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ABSTRACT

In complex situations involving communication, agents might attempt to mask their intentions,
exploiting Shannon’s theory of information as a theory of misinformation. Here, we introduce
and analyze a simple multiagent reinforcement learning task where a buyer sends signals to a
seller via its actions, and in which both agents are endowed with a recursive theory of mind.
We show that this theory of mind, coupled with pure reward-maximization, gives rise to agents
that selectively distort messages and become skeptical towards one another. Using information
theory to analyze these interactions, we show how savvy buyers reduce mutual information
between their preferences and actions, and how suspicious sellers learn to reinterpret or
discard buyers’ signals in a strategic manner.

INTRODUCTION

Actions speak louder than words—sometimes enabling us to infer another person’s beliefs and
desires. Savvy speakers spin stories to fit their audience, like house buyers feigning disinterest
to get a better deal. In turn, savvy listeners retaliate by ignoring them, like sellers sticking to
their original prices. Here, we introduce a minimal two-agent task that captures the essence of
such interactions and model agents’ interaction using the reinforcement learning (RL) frame-
work of Interactive Partially Observable Markov Decision Processes (IPOMDP; Gmytrasiewicz
& Doshi, 2005), that endows agents with a theory of mind (ToM). We employ information
theory to analyze the signalling behavior arising in this novel paradigm, showing how purely
reward-maximizing agents endowed with a theory of mind distort and re-interpret signals.

Theory of Mind as Inverse Reinforcement Learning

In machine learning, inferring an agent’s preferences, or utility function, is part and parcel of
models that can be broadly summarized as ‘inverse reinforcement learning’ (IRL; Ng & Russell,

2000). These models observe an agent’s actions and try to deduce the agent’s preferences from
these observations. The core insight of these models is that agents will only perform actions that
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areworth the cost. Forexample, if your colleague walks three blocks to afancy cafe when there is a
free coffee machine in the office, they likely award high subjective utility to artisanal roasts. Algo-
rithmic methods of exact or approximate Bayesian inference (Bakeretal., ), including neural
network distillations, can be used to carry out IRL (Oguntola etal., ;Rabinowitz etal., ).

In cognitive science, inverse reinforcement learning has been used for models of the pow-
erful inferences humans draw about one another (Baker et al., ; Jara-Ettinger, ).
Chiefly among them, the ‘Naive Utility Calculus’ (Jara-Ettinger et al., ) proposes that
humans reason in ways similar to Bayesian inference. This type of model has successfully
explained how we reason about one another’s kindness, knowledge, effort allocation, and

skills (Berke & Jara-Ettinger, ; Xiang et al., ). Interestingly, this inferential ability arises
early in development, with children as young as 5 years old being able to make intricate infer-
ences (Jara-Ettinger et al., ). Across fields, this ability to reason about others beliefs,
desires and intentions has been referred to as ‘theory of mind’ (Premack & Woodruff, ),
a trait hypothesized to be foundational to the human ability to carry out complex social inter-
actions (Camerer et al., ; De Martino et al., ; Ho et al., ; Hula et al., ; Ray
et al., ; Rusch et al., ; Steixner-Kumar et al., ; Xiang et al., ).

Extending Inverse Reinforcement Learning Through Recursion

The ‘Naive Utility Calculus’, however, is not called ‘naive’ without reason, and its naivety
extends to most other ‘naive’ inverse reinforcement learning algorithms: they assume that
the agents being observed are acting ‘naively’, that is, in a purely reward maximizing manner.
However, in many situations, agents are aware that they are being watched. Such observer
awareness (Miura & Zilberstein, ) is less important when the observer is an equally
coffee-obsessed colleague, but becomes complicated when the observer can use its inferences
to our detriment, for example, to increase the price of our favorite espresso—as, for example,
in online dynamic pricing. Agents acting optimally should take such competitive scenarios
into account when making their decisions—by inferring, and planning with, the inference
of the observer in mind.

Such recursive reasoning about other agents extends theory of mind and has been used to
explain a number of different phenomena in human interaction, from how we teach to how we
lie and wage war (Crawford, ; Ho et al., ; Oey et al., ). Broadly, formal models
of this recursivity (Doshi et al., ) tend to extend the simple inference in inverse reinforce-
ment learning, and ‘plan through’ this inference model. A particularly flexible instantiation of
this is the mulitagent reinforcement learning framework involving Interactive Partially Observ-
able Markov Decision Processes (IPOMDP; Gmytrasiewicz & Doshi, ). In an IPOMDP
characterization, agents reason not only about uncertainty in the environment (as in a regular
POMDP), but also about other agents’ beliefs, desires, and intentions. Furthermore, agents do
so in a recursive manner, at different levels of a ‘cognitive hierarchy’ (Camerer et al., ).
That is, agents of different sophistication model agents that are less sophisticated than them-
selves (‘I believe what you believe what | believe’ and so on). On average, humans are
hypothesized to reason to a depth of 1.6 levels (Camerer et al., ).

Information Theory in Multi-Agent Interactions

In an IPOMDP, one agent’s actions are interpreted by other agents as signals about the hidden
or latent characteristics that would be the target of IRL. Information theory (IT) is a particularly
helpful tool to understand the messages that thereby get sent among such sophisticated rea-
soning agents, particularly regarding deception (Kopp et al., ; Zaslavsky et al., ). This

OPEN MIND: Discoveries in Cognitive Science 609



A (Dis-)information Theory of Revealed and Unrevealed Preferences  Alon et al.

is because it allows us to measure formally the distortion of the signals transmitted between
agents, and to pin down the deception and skepticism that possibly arise. Deception thereby
wears many hats. One modus operandi is to masquerade, for example faking confidence
despite having a bad hand in Poker. Another is to completely disassociate actions from inten-
tions, for example via a Poker face which is the same regardless of the deck.

Utility Functions in Social Interactions

Previous multiagent reinforcement learning work on shaping other agents has focused on
modifying agent’s utility functions to include social aspects, often based on information theory.
For example, in Jaques et al. ( ) the utility function of one agent was modified to gain
reward from the environment as well as from influencing other agents’ behaviour. Agents
endowed with this utility adopted socially aware policies, in which, for example, they learn
to signal other agent on the location of an unobserved reward to lead them to otherwise
unreachable locations, thus gaining much from the policy change. A similar approach was

explored by Strouse et al. ( ). This work is motivated by the observation that in cooperative
environments, being transparent about one’s goal creates trust and coordination, while hiding
one’s intentions is beneficial in competitive settings. Strouse et al. ( ) handcrafted agents’

utility functions to take such (in-)transparency into account: Specifically, when agents com-
peted, their utility function was augmented with a reward for minimizing the mutual informa-
tion (MI) between their actions and intentions, whereas when they were cooperated, they were
rewarded for maximizing the same term.

The information-theoretic handcrafting approach is in contrast to our approach, which fol-
lows the ‘reward is enough’ tradition set by Silver et al. ( ). ‘Reward is enough’ argues that
complex behaviours, particularly those observed in the social realm, do not require any hand-
crafting. Instead, these behaviours arise in the actions of agents that purely maximize rewards.
To preview our findings, we show that this is indeed the case for deception and skepticism. We
thereby crucially differ from Jaques et al. ( ) and Strouse et al. ( ) in using information
theory only to measure the effects of this reward maximization but not have it be a part of the
reward maximization itself. We also note that both papers, while conceptually employing
ToM, do so at a shallow level, usually only endowing one agent in the environment with it,
and so precluding any true recursivity.

Deception in Al

Deceptive behaviour in Al has received considerable attention, with increased interest in

applications such as deceptive path planning (Masters & Sardina, ), military drone control
(Ramirez et al., ) or resilience to cyber attacks (Rowe, ), and with a multi-agent rein-
forcement learning perspective (Chelarescu, ; Sarkadi et al., ). Most of this work

however rests on model-free behaviors, where an agent learns through experience and trial-
and-error to deceive. This is for example evident in ruses learnt by systems like AlphaGo
(Silver et al., ), which uses MCTS for Q-value estimation but uses self-play to simulate
opponent’s move rather than having an explicit model of the opponent. Similarly, learning
to strategically hide information, or at least not fully reveal it, can emerge despite the lack
of an explicit model of the opponent, for example in the gameplay of ‘Cicero’ in Diplomacy

(Meta Fundamental Al Research Diplomacy Team et al., ). However, such model-free
systems are in fact sometimes easily trickable (Wang et al., ). Such more model-free
behavior is in contrast to model-based (Dolan & Dayan, ) deception, where agents learn

to target the inference processes of others, revoking the naivete of the Naive Utility Calculus.
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However, existing work in this field (Aitchison et al., ; Liu etal., ) only does so at low
levels of recursions, merely asking how to circumvent a naive utility calculus but not asking
how a not-so-naive utility calculus might act, or how to act deceptively against such a savvy
opponent.

METHODS

Paradigm

As an example of the emergence of disinformation, we model a buyer and a seller interacting
over three periods or stages ( ). Imagine a store owner offering items at stalls in various
locations, and using observations of buyer behavior to set prices for subsequent sales to the
buyer. We here concern ourselves with a single-shot instance of this task where the buyer and
seller only interact once over these three stages, and do not learn about each other in a
repeated fashion.

In the first stage, the buyer enters what can be thought of as a simple T-Maze with two
different items located at the ends of opposite arms (in our example, an apple and an orange).
The buyer incurs travelling costs, denoted by the distances d(apple), d(orange), for travelling
down one of the arms until it reaches and consumes one of the fruits. It then duly receives a
reward based on its preferences. We denote the preferences over items by r(apple), r(orange),
which are the rewards that the agent would receive from consuming them. Thus the buyer’s
immediate utlity at stage one, U1, from an item i; (i; € {apple,orange}) at this stage is just the
reward minus the cost incurred through the distance travelled:

Ug ' (i, d) = r(iy) = d(iy) ¢))

Crucially, the seller observes the buyer’s decisions (Miura & Zilberstein, ). Importantly,
the seller is also aware of the buyer’s travelling cost, but is not aware of its preferences
towards either the apple or the orange, and, as we will see below, needs to infer them.

Approaching this task through an experimentalist’s eyes, we will later vary both the dis-
tances of the two objects (d(apple), d(orange)), as well as the preference the buyer has for them
(r(apple), r(orange)). In essence, these two, distance and preference, make this a bivariate
experiment.

Paradigm

—
T 4

1. Buyer shows interest > 2. Seller chooses price - 3. Buyer buys item

Figure 1. In our simulated paradigm, two agents interact, a buyer (blue) and a seller (red). The
buyer first chooses either of two differently rewarding objects, incurring cost on the way to the
chosen object via the distance travelled. The seller observes this choice and the accompanying
distances, draws inferences about the buyer’s prices, and then prices the items accordingly. Finally,
the buyer has to buy one of the items for the set price.
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In the second stage, the seller uses their observation of the buyer to set prices, m(is), for a future
possible purchase of one of these two items. This process requires the seller to infer from the
buyer’s selection something about the buyer’s preferences, so that the seller can set prices that
maximize the seller’s reward. As mentioned above, this requires a model of the buyer’s behavior.
We present these models, and describe the inverse inference process in a later section.

In the third stage, the buyer purchases one of the items for the set price, m(i), and then
consumes it, again receiving a reward r(i3) for this consumption according to its preferences:

U (i3, m) = r(is) = m(i3) 2
The overall (undiscounted) utility accumulated by each agent is thus as follows:
UE*“ (ir, i, d, m) = Ugi (ir, d(ir)) + Ups (i3, m(iz)) ©)

The seller’s reward is just the price for the item the buyer buys:
Us(i3) = m(is) “)

Note that d(i;) is environmental (distance to items), while m(is) is set by the seller. For illustra-
tive purposes, we here restrict the preferences of oranges and apples to sum to 10. We impose
the same restriction on the walking distances in the first stage and the prices that the seller can
set in the second stage.

Model and Agents

We study different levels of sophistication of IPOMDP buyers and sellers arising from the
recursive depth of their ToM (see Figure 2). IPOMDPs enable agents to plan through another
agent’s inference process via a theory of mind (Figure 1). Unlike Camerer et al. (2015), we
assume a strict nesting, where each ToM-level uses only a model of the agent one step below
on the ToM ladder as do Gmytrasiewicz and Doshi (2005). Recall that, at the lowest level, this
can be understood as planning through another agent’s inverse reinforcement learning (IRL),
but can be taken further, allowing ever more sophisticated agents to model one another’s
inferences and planning processes recursively.

As the turns in this game alternate, the ToM levels of buyer and seller also alternate (Hula

etal., 2015), starting from the simplest buyer, which we denote as ToM(k= — 1). The ToM(-1)
Agents
ToM(-1) ToM(0) ToM(1) ToM(2) ToM(3)
@

Q.

Reinforcement
Learning (RL)

0o, .

. =g

I's ¥ N
Inverse Planning through Defending against Planning through

Reinforcement

i RL the hacked IRL a defensive seller
Learning (IRL) mnverse

Figure 2. Model: We model agents of different levels of theory of mind (ToM). Note how all buyers and all sellers share the same respective value
function and only differ in the way they use theory of mind for planning and/or inference. We begin with a simple reinforcement learning buyer in
blue, ToM(=1) that makes the first and second choice independently, and a regular inverse reinforcement learning seller in red, ToM(0), who
draws inferences about this buyer. The ToM(1) buyer plans through this seller’s inference process to optimize its overall value. In turn, the
ToM(2) seller does inverse reinforcement learning, but of a higher level, taking the ToM(1)’s planning into account. As we will see, this gives
rise to a defensive inference process. The ToM(3) in turn plans just like the ToM(1) but does so with the ToM(2)'s ‘defensive” inference in mind.
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buyer independently decides based on distance/price and preferences at the first and third
stages without taking into account the seller. That is, this naive buyer solves what amounts
to the same utility maximization problem at each step where it gets a choice. As a result, its
action-values Q at a given state are simply defined as the aforementioned utilities.

QL (i, d(ih)) = Ug ' = r(i) —d(ir) (52)

Q2 (i, d(i)) = U™ = r(is) = m(is) (5b)

After the buyer computes these Q-values, it then selects an item using a SoftMax policy (Equa-
tions 6a, 6b) with inverse temperature B. If we use j to denoting the ‘other’ item (j represents
‘apple’ if i represents ‘orange’), then the probabilities of the actions a; and as of selecting item
iy and i3 at stages 1 and 3 are:

Pty = infr,d) = o (B[QIZY (i, d (i) = QZt, (1, d(jn)]) (6a)

P22 (a3 = i3lr,m) = o (B[QZ, (i3, d(i3)) = Q= (3, d(j3))]) (6b)

In RL terms, these action probabilities are referred to as the agent’s policy. Since
r(i) + r(j) = d(i) + d(j) = m(i) + m(j), these expressions only depend on one member of the
pairs of rewards, distances and prices.

To make inferences about the preferences of the ToM(—1) buyer, the ToM(0) seller performs
Bayesian inverse reinforcement learning (Ramachandran & Amir, ) on the buyer’s first
stage actions and sets the prices accordingly. The IRL process (Equation 7) inverts the selection
using Equation 6a and reweighed using the prior p(r(i7)), assumed to be a uniform distribution
U0, 10] in this paper.

Pi=o(r|ar = i) o< Pr_—y(ay = ir|r,d)p(r) ©)

Here, we note that what the seller assumes to be the buyer’s likelihood, ﬁ’kjl(al = i|r,d),
in this case is just the ToM(=1)’s policy we defined above in Equation 6a.

Given the posterior beliefs, the ToM(0) seller sets the optimal prices via expected utility
maximization. That is, the optimal price of item i is set via:

miois, ar) = arg max {E[Us()lai]} ®)
= arg max {/m(i) Pia(as = ilr(i), m(7)) pr-o(r(i)|ar = il)dr(i)}

This computation states that for every possible item price m(i) the seller computes the sub-
jective probability that the ToM(—=1) buyer will buy the item at that said price:
Pi——1(a3 = i|r(i), m(i)) using Equation 6b. This potential expected revenue: Us(i) =
m(i) - Pe__i(as = i|r(i), m(i)), is weighted by the posterior probability over the buyer’s
preferences py—o(r(i)la; = i;), computed via the inverse reinforcement learning spelled out
in Equation 7. Note that while the buyer’s decision-making is stochastic, the seller’s policy
sets a deterministic price for each item.

While this has so far been a simple pairing of reinforcement learner and inverse reinforce-
ment learner, agents with higher theory of mind will make more complex decisions.

Specifically, the ToM(1) buyer takes the ToM(0) price computation into account, and plans
through it to optimize the sum of both first and third stage payoffs. Crucially, this model-based
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planning takes into account the seller’s inverse reinforcement learning, as the expectation in
Equation 9 is with respect to this instance of IRL. This planning is computed through a full
planning tree span. After the simulation terminates it outputs the action-values (Q(a)) for each
item selection in the first phase. The ToM(1) selects the first action via a SoftMax policy like the
ToM(=1) buyer. Since the buyer cannot affect the seller’'s behavior in the last step, the ToM(1)
acts in an identical way to the ToM(—1), that is, it selects an item via utility maximization.

The key factor in the ToM(1) policy is the belief manipulation of the ToM(0) seller. Since the
pricing policy affects the overall utility of the buyer, but is affected by the buyer’s decision in
the first step, we can express the Q-values of the k = 1 buyer at the first stage as:

Q,’(j(al = il,d) = ngl(il,d) + E[Ug:’%(lé, mtzo(ig, al))|a1 = Il]

1. s, . - . . . 9
= Ug ' (ir,d) + > Ui (i5, my_o(is, a1)) P (a3 = is|m}_y (i3, a1), a1 = i) ©

Unpacking this equation, the ToM(1) agent performs a thought experiment in which it envi-
sions itself acting as the ToM(0) seller—observing the first item pick and setting the prices
accordingly. The first component of this computations is the utility from the buyer’s first
selection (Equation 1). Knowing that this selection (a;) is used by the seller to determine the
items’ prices in the next step: mj;_, (i3, a1), it uses its mental model of the seller to simulate the
seller’s optimal pricing process (Equation 8). This nested reasoning includes the seller’s IRL
process (Equation 7). Thus, the ToM(1) buyer can predict how its action in the first step
affects the potential reward in the last phase through full mentalization of the seller’s
inference and learning process.

Crucially, while the ToM(0) seller makes inferences about the ToM(=1) buyer’s utility from
behavior, which is the equivalent of IRL, the ToM(1) buyer makes inferences about the optimal
pricing of the ToM(0) seller given the buyer’s own selection in the first phase. Note that in the
last step of the task the prices are given. Hence, the seller selects an item that maximizes its
utility similarly to the ToM(=1) item selection (Equation 6b). Hence, the strategic aspect of the
buyer’s planning is the first-item selection, as it is this that affects the beliefs of the seller about
the buyer’s preferences.

During planning, the buyer ‘imagines’ its own initial action, and then simulates the seller’s
best response as in Equation 8. This simulation performs the hypothetical IRL of the seller and
its consequent beliefs, and then computes the optimal price from its policy. Thus, as discussed
in the next section, the ToM(1) buyer improves its utility through shaping the beliefs of the
ToM(0) seller. The ToM(1) choice at the first stage is selected through a SoftMax policy (similar
to the ToM(=1) policy):

PiZi(ar = ile,d) = o(B[QIZ) (i3, d(i3)) — QZ) U3, d(3))]) (10)

The ToM(2) seller models the buyer as a ToM(1) buyer, and is aware of the manipulation
schema deployed by it. In essence, it uses the same principles as the ToM(0) seller for its
inverse RL, but unlike the ToM(0) seller, it learns to treat the signal provided (item selection)
with caution by using the ToM(1)’s policy as its likelihood in the Bayesian update:

pr_z(r|a= iy) o< Pr_i(a= iy|r,d)p(r) (11)

Lastly, the ToM(3) buyer again attempts to ‘hack’ the ToM(2) beliefs in a similar manner to the
way the ToM(0) attempts to manipulate the ToM(0) seller. This deception depends on the ‘wig-
gle room’ left, given the defensive policy adopted by the ToM(2) seller.
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To hone in on an important point: each agent higher up in the cognitive hierarchy nests the
inference and planning of those agents below it in the cognitive hierarchy. Essentially, there is
ever more sophisticated reinforcement learning (planning) that gives rise to a policy, and ever
more sophisticated inverse reinforcement learning that inverts this policy.

Information Theory, Deception and Skepticism

As we briefly highlighted in the introduction, information theory presents an elegant tool to
analyze the signals sent between agents, and their deceptive as well as skeptical nature. It
allows us to do so from different perspectives:

1. From the perspective of the sender of a message, we can ask how much a message reveals
about something it wants to hide. As we will see, this will be particularly relevant when
asking how much the buyer’s actions reveal about its preferences. Information theory
allows us to capture this using the Mutual Information between the buyer’s actions and
its preferences, I(r,a;).

2. From the perspective of the receiver of the message, we can analyse how much credence
is lent to a signal. We can do so by calculating how much a receiver’s beliefs change
in response to a signal. Information Theory lets us do this via the Kullback-Leibler (KL)
Divergence between a receiver’s prior and its posterior once it has seen a message.
Here, we are interested in this case for the seller before and after it has seen the
buyer’s action: Dy ( p(rla;)||p(n). Essentially, the lower this divergence, the more skep-
tical an agent.

3. Finally, we can take a more bird’s eye view of an interaction and ask how much a given
signal sent by a sender is misinterpreted by a receiver. Again, we can do so using KL-
Divergence, for example between what the receiver assumes is a sender’s policy and
what the sender’s actual policy is. In our case, we are for example interested in
how simpler sellers might be led astray by higher level theory of mind buyers. We
measure this as the KL-distance between what a ToM(k) seller assumes to be the
buyer’s policy (i.e., the ToM(k — 1) buyer) and the ToM(k + 1)’s actual policy, for
example for the the case of the ToM(0) buyer: Dy (pi=) (ai|r, o)llpi=t, (ai]r, ¢)). Essen-
tially, this quantifies how effective a sender’s deception is, and is therefore different
from the mutual information outlined above, which is more about the mere hiding of
information (Kopp et al., ).

RESULTS

We present the agents’ policies resulting from this progressive, recursive modelling. As
described above, the only strategic action of the buyer is its first move; hence we compare
this action across different ToM levels. In addition, we present the seller’s corresponding
prices. We describe how each buyer’s behaviour can be seen as a ‘best-response’ to its per-
ceived opponent. In turn, we discuss how the sellers respond to these policies. Throughout, we
quantify these behavioural dynamics with key information theoretic metrics and highlight the
relation between the two in light of the cognitive hierarchies.

We describe the intricacies of these policies in substantial detail in order to exploit the sim-
plicity and transparency of our setting.

We begin with the ToM(—1) buyer. As we outlined in the model section, this buyer acts
naively, maximizing the utility of each stage separately. shows the probabilities of
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because of the constraints. Notice the ruse in ToM(1) and ToM(3), who shift their policies. (D-E) Seller prices, m, after a buyer chose the apple

as a function of the distance to the apple,

d(apple), for the two different seller ToM-levels. ToM(2) discards the evidence at the extremes. (F)

Amount of deception by the different ToM buyers quantified by the mutual information between the buyer’s apple preferences and the prob-

ability that they will pick an apple. ToM(1)

and ToM(3) show lower values, effectively hiding their preferences. (G) Strength of the seller’s belief

update quantified by the KL-Divergence between their (flat) prior and posterior over the apple preferences, after observing the buyer choose

the closer and thus more likely object (ap
policy and the ToM(k + 1) buyer’s actual
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ple in left half, orange in shaded right half). (H) Dissimilarity between the ToM(k) seller’s assumed
policy, simultaneously showing the hacking success of the buyer and error of the seller.

choosing an apple, the x-axis describing the distance from the entrance to the apple, dapple;),
and the y-axis the reward derived from consuming the apple at the end of the corridor,
r(apple). The colours represent apple selection probability. Here, due to the symmetric nature
of the problem we only discuss the apple selection.

The policy resulting from the ToM(—1)’s value computations are straightforward: The apple
is more likely to be chosen when it is closer (left of x-axis) and more preferred (top of y-axis).
This behaviour is well aligned with the lack of opponent model—the ToM(=1) buyer does not
try to conceal its preferences, since it does not model the seller’s pricing scheme and so
believes that its behaviour has no consequences.
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As we noted, can re-express such a lack of concealment in information-theoretic terms by
measuring how informative the buyer’s choice is about its preferences, i.e., the Mutual Infor-
mation (MI) between the buyer’s preferences and their initial choice, Kr,a;). This Ml is shown

in the darkest curve in —the action is generally informative, particularly when the
fruits are nearly equidistant from the buyer. Here, the buyer’s choice reveals most about its
preferences.

The ToM(=1) buyer in turn is the input to the ToM(0) seller. This seller can translate what it

knows about the naive ToM(—1) policy into prices via simple inverse reinforcement learning.

shows these prices for the case that the buyer has chosen the apple in the first stage.

Since the ToM(—1) signal is reliable, the distance covered by the buyer is a good proxy for its

preferences. For example, if the apple is situated 8 steps from it, and the buyer picks it, then the

seller can infer that the buyer’s utility is at least 8 and set the price just shy of this. This all but
guarantees that the apple will be selected at the last phase.

Using IT, we re-express this “trust” in the buyer’s action in mathematical terms. Specifically,
we measure the strength of the seller’s belief update via the KL-divergence (KLD) between its
(flat) prior and posterior, Dy, (p(rl a;)||p(n). In the lighter curve in , we show the ToM(0)
seller’s KLD associated with the choice of the more likely item, which is apple when apple is
closer and orange when orange is closer (the latter shown in the shaded area). This highlights
how the seller uses every decision of the buyer as a signal, irregardless of the maze set-up.

Aiming to get the best price possible, the ToM(1) buyer attempts to hack this pricing scheme
by playing what amounts to a gambit. This manipulation is manifested in three different ways
that are evident in . First, the ToM(1) buyer adopts a deceptive maneuver for the case
when the apple is close but undesired (the uniformly dark-purple part between d(apple) = 0
and d(apple) = 2). In this setting, the buyer knows that the ToM(0) seller would interpret an
orange selection as a signal for high orange preference. Hence it selects the apple despite its
lower appeal to convince the seller that it prefers the apple to orange and gain a lower price for
the orange down the road.

The second deception takes place in the shift of location of the indifference line (for exam-
ple when d(apple;) = 7). Here, the probability of selecting an apple rises above parity only
when the preferences are about 7.5 instead of 7 (the expected behaviour by the observing
ToM(0)). This “delayed” selection shifts the posterior beliefs of the ToM(0) seller to believe that
the buyer prefers oranges more than it actually does and the buyer gets a discounted price for
the apple.

Lastly, in the central region (d(apple;) = 5) the ToM(0) policy outputs a slightly off-diagonal
line of indifference. Again, from the perspective of the ToM(0) observer, the probability of
selecting an apple in this setting, when the apple preference is 6.0, are almost 1.0 and not
0.5—thus the naive ToM(0)’s inverse RL process is inaccurate.

We can express this ruse in information-theoretic terms in two ways. Returning to the Ml
between (naive) preferences and policy, we show how the ToM(1) buyer manages to signifi-
cantly reduce this informativeness about its preferences, particularly when one of the items is
close (the medium line in ).

As we discussed, we can measure the success of the buyer’s ruse by asking how wrong the
ToM(0) seller’s model is. We do so by measuring the KLD between what the ToM(0) seller
assumes to be the buyer’s policy (i.e., a ToM(=1) buyer) and the ToM(1)’s actual policy,
D (piZh (ai|r, ©)llpi=t, (ai]r, ). This belief discrepancy is shown in a darker green line in

, highlighting the large discrepancies.
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Having access to this ToM(1) buyer model, the ToM(2) seller becomes skeptical about the
buyer’s actions, and adjusts its pricing appropriately. We show this pricing in . When
the maze setting enables the ToM(1)’s bluff (for example, when the distance to the apple
d(apple;) = 1), observing an apple selection provides the seller with no information about
the buyer’s preferences (compare the previously discussed uniformly purple policy of the
ToM(1) agent in , and notice how it always chooses the apple regardless of prefer-
ence). As a result, the seller ignores the distance travelled by the buyer and keeps pricing the
items equivalently at these distances.

As the cost of bluffing increases, the seller adapts the apple price to match, but does so at a
sub-linear rate, still remaining suspicious of the buyer’s choice—which is warranted by the
buyer’s policy of over-selecting the under-preferred item. However, when the apple is farther
away than the orange (right half of the plot), this logic switches, and picking the apple now
becomes a very strong signal of the buyer actually liking the apple. This is because the ToM(1)
buyer is now more likely to employ a similar ruse towards the orange, and would only pick an
apple when it has a really strong preference towards it.

Information theory again lets us formalize this skepticism via the KL-divergence as a func-
tion of the item more likely to be picked (see the dark line in , which shows how the
ToM(2) seller’s belief about the buyer is affected less, or, when the items are closer, not at all,
by the buyer’s actions).

The ToM(3) buyer attempts to manoeuvre around this skeptical pricing to achieve the best
overall reward. However, it is essentially cornered and can only attempt minimal ruses in a
few possible game settings, particularly when the items are roughly equidistant (see ).
In fact, it must act like a ToM(1) buyer because the somewhat paranoid ToM(2) would other-
wise overprice the preferred item heavily.

This inability to outmanoeuvre the seller significantly has an information-theoretic conse-
quence. While the Mutual Information between policy and naive preferences of the ToM(3)
buyer is, in some regions, slightly lower than the ToM(1)’s, the ToM(3) buyer cannot mischar-
acterize its preferences further (lightest curve in ). Despite the limited possibilities for
deception, this figure shows that through its recursive inference, the ToM(3)’s policy reduces
MI, in a way that corresponds to the Ml reduction of the ToM(1) agent. When the apple’s dis-
tance lies in the interval [3.0, 7.0], the MI between the ToM(3)’s actions and preference dis-
plays an opposite pattern relative to the ToM(1)—when the latter’'s Ml increases, the former’s
MI decreases ([3.0, 3.5]) and when the MI of the ToM(1) decreases ([4.0, 5.0]), that of the
ToM(3) increases. We interpret this negative correlation through the lenses of the deception
of the ToM(3). When the ToM(1)’s Ml increases, more information about its preferences leaks
through its actions, allowing the ToM(1) seller’s belief update to be more affected by the
observed event, as evident in . Through its process of recursive inference, the

! We here present a case that uses flat priors throughout, particularly with regards to the initial beliefs (p(r)) that
the seller holds about the buyer’s preferences. Naturally, our paradigm would also allow for those priors to not
be uniform but rather already be endowed with a first guess. Indeed, this raises the question as to whether our
KL-Divergence metric is still appropriate in cases when the likelihood the seller receives aligns with its initial
prior. In this case, the mean of the posterior belief of the seller would not shift. However, this reinforcement of
the prior would still result in a reduction of the variance of the belief (because the seller receives an additional
sample and can now be more certain about its estimate). In this case, the KL-Distance Dy, (p(rla;)||p(r)) would
still be above 0, indicating that the seller takes the buyers actions into consideration. In contrast, when the seller
knows (through theory of mind), that the buyer is sending an uninformative signal, then it would simply keep it’s
prior mean and variance, resulting in Dy, (p(rl a;)||p(r)) = 0, just as we showed before—even when the likelihood
might superficially ‘agree’ with the prior to a naive receiver.

OPEN MIND: Discoveries in Cognitive Science 618



A (Dis-)information Theory of Revealed and Unrevealed Preferences  Alon et al.

ToM(3) buyer determines that it has to reduce the Ml to avoid preference detection by the
ToM(2) seller. In a less constrained environment, this antithetical pattern may be stronger.
Equally, the discrepancy between the ToM(2) seller’s assumptions about the ToM(3) buyer
and the truth is much less than that for the ToM(0) seller and ToM(1) buyer pair (light curve
in ). Note that the ToM(2) dissimilarity increases in regions where the ToM(0) dissim-
ilarity decreases, showing the ToM(3)’s attempts at deception.

DISCUSSION AND FUTURE WORK

Our work shows how purely reward-maximizing agents can appear to engage in complex sig-
nalling behavior, as captured by information theory. Unlike Strouse et al. ( ), where the
mutual information manipulation is pre-programmed into the utility function of the agents, in
our work we only rely on theory of mind and planning. We also extend multi-agent reinforce-
ment learning work on deception (Aitchison et al., ; Liu etal.,, ) deeper into the cog-
nitive hierarchy. We show how, through a form of planning that is opponent-aware, agents can
exploit other agents’ inference processes. More specifically, we show how a sender can pur-
posefully reduce the informativeness of their actions and target the inferences they expect a
receiver to perform. On the other hand, we show how agents can defend themselves from this
manipulation by (partially) ignoring the behaviour they observe. This counter-deception can
be interpreted as skepticism and we illustrate it both in policies and in inference.

We quantified the extent of manipulation in these deceptive behaviours using information-
theoretic metrics. Our results follow the conceptual ideas presented by (Kopp et al., ):
agents learn to distort the communication by reducing informative information and deliber-
ately convey wrong information. These actions mangle their counterpart’s inference process
and cause them to adopt false beliefs. We show how different ToM levels adopt different
information-theoretic ‘attacks’.

This work is relevant for the study of social cognition in artificial (Jaques et al., ;
Rabinowitz et al., ) and biological systems. For example, it adds a model-based reinforce-
ment learning and information theoretic perspective to Goodhart’s law (Goodhart, ),
which states that people tend to try to game statistical regularities used by authorities (e.g.,
the government or a retailer) for control purposes (e.g., taxation or dynamic pricing). Our
agents also engage in rational ‘deliberate ignorance’, or the practice of purposefully discarding
signals that they might receive. Deliberate ignorance has received interest as both a descrip-
tion of empirical human behavior and as a potentially useful strategy in game-theory and law
(Hertwig & Engel, , ). Future research will have to investigate the crucial question of
how closely humans (Barnett et al., ; Ransom et al., ), or other animals (Premack &
Woodruff, ), actually follow our theoretic analyses in this task.

In general, animals and humans can engage in what appears to be behavior that is similar to
what we observe theoretically. For example, Clayton et al. ( ) and Emery and Clayton
( ) observed that corvid engage in sophisticated ruses to hide their food-cache when they
are being watched. Of particular interest here is that only those corvids that had previously
stolen do so, raising interesting questions about how biological agents learn to rise in the
ToM hierarchy.

In humans, ToM-driven deception has also been observed. For example, Crawford ( )
analyzed the Allies’ decision to land in Normandy instead of Calais through the lens of theory
of mind. Relevant to our work, Oey et al. ( ) use a recursive modelling framework similar to
ours. They show that only a recursive theory of mind style model could explain several empir-
ical facets of how senders design lies. Using less formal models, the developmental
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psychology literature has investigated how theory of mind may be a precursor for children’s
ability to lie: For example Ding et al. ( ) show how teaching kids theory of mind skills led
them to ‘deceive constantly’, and in two larger scale meta-analyses Sai et al. ( ) and Lee
and Imuta ( ) show a correlation between children’s theory of mind abilities and lying.
Seeing that inverse reinforcement learning has been taken as a basis for benevolence about
other people in the form of the Naive Utility Calculus, we believe that IPOMDP, framed as an
extension of IRL, is a strong candidate for extending this reasoning systematically to more com-
petitive domains. Thereby, IPOMDP allow for a joint Bayesian reinforcement learning account
of social interaction (FeldmanHall & Nassar, ; FeldmanHall & Shenhav, ). We also
suggest that information theory will be a useful tool to understand the messages sent between
deceptive and skeptical children, and adults.

Theory of Mind: Advantages and Limitations

Our work focuses on deep recursion in theory of mind. The benefits of such recursion have
been studied in multiple environments, ranging from cooperative (Devaine et al., ) to
competitive (Hula et al., ). While it is well accepted that higher ToM level can improves
the outcome of the individual, it is not clear whether this improvement is linear or asymptotic.
Our work speaks to this by showing how a first step of deception (ToM(1)) is countered with
relatively sweeping skepticism (ToM(2)).This in turn locks down the ability for further decep-
tion in higher ToM(3) evident in ), hinting that, at least in settings similar to ours,
higher ToM benefits are asymptotic. We note that these dynamics are highly affected by the
conservative pricing policy adopted by the ToM(2) seller as a precautionary mechanism
against the ToM(1) deception. In turn, the ToM(3) is cornered, hence its policy resembles
the ToM(1)’s policy.

One crucial limitation for the biological plausibility of our simulations is the high compu-
tational cost of deep recursive reasoning. This recursion forces a ToM(k) agent to solve IMI*
POMDP problems where M is the number of possible agent models. In Gmytrasiewicz and
Doshi ( ) this complexity is evaluated to be PSPACE-hard for finite time horizon. From both
computational complexity as well as from a bounded rationality perspective, this imply that
the optimal policy of higher ToM levels is practically infeasible to compute in an accurate and
timely manner. Indeed, previous theoretical work limited the highest ToM level to, in our
nomenclature ToM(2) (for example, Adhikari & Gmytrasiewicz, ; Devaine et al., ;
Goodie et al., ). Future work on efficient recursive beliefs representation is needed to
make this problem computationally feasible.

While we highlighted the benefits of higher ToM levels, high ToM can also be detrimental.
Of particular interest are misplaced high levels of recursion that may lead agents to be unnec-
essarily skeptical, when they are in fact faced with naive agents. This would arise from our
k-level cognitive hierarchy model where ToM(k) always strictly interpret actions as coming
from the less sophisticated agent that is specifically ToM(k — 1)). Alon et al. ( ) investigated
equivalent IPOMDP agents in a dynamic iterated game, showing deception and skepticism
similar to the present work, but showing how misplaced high theory of mind gives rise to
agents that stop trusting each other and lose reward in the process.

Further Work

Our work leaves much opportunity for further investigation: First, a key factor of these decep-
tive dynamics is full observability of the actions of the players. Hence, future work might
explore the information-seeking perspective of this model (Schulz et al., ), asking how
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much the buyer is willing to pay, or be paid, to disclose its actions and how much the seller is
willing to pay to uncover the buyer’s action.

Secondly, certain settings of our task—like the extreme corners of the maze—encourage
more or less deceptive behaviours. Future work might thus treat the settings of the task as
an endogenous variable that the seller can control as part of its utility maximization planning.
Naturally, in such a setting, buyers should have the option to avoid the shopping task altogether.
We note that the control of the decision environment has links to the game theoretic work on
preference elicitation and mechanism design (Becker et al., ; Roth, ).

Finally, potential future work could adopt a macroeconomic perspective and explore the
multi-seller, multi-buyer case. In this setting, sellers need to make inferences about the actions
of their competitors as well as about the preferences of their clients. In turn, the buyers’ plan-
ning might include a more sophisticated price query policy.

Ethical and Al Alignment Concerns

Our work also offers words of caution for systems with theory of mind, particularly as the lat-
ter’s existence is currently heavily debated with regards to large language models (Kosinski,

; Sap et al.,, ; Ullman, ). These debates mainly center around whether LLMs
possess what we would at most consider ToM(0), making relatively straightforward inferences
about the mental state of others but not using them for planning in (semi-)competitive scenar-
ios. LLM behavior has also been studied in more competitive game theoretic settings (Guo,

). For example Akata et al. ( ) investigated the behavior of LLMs in repeated games.
Their results show how theory of mind like prompts can improve coordination and that GPT-4
has a tendency to play in an unforgiving manner. LLMs have also been coupled with more
explicit planning strategies that share similarities with ours, for example for gameplay in Diplo-
macy (Meta Fundamental Al Research Diplomacy Team et al., ). We note however that
‘Cicero’ is explicitly barred from lying and deceit.

Our work explicitly shows how theory of mind can—without further handcrafting—give
rise to deceitful and skeptical agents in a symbolic negotiation task. We note how our setting
is a minimal representation of many semi-adversarial human-Al interactions, for example in
recommender systems, dynamical pricing or human-LLM conversations. For the last of these,
the emergence of theory of mind capabilities will have to be carefully monitored to understand
what the LLMs reveal about their state of knowledge and goals, and how they interpret what
other agents tell them.

A crucial aspect of the safety and ethics perspective on our results is that it is not
theory of mind alone that gives rise to deception and skepticism. Rather, what produces this
behavior is the coupling of theory of mind with a value function that mis-aligns the utilites of
two agents. Our work therefore speaks to the alignment problem in Al safety. For example,
the deceitful hiding of intentions may be crucial for the off-switch game (Hadfield-Menell
et al,, ).
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