridium thermocellum, a panel of ABPs containing mono- and di-saccharide substrate 

analogues was used to identify stereospecific glycoside hydrolases and proteins involved 

in the C. thermocellum cellulosome.[108] In the thermophilic archaeon, Thermococcus 
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sp. strain 2319×1E, ABPP using cyclophellitol aziridine-derived probes identified xylan-

degrading enzymes with activities at high temperatures.[109] Collectively, these works 

highlight how ABPP has provided insight into the complex regulation of carbohydrate 

degradation by prokaryotes.

Additionally, bacterial metabolism of cellulose is important in mammalian gut microbiomes. 

The degradation and fermentation of fiber-derived carbohydrates in the gut produces SCFAs.
[110] These SCFAs are important gut microbial metabolites because they modulate host 

epigenetic regulation and mucin production,[110] which contributes to intestinal barrier 

integrity. Gut microbes are also capable of regulating the mucus layer by hydrolyzing 

fucose linkages found on these glycans.[111] A probe for α-L-fucosidase activity enabled 

chemoproteomic profiling of these enzymes in two commensal human gut bacteria, 

Bacteriodes fragilis and Bifidobacterium bifidum.[112] This platform may enable a deeper 

understanding of the role of gut microbial α-L-fucosidases in disease.

Overall, advances in chemoproteomic profiling of prokaryotic carbohydrate metabolism 

span a variety of biological contexts. More recent advances have focused on 

chemoproteomic platforms for characterizing the degradation of complex carbohydrates by 

prokaryotes. These chemical tools may provide further insight into prokaryotic carbohydrate 

metabolism across different biological states that have important implications for human 

health and biotechnological applications.

4.2 Metabolite-Protein Interactions

In addition to serving as biosynthetic precursors, small molecule metabolites serve many 

roles in modulating metabolism, such as acting as cofactors and signaling molecules. These 

metabolites may form noncovalent complexes, preventing the use of traditional ABPs. To 

address this challenge, chemoproteomic tools for interrogating these transient metabolite-

protein interactions have largely relied on photoaffinity labeling strategies.

For example, bifunctionalized thiamine (B1-ABP), riboflavin (B2-ABP), and biotin (B7-

ABP) analogs bearing a diazirine photoaffinity handle and clickable alkyne handle have 

been developed (Figure 11).[113] In addition to labeling known, purified binding proteins, 

B1-ABP and B2-ABP enabled protein labeling in live Chloroflexus aurantiacus, which 

scavenges these B vitamins.[113] This live-cell labeling strategy successfully identified 

transporters and enzymes involved in thiamine and riboflavin metabolism.[113] Furthermore, 

proteomic analysis identified other proteins that both probes labeled, as well as enzymes 

for which these B vitamins may be a cofactor.[113] Other photoaffinity probes for folate 

(Folate-photoclick, Figure 11)[114] and sialic acid (Sialic-photo-click, Figure 11)[115] have 

been developed and identified bacterial protein binding partners in E. coli and murine gut 

microbiome isolates, respectively. This strategy has also been applied to identify the cellular 

targets of the antibacterial natural product, promysalin[116] and cajaninstilbene acid.[117]

Cobalamin, or vitamin B12, is an important cofactor and dietary nutrient. Photoaffinity 

labeling has proven fruitful for the identification of vitamin B12-binding proteins. B12-ABP 

(Figure 11) enabled photoaffinity labeling and click chemistry-based proteomics by the 

incorporation of a diazirine and alkyne moiety, respectively.[118] B12-ABP recapitulates 
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the effects of vitamin B12 in a variety of bacteria, acting as a surrogate for vitamin B12-

dependent growth and regulating gene expression in a similar manner to vitamin B12.[119] 

Proteomic characterization in E. coli and Rhodobacteracae sp. strain HL-21 identified novel 

cobalamin-binding proteins, as well as previously known vitamin B12-binding proteins. 

Notably, the application of this proteomic platform to Halomonas sp. HL-48 uncovered 

roles for vitamin B12 in folate, methionine, and ubiquinone metabolism.[118] Furthermore, 

this proteomic study identified the transcriptional regulator, PhrR, as a candidate cobalamin 

binding protein, and additional mechanistic experiments showed that vitamin B12 enables 

DNA binding in a light-dependent fashion. The characterization of this probe in the human 

gut bacterium, Bacteroides thetaiotamicron, identified a novel B12 binding protein, BtuH2, 

that increased transport of cobalamin precursors.[120] Crystallographic studies validated 

vitamin B12 binding with BtuH2, and genetic studies showed BtuH2 deletion reduced 

growth in vitro and colonization in vivo.[120] In summary, the chemoproteomic profiling of 

cobalamin interactions in bacteria has illuminated novel roles for vitamin B12 in regulating 

cellular metabolism, gene regulation, and colonization in mammalian hosts.

Additionally, the targeting of reactive lysine residues has been used to identify bacterial 

ATP binding proteins. The ε-amino group on the side-chain of lysine residues is a 

nucleophilic moiety susceptible to targeting by electrophilic probes (Figure 12a).[121,122] 

Leveraging this reactivity, ATP mixed anhydrides have been employed as N-acylating probes 

for the chemoproteomic identification of nucleotide-binding proteins. Using desthiobiotin-

ATP (Figure 12a),[122] the ATP-binding proteome in Mtb was characterized using biotin 

enrichment during both aerobic and hypoxic growth.[123] This chemoproteomic strategy 

identified increased ATP-binding signal transduction pathways during hypoxic growth, as 

well as the decreased abundance of lipid metabolism-associated proteins.

The development of a platform using ATP-ABP (Figure 12a) for Mtb ATP-binding proteins 

identified previously described and novel ATP-binding proteins, and click chemistry-

mediated fluorescent labeling allowed for further validation by competitive ABPP.[124] 

Competitive ABPP using this probe also validated serine/threonine protein kinases as 

the target of the broad spectrum kinase inhibitor staurosporine, which compromised the 

viability of Mtb transitioning from hypoxic to aerobic growth.[125] In particular, quantitative 

proteomics identified decreases of the protein kinases PknB, D, F, and H upon staurosporine 

treatment. Further genetic studies showed PknB as a regulator of oxygen-dependent 

replication.[125]

Pyridoxal phosphate (PLP) is an important cofactor for a variety of metabolic 

transformations.[126] The reactivity of PLP frequently relies on the electrophilic aldehyde 

moiety, which can form transient aldimine intermediates. These intermediates can form 

from a primary amine in a metabolite or lysine residue. The formation of lysine-aldimine 

adducts enabled chemoproteomic profiling of PLP-interacting proteins (Figure 12b).[127] 

Specifically, pyridoxal analogs PL1–3 (Figure 12b) underwent phosphorylation to form 

PLP analogs that formed protein-aldimine adducts; subsequent reduction with sodium 

borohydride formed stable PLP adducts that were characterized by click chemistry-

based proteomics.[127] Chemoproteomic profiling in SA using PL2 identified previously 

uncharacterized PLP-dependent enzymes and characterized the cellular targets of D-
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cycloserine, a known broad-spectrum inhibitor of these enzymes, through competition 

experiments.[127] The development of additional pyridoxal analogs identified novel 

antibiotic compounds.[128]

Metabolite-protein interactions occur through diverse mechanisms, including the formation 

of noncovalent and transient covalent species. These interactions may be intractable to probe 

design strategies relying on electrophilic trapping of an active site nucleophile. To overcome 

this challenge, photoaffinity and reactive lysine labeling strategies have been developed. 

These chemical proteomic strategies have uncovered novel metabolite-protein interactions 

involved in gene regulation, cellular signaling, and metabolism, which affect bacterial fitness 

in diverse contexts.

4.3 Natural Product Biosynthesis

Bacteria produce a wide range of small molecule metabolites.[129] These natural 

products have a variety of biological effects, including antimicrobial, anticancer, and 

immunosuppressive activity.[129] As a result, the identification of novel natural products 

and understanding their biosynthesis has implications for the discovery of new drugs[130] 

and exploration of chemical space.

Important classes of bacterial natural products include polyketides (PKs) and nonribosomal 

peptides (NRPs). PK and NRP biosyntheses are carried out by multienzyme complexes 

that iteratively synthesize these natural products through the activity of specific enzymatic 

modules, which vary in substrate specificity and catalytic activity (Figure 13a).[131,132] 

These biosynthetic processes occur through covalently bound intermediates. Whereas 

PK biosynthesis begins with loading acylcoenzyme A (acyl-CoA) precursors from the 

cellular pool of acyl-CoA substrates, NRP biosynthesis is initiated by loading an activated 

carboxylic acid, adenosine monophosphate (AMP) anhydride at an adenylation domain.[131] 

Acyl carrier proteins, using a pantothenic acid prosthetic group, then tether the intermediates 

via a thioester linkage.[131] Other domains act on these intermediates, such as dehydratases 

and reductases, and the final product is cleaved through a thioesterase domain.[131]

As adenylation is the first step in NRP biosynthesis, the identification of adenylation 

domains presents a strategy for the identification of enzymes involved in these 

biosynthetic pathways. Photoaffinity labeling has been one such strategy developed for the 

chemoproteomic identification of adenylation domains.[133] In particular, the development 

of L-Phe-SAMS-BPyne (Figure 13b) allowed photoaffinity labeling of adenylation domains 

involved in the biosynthesis of the antibiotics tyrocidine and gramicidin S.[133] This platform 

was then extended to label multiple adenylation domains in a gramidicin S synthetase by 

concurrent labeling with different photoaffinity probes.[134] In a similar strategy, Sal-AMS 

ABP (Figure 13b) was used to identify proteins involved in the biosynthesis of siderophores 

derived from salicylic acid precursors.[135] Photoaffinity labeling of adenylation domains 

has also revealed proteolytic degradation of the NRP synthase of surfactin in live Bacillus 
subtilis cells.[136] Additional chemoproteomic strategies have been developed to probe 

alternative domains involved in natural product synthesis. For example, the development of 

DCSY (Figure 13b) enabled chemoproteomic profiling of dehydratase domains responsible 

for fatty acid biosynthesis in E. coli and Mtb.[137] FP-biotin (Figure 13b) and pantethiene 

Malarney and Chang Page 15

Isr J Chem. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



azide (Figure 13b) have similarly been utilized for chemoproteomic profiling of thioesterase 

and acyl carrier protein domains, respectively.[138,139]

Overall, numerous chemical proteomic strategies have been developed to probe processes 

involved in natural product biosynthesis. These complementary approaches highlight 

the diverse chemistry involved in natural product biosynthesis and wide range of 

chemoproteomic platforms available.

5. Microbial Metabolism in the Gut Microbiome

The human intestine is colonized by the gut microbiome, a diverse and dynamic community 

of hundreds of trillions of microbes.[110] The gut microbiota carry out numerous metabolic 

functions, including the fermentation of otherwise indigestible dietary compounds and the 

production of molecules that protect against infection and inflammatory disease.[110] In 

conjunction with genomic and pharmacological strategies, chemical proteomics has aided 

in the identification of proteins targeted by gut microbial metabolites, as well as the 

identification of enzymes involved in gut microbial metabolism. These strategies together 

allow for the elucidation of host-microbe and microbe-microbe interactions at a molecular 

level.

Inflammatory bowel disease (IBD) is a widespread disease that afflicts millions of people 

worldwide.[141] Aberrant protease activity in the gastrointestinal tract is an increasingly 

appreciated aspect of IBD and one target for therapeutic intervention.[141] In a murine 

model of IBD, quantitative proteomics of fecal samples revealed the increased production 

of host protease inhibitors and a large number of uncharacterized gut microbial proteins.
[142] Activity-based enrichment with chloromethylglycine-biotin led to the proteomic 

identification of putative microbial cysteine proteases.[142] Along these lines, ABPP of 

serine hydrolase activity in healthy and ulcerative colitis patient fecal samples led to the 

enrichment of putative host and microbial serine proteases in ulcerative colitis patients.[143] 

Together, these results highlight the complexity of the gut metaproteome and utility of ABPP 

as a proteomic enrichment strategy to understand the role of specific enzyme classes in 

disease.

Human gut microbiota also produce metabolites that inhibit host protease activity.[144] 

The elucidation of gut microbial NRPS biosynthetic gene clusters revealed the production 

of dipeptide aldehydes across numerous human gut bacteria.[144] Subsequent target 

identification in mammalian cells by competitive ABPP revealed cathepsins B, C, L, and 

S as host proteases that these dipeptides inhibited.[144] Accordingly, ABPP has elucidated 

the interplay between gut microbial metabolism and host protease activity.

Gut microbiota produce a wealth of metabolites derived from precursors ingested by 

the host.[145] These precursors include dietary components, such as amino acids[146] 

and fiber.[110] Especially salient, however, is the ability of gut microbiota to metabolize 

pharmaceuticals and their derivatives,[147] which exhibits variability between individuals.
[148] Although genome mining and biochemical characterization remain important 

approaches for characterizing these microbial enzymes,[148] enzymatic activity in 
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biochemical assays may differ in cultures[149] and in vivo. As a result, ABPP methodologies 

have emerged as a useful strategy for identifying the microbial enzymes actively catalyzing 

these metabolic transformations in gut microbial communities.

Chemoproteomic tools for profiling xenobiotic metabolism have identified gut microbial 

enzymes that induce drug toxicity through reactivation. Mammalian drug metabolism 

involves numerous transformations, including redox modifications, hydrolysis, and 

conjugation.[150] The conjugation of glucuronic acid onto drugs, glucuronidation, is an 

important transformation for increasing the water solubility of drugs, thereby promoting 

excretion in the urine and feces.[150] Glucuronidation is a detoxification pathway for 

the anticancer drug irinotecan, which can be reactivated in the gut by microbial 

β-glucuronidases into a toxic metabolite.[151] β-glucuronidase inhibition reverses this 

reactivation-induced toxicity.[151] The use of GUS-Biotin-ABP and GUS–Cy5-ABP (Figure 

14a)[152] identified bacterial β-glucuronidases in human fecal microbiota, which revealed 

diversity of these enzymes across different genera and variation in enzyme activity between 

individuals.[153]

Triclosan is an antimicrobial in consumer products whose ubiquitous use is being 

reevaluated in light of toxicity concerns.[156] Although triclosan is inactivated and secreted 

as its glucuronide (Figure 14b),[156] further studies show that subclasses of bacterial β-

glucuronidases reactivate triclosan in mice.[155] Human fecal isolates reactivated triclosan 

ex vivo, which correlated with the abundance of active β-glucuronidases identified using 

GUS-Biotin-ABP.[155] Furthermore, triclosan administration in mice exacerbated dextran 

sodium sulfate (DSS)-induced colitis, which was reversed upon bacterial β-glucuronidase 

inhibition.[155]

ABPP has also been extended to the isolation of specific gut microbes with active 

β-glucuronidase enzymes.[154] GlcA-ABP (Figure 14a) fluorescently labeled cells with 

active β-glucuronidases, which enabled fluorescence-activated cell sorting for bacterial 

enrichment.[154] When applied to mouse intestinal contents, this platform characterized the 

interindividual variability of gut microbial β-glucuronidase activity, which decreased upon 

antibiotic administration.[154]

Chemoproteomic profiling has also been important in elucidating the roles of gut microbial 

bile acid metabolism in disease. Bile acids are cholesterol-derived carboxylic acids that are 

conjugated in the liver to glycine or taurine.[157] When secreted into the intestine, these 

conjugated bile acids act as detergents and aid in the emulsification of dietary lipids and fat-

soluble vitamins.[157] In the intestine, microbial bile salt hydrolases (BSHs) hydrolyze the 

amide bond, producing unconjugated bile acids that undergo further chemical modifications 

(Figure 15a).[157] These microbially-produced bile acids are important modulators of host 

physiology and immunity.[158]

Because BSH activity is required for the biosynthesis of secondary or microbially-produced 

bile acids, BSHs are termed the “gatekeeper” enzymes of microbial bile acid metabolism.
[159] The importance of BSHs led to the development of an ABP, consisting of a clickable 

cholic acid analog bearing an acyloxy methylketone warhead (Ch-AOMK, Figure 15b).
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[159] Click chemistry-based chemoproteomics with Ch-AOMK detected BSH activity in 

gut anaerobes and mouse fecal samples.[159] Moreover, this chemoproteomic platform 

determined that BSH activity increased during intestinal inflammation in a murine model 

of DSS-induced colitis.[159] Additional ABPs for BSH activity have been developed utilizing 

acrylamide (BSH-ABP-A, Figure 15b) and β-lactam warheads (BSH-ABP-B, Figure 15b).
[160]

ABPP has also been used to validate the specificity of BSH inhibitors. A chenodeoxycholic 

acid-derived fluoromethyl ketone inhibitor was developed as a covalent BSH inhibitor, 

which modulated bile acid levels upon oral administration in mice (CDC-FMK, Figure 

15 d).[161] Chemoproteomic profiling with a clickable analog (N3-CDC-FMK, Figure 15b) 

validated its specificity to BSH and showed little off-target effects on host proteins.[161] A 

second-generation inhibitor (AAA-10, Figure 15d)[165] protected against intestinal barrier 

erosion and liver inflammation in rats fed a high-fat diet.[166] This protective effect was 

shown to be caused by the formation of protective micelles by conjugated bile acids, which 

sequestered the unconjugated bile acids that cause intestinal barrier damage.[166]

Chemoproteomic profiling with photoaffinity labeling has provided insight into bile acid 

signaling. The development of Photo-CA (Figure 15c) identified bile acid-interacting 

proteins in HeLa cells.[163] The application of PhotoCA in E. coli revealed a two-component 

system for bile acid sensing in which EnvZ was identified as a histidine kinase that senses 

bile acids.[167] The response regulator, OmpR, triggered the production of OmpC, the 

deletion of which prevented bile acid efflux and survival in the presence of bile acids.[167] 

The development of x-alk-LCA-3 (Figure 15c) has led to the discovery of novel bile acid-

binding proteins, including a previously uncharacterized BSH in Enterococcus faecium.[164]

Chemoproteomic profiling of bile acid-interacting proteins has provided insight into the 

role of bile acids in regulating genes in bacterial pathogens. For example, chemoproteomic 

profiling with x-alk-LCA-3 (Figure 15c) identified a transcription factor that is activated by 

lithocholic acid in Clostridioides difficile.[168] In STm, photoaffinity labeling has elucidated 

the role of bile acids in colonization resistance. Building on previous work showing that 

chenodeoxycholic acid (CDCA) inhibits SPI-I expression by destabilizing transcriptional 

regulator HilD,[169] the development of alk-x-CDCA (Figure 15c) validated this binding 

interaction and served as a means of generating HilD mutants that were resistant to 

inactivation by CDCA.[162] These resistant mutants were able to override CDCA-mediated 

colonization resistance, showing more robust infection in mice and in mice supplemented 

with CDCA.[162] Thus, the use of chemical proteomic tools has deepened our understanding 

of how bile acids shape gene expression in enteric pathogens.

Gut microbiota are a complex community of bacteria that carry out a plethora of metabolic 

transformations. Gut microbial metabolism produces a variety of small molecule metabolites 

that are important for regulating host physiology and diseases. Chemoproteomic tools for 

understanding gut microbial metabolism have illuminated ways in which these metabolic 

transformations change during pathological conditions, contribute to disease, and impact 

bacterial and host signaling.
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6. Conclusion

Prokaryotes are ubiquitous and critical in ecosytems within the environment and biological 

processes intrinsic to human health. Many of the microbial activities in these contexts are 

carried out by bacterial proteins and enzymes. As such, gaining a deeper understanding 

of bacterial protein and enzyme function has led to the development of innovative 

chemical tools for understanding the roles of bacteria in these important processes. 

Chemical proteomics has emerged as an important technology for probing bacterial activity, 

enabling the profiling of microbial proteins and enzymes involved in regulating bacterial 

physiology, pathogenesis, and metabolism in complex settings, including in live bacteria 

and microbial communities. Moreover, chemoproteomic approaches have uncovered new 

functions for bacterial proteins, as well as novel microbial enzymes. These results have led 

to the characterization of previously unknown virulence factors, mechanistic elucidation of 

microbe-microbe interactions, and discovery of new host-pathogen interactions. Ultimately, 

these findings are anticipated to provide significant insights into understanding the role of 

bacterial proteins and enzymes in the environment and in human health.
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Figure 1. 
Key chemoproteomic profiling technologies. (a) Labeling of enzyme active sites with 

activity-based probes (ABPs). (b) Small-molecule protein target labeling with photoaffinity 

probes, including a chemical schematic of protein labeling by a diazirine photocrosslinker. 

(c) Metabolic labeling of protein targets using chemical reporters that are metabolically 

incorporated into newly biosynthesized proteins. (d) Labeled biological targets can be 

further tagged using click chemistry with an appropriate chemical probe containing an 
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imaging agent or affinity handle for in situ imaging or mass spectrometry-based proteomics, 

respectively.
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Figure 2. 
Chemical probes to target bacterial cell wall biosynthesis. (a) Peptidoglycan strand 

crosslinking by transpeptidases is a key step of cell wall biosynthesis. (b) Chemical probes 

for profiling peptidoglycan transpeptidases have utilized activity-based labeling[19,20] and 

photoaffinity labeling modalities[21] (pink), coupled with alkyne click handles (blue) for 

chemoproteomic identification.

Malarney and Chang Page 29

Isr J Chem. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Chemical probes to target mycomembrane biosynthesis. (a) Mycomembrane biosynthesis 

and composition. (b) Chemical probes for profiling mycomembrane biosynthetic enzymes 

including photoaffinity[28] and activity-based[6,29,30] labeling strategies (pink) have 

identified numerous hydrolases involved in lipid metabolism through the use of competitive 

ABPP and click chemistry handles (blue) for identification.
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Figure 4. 
Whole-proteome labeling using bioorthogonal noncanonical amino acid tagging (BONCAT) 

with noncanonical amino acids (ncAAs). (a) Metabolic labeling of protein biosynthesis 

using BONCAT in which ncAAs are incorporated into nascent peptides. (b) ncAAs 

containing click chemistry handles[44,46,47] (blue) or a photo-crosslinker (pink).[49]
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Figure 5. 
(a) Covalent inhibitors of ClpP proteases, which contain an acylating β-lactone electrophile 

(pink) and alkyne click chemistry handle (blue).[53–55] (b) Noncovalent ClpP inhibitor 

AV286 and its photoaffinity profiling analog AV321, which contains a diazirine 

photocrosslinker (pink) and alkyne click chemistry handle (blue).[56]
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Figure 6. 
Chemical probes for probing post-translational acylation [60,61] and alkylation[69] in bacteria 

with moieties enabling protein ligation (pink) and click chemistry-based modification (blue).
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Figure 7. 
Chemoproteomic tools for profiling cysteine redox changes. (a) Redox-sensitive cysteines 

can be profiled using activity-based probes (ABPs). (b) ABPs for monitoring reactive 

cysteine thiols use a cysteine-selective alkylating warhead (pink) and click handle (blue).
[71,75]
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Figure 8. 
Chemical tools for studying phosphorylation in two-component systems (TCS). (a) 

Unstimulated two-component system and inactive target genes. (b) Gene activation through 

the stimulation of a TCS by the activating ligand. (c) ATP analogs for monitoring TCS 

phosphorylation append a chemical reporter through γ-phosphate (pink) transfer of a 

fluorophore (green)[80] or alkyne click handle (blue).[81] (d) Nucleophilic hydroxylamine 

(pink) probes for profiling aspartate phosphorylation utilize a desthiobiotin[82] or alkyne 

(blue)[83] reporter.
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Figure 9. 
Chemoproteomic tools for studying quorum sensing. (a) Schematic of quorum sensing 

signaling cascade in a bacterium that is initiated by an autoinducer binding its cognate 

receptor. (b) Quorum sensing modulators and chemical probes that contain a protein 

crosslinker (pink) and click handle (blue).[87–89]
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Figure 10. 
Discovery of bacterial virulence factors using fluorophosphonate (FP) probes.[98] (a) Broad-

spectrum fluorophosphonate probes for profiling serine hydrolases utilize a serine-selective 

fluorophosphonate warhead (pink) coupled with a TAMRA fluorophore (red)[98] for 

visualization. (b) Activity-based probe for imaging FphB activity using a chloroisocoumarin 

warhead (pink) and fluorophore (magenta).[96] (c) IvaP in Vibrio cholerae proteolyzes 

intelectin, which may aid in evading host defense.
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Figure 11. 
Photoaffinity probes used to identify metabolite-protein interactions [113–115,118] with click 

chemistry handles (blue) and reactive photocrosslinkers (pink) indicated.
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Figure 12. 
Chemoproteomic platforms exploiting lysine reactivity. (a) Chemical probes for identifying 

ATP-binding proteins.[122,124] (b) Chemical probes for profiling pyridoxal phosphate (PLP)-

interacting proteins.[127] Lysine-reactive electrophiles (pink) and click chemistry handles 

(blue) are indicated.
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Figure 13. 
Probing modular nonribosomal peptide (NRP) and polyketide (PK) biosyntheses. (a) 

Scheme of biosynthetic pathway. (b) Chemical probes for NRP and PK biosynthetic 

modules utilize photoaffinity,[133,135] metabolic,[140] or activity-based labeling strategies 

(pink).[6,137] Coupling these labeling moieties with a click handle (light blue),[133–135,139] 

fluorophore (dark blue),[137] or biotin[6] enables proteomic profiling and identification. The 

target domain of each probe is indicated in parentheses. AD=adenylation domain; ACP=acyl 

carrier protein; DH=dehydratase domain; TE=thioesterase domain.
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Figure 14. 
Gut microbial β-glucuronidases in xenobiotic metabolism. (a) Activity-based probes for β- 

glucuronidases [152,154] with fluorophores (red), enzyme-reactive electrophiles (pink) and 

click handles (blue) indicated. (b) Triclosan reactivation and reabsorption by gut microbial 

β-glucuronidases.[155]
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Figure 15. 
Chemical tools for probing gut microbial bile acid metabolism. (a) Bile salt hydrolase (BSH) 

deconjugates primary bile acids (shown: cholic acid). (b) Activity-based probes for profiling 

BSH activity.[159–161] (c) Photoaffinity probes for identifying bile acid-interacting proteins.
[162–164] (d) BSH covalent inhibitors.[161,165] Moieties involved in protein labeling and click 

handles are highlighted in pink and blue, respectively.
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