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Abstract
Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful 
acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of 
core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia 
coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in 
the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomer-
ase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, 
with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in 
phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups 
encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under 
quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emer-
gence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug re-
sistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive 
mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal 
gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer 
and point mutations in core genes may be a key to the success of adaptation processes.
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Introduction
Bacterial populations adapt rapidly to novel challenges 
such as bacteriophage predation, antibiotic therapy, or en-
vironmental perturbations. Adaptation is facilitated by 
point mutations and by genetic exchanges with other bac-
teria. Since the genome is made of thousands of genes 
linked in complex regulatory networks and encoding pro-
teins with multiple physical interactions, these modifica-
tions may impact other processes than those directly 
involved in adaptation. The trade-off between the benefits 
and the cost of the novel variants shapes the outcome of 
their natural selection. Several studies have shown how 
the acquisition of novel functions by horizontal gene trans-
fer (HGT) depends on the existing genetic background 
(Press et al. 2013; Szappanos et al. 2016). For example, 

metabolic pathways grow by transfer of genes encoding en-
zymes involved in reactions at the periphery of existing net-
works (Pal et al. 2005), whereas genome reduction involves 
an ordered loss of specific functions (Moran and Mira 2001; 
Pal et al. 2006; Tamames et al. 2007). Interactions between 
the genetic background and genes acquired horizontally 
may tune the probability of fixation of the latter. Such in-
teractions may be a key to understand the adaptation of 
bacteria because their gene repertoires vary rapidly by 
HGT. For example, less than half of the average 
Escherichia coli genome corresponds to genes present in 
more than 99% of the strains (core genome). 
Consequently, the diversity of E. coli gene repertoires, its 
pan-genome, is more than an order of magnitude larger 
than the average genome (Touchon et al. 2009; Cummins 
et al. 2022). The large genomic variation caused by HGT 
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and gene loss means that genetic backgrounds can be very 
different within a species. Hence, not only HGT may be af-
fected by the genetic background, it is likely that the evo-
lutionary trajectories of core genes are also affected by 
changes in gene repertoires (Batarseh et al. 2023). There 
are very few studies on the existence of the epistatic inter-
actions between HGT and point mutations in core genes.

The evolution toward antibiotic resistance in bacterial 
pathogens (and commensals) is a recent example of the 
ability of bacteria to rapidly adapt to novel challenges 
(MacLean and San Millan 2019). Bacteria can counteract 
antibiotic therapies by diminishing the intracellular con-
centration of the antibiotic by reducing its influx or in-
creasing its efflux. They can also protect the target of the 
antibiotic or modify it by mutation. Finally, they can inacti-
vate the antibiotic using appropriate enzymes or evolve al-
ternative pathways that make the target redundant (target 
bypass) (Munita and Arias 2016; Darby et al. 2023). These 
mechanisms may be acquired by mutation or by HGT 
(Davies and Davies 2010). While high environmental pres-
sure imposed by antibiotics is central to the emergence of 
antibiotic resistance (Karve and Wagner 2022; Ghenu et al. 
2023), epistatic interactions were shown to shape it 
(Weinreich et al. 2006; Salverda et al. 2011; Brandis et al. 
2012; Brandis and Hughes 2013; San Millan et al. 2014). 
The evolutionary trajectories toward resistance are con-
strained by the existence of favorable mutational paths 
where intermediate steps have lower-than-average fitness 
costs and/or higher-than-average resistance (Rozen et al. 
2007; Marcusson et al. 2009; Knopp and Andersson 2018; 
Patiño-Navarrete et al. 2020). Epistatic interactions may re-
sult in the fitness cost of a resistance being alleviated by 
the presence of another one, which may favor the evolu-
tion of multidrug resistance (Angst and Hall 2013; Borrell 
et al. 2013; Knopp and Andersson 2015; Moura de Sousa 
et al. 2017). For instance, the high transmission fitness of 
multiple drug resistance Mycobacterium tuberculosis 
strains of lineage 2 resulted from epistatic interactions be-
tween compensatory mutations in RNA polymerase and 
the rifampicin resistance-conferring mutation RpoB 
S450L (Loiseau et al. 2023). On the other hand, collateral 
sensitivity occurs when resistance to an antibiotic is linked 
with an increased susceptibility to another antibiotic 
(Hughes and Andersson 2017; Darby et al. 2023).

Differences in the genetic background influence the 
evolution of antibiotic resistance (Vogwill et al. 2016; 
Castro et al. 2020; Torres Ortiz et al. 2021), even under 
strong selection (Santos-Lopez et al. 2021). However, few 
studies identified chronologies between specific changes 
in the genetic background and the acquisition of the anti-
biotic resistance (Wong 2017). Here, we define chronolo-
gies as a set of events ordered in time. In a seminal 
study, the fitness cost of chromosomal resistance to sev-
eral antibiotics acquired by point mutations was found 
to be in negative epistatic association with the presence 
of conjugative plasmids in more than half of the tested 
combinations (Silva et al. 2011). More recently, the pres-
ence of the efflux pump norA potentiated the subsequent 

evolution of point mutation conferring resistance to qui-
nolones in Staphylococcus aureus (Papkou et al. 2020). 
Finally, the ability of E. coli to evolve high-level colistin re-
sistance by point mutation in the core gene lpxC increased 
in the presence of a plasmid carrying the mcr-1 colistin re-
sistance gene (Jangir et al. 2022). Epidemiological data 
seem to confirm these trends. For example, the E. coli 
strains from the clone ST131 comprise now the majority 
of extended spectrum beta-lactamase (ESBL)–producing 
isolates from the species (acquired by HGT), and they 
are almost invariably also resistant to fluoroquinolones 
(acquired by point mutations) (Nicolas-Chanoine et al. 
2014). Hence, interactions between genes acquired by 
HGT and chromosomal mutations may be important. 
Given the differences in terms of genetic backgrounds 
across a bacterial species, caused by rampant HGT, epistat-
ic interactions may contribute to explain why strains from 
certain lineages are more often antibiotic resistant than 
others (Leavis et al. 2006; Wyres et al. 2020).

We study the evolution of resistance to quinolones, a 
large group of broad-spectrum bactericidals widely used 
in human and veterinary medicine (Brown 1996; 
Redgrave et al. 2014; Bisacchi 2015). In 2017, they repre-
sented 9.5% of the antibiotic usage in the 30 EU/ 
European Economic Area (EEA) countries (Bruyndonckx 
et al. 2021). Quinolones disrupt the function of the bacter-
ial type II topoisomerases by inhibiting the catalytic activity 
of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC 
and parE). DNA gyrase introduces supercoils, and DNA 
topoisomerase IV prevents supercoiling from reaching un-
acceptably high levels. These proteins intervene during rep-
lication or transcription, and their mechanism involves the 
creation of a double strand break that is subsequently li-
gated. Quinolones stabilize the cleavage complex prevent-
ing the enzymes from performing the ligation step, thereby 
resulting in double strand breaks that may lead to replica-
tion stalling and cell death (Hopkins et al. 2005; Aldred et al. 
2014; Pham et al. 2019). The primary target for quinolones 
is the gyrase in enterobacteria and the topoisomerase in 
Firmicutes (Hopkins et al. 2005). The mechanisms that pro-
vide high resistance to quinolones have been characterized 
in detail. They involve mutations in quinolone-resistance 
determining regions (QRDRs) of the target proteins. In E. 
coli, mutations appear most frequently at codons 83 and 
87 of gyrA, near the active site of the gyrase, altering the 
binding of quinolones and reducing the cell’s susceptibility 
to them (Willmott and Maxwell 1993). Mutations in gyrB 
are rarer, and some provide higher susceptibility to specific 
quinolones, a trait that can be masked by epistatic interac-
tions with gyrA mutations (Herrera et al. 1993). Mutations 
in the topoisomerase subunits parC and parE of E. coli usu-
ally cooccur with mutations in gyrA (Everett et al. 1996; 
Heisig 1996), suggesting that the mutations in topoisomer-
ase will not be fixed unless the sensitivity of the DNA gyrase 
has been reduced. Interestingly, a parC mutation was 
shown to strongly alleviate the cost of gyrA mutations. 
The relevance of epistatic interactions in the target protein 
mutations leading to quinolone resistance has been shown 
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in many species, e.g. E. coli (Zhao et al. 1997; Marcusson et 
al. 2009), Streptococcus pneumoniae (Pan et al. 2001), 
Pseudomonas aeruginosa (Wong and Kassen 2011), and 
M. tuberculosis (Castro et al. 2020). A combination of se-
quence analysis of 195 resistant clinical isolates, experimen-
tal work, and mathematical modeling revealed the major 
trajectories of ciprofloxacin-resistance evolution in E. coli, 
explaining the prevalence of a few dominant genotypes 
and the order of accumulation of the mutations (Huseby 
et al. 2017). Epistatic interactions with other determinants 
of resistance for other antibiotics have also been reported 
(Trindade et al. 2009; Imamovic and Sommer 2013; Lázár 
et al. 2018) and shown to be sensitive to changes in the gen-
etic background (Apjok et al. 2019). Of note, lower resist-
ance level to quinolones can also be provided by 
plasmid-borne genes such as qnrA, qepA, AAC(6′)-Ib, and 
oqxAB (Martinez-Martinez et al. 1998; Robicsek et al. 
2006; Hansen et al. 2007; Yamane et al. 2007).

Here, we wished to know if there is evidence in natural 
populations that gene gains and losses change the propen-
sity of bacteria to adapt by specific point mutations that 
are known to result in antibiotic resistance. For this, we 
identified events of gene gain and loss in the E. coli phylo-
genetic tree that occurred systematically in branches pre-
ceding those where resistance to quinolones took place. 
This approach counts events of change in the phylogenetic 
tree and correlates them. It thus allows to explicitly ac-
count for population structure (if dozens of genomes 
with a specific mutation descend from one single ancestral 
event mutation, only one event is counted). We then com-
puted the induction effect (termed here lambda) that one 
event has on the other, i.e. if a given gene gain or loss in-
creased or decreased the frequency of subsequent acquisi-
tion of antibiotic resistance by point mutations. Of note, 
this approach is different from the ones used in bacterial 
GWAS where the goal is to identify frequent cooccur-
rences of events in the same branch or simultaneous pres-
ence of genes in extant taxa (Collins and Didelot 2018; 
Jaillard et al. 2018; Lees et al. 2018; Whelan et al. 2020). 
Here, the goal is to identify changes that were fixed in 
the lineage before the acquisition of mutations conferring 
resistance to quinolones. We focus on the latter because 
they are well known and occur in core essential genes. 
Also, it was shown that the same point mutation in gyrA 
conferring resistance to quinolones can have very different 
costs depending on the genetic background (Luo et al. 
2005), a clear indication that preexisting variation in the 
latter may shape evolution in core genes.

Results
Frequency of the Mutations Providing Resistance to 
Quinolones
We analyzed 1 268 complete genomes of E. coli from 
RefSeq and 877 draft genomes of isolates sampled across 
multiple sources in Australia (named AUS [Touchon et 
al. 2020]). The first is our reference dataset, and the second 
is mentioned occasionally because it has much fewer 

clinical isolates (but the genomes are not fully assembled). 
The 2,145 genomes have 78,653 different gene families 
(pangenome) and 2,393 core gene families (genes present 
in a single copy in at least 99% of the genomes). The latter 
was used to construct a phylogenetic tree for each dataset 
(Fig. 1; supplementary fig. S1, Supplementary Material on-
line). We built the trees using the same set of core genes to 
have comparable phylogenies and phylogeny-based ana-
lyses in the 2 datasets. The trees were well-resolved with 
more than 85% of the branches having more than 90% 
UltraFast Bootstrap.

We extracted from the proteome of the RefSeq dataset 
the sequences of the gyrA, gyrB, parC, and parE genes. We 
screened these sequences for 39 different quinolone 
resistance mutations retrieved from the literature 
(supplementary table S1, Supplementary Material online). 
The mutations were remarkably frequent in the RefSeq data-
set, where 39% of the strains had at least one mutation 
(supplementary table S2, Supplementary Material online). 
As a comparison, the AUS dataset had fewer resistance mu-
tations (11% of the strains, supplementary table S3, 
Supplementary Material online), and these were concen-
trated in the human and poultry isolates (86.4%, 
supplementary table S4, Supplementary Material online). 
Hence, the absolute frequency of these mutations in the 
RefSeq dataset should be interpreted in the light of the pre-
sumed high frequency of clinical strains in the set. The search 
for antibiotic resistance genes (ARGs) in the RefSeq dataset 
showed that resistance to quinolones (including the point 
mutations, qnr/qep, and the plasmid-encoded multidrug ef-
flux pump oqx) is the most frequent in the species, since 637 
strains of 1,268 have at least one of the 3 types of resistance 
(Fig. 2a; supplementary table S5, Supplementary Material on-
line). Among these mechanisms of resistance to quinolones, 
the ones based on mutations were by far the most frequent.

The mutations conferring resistance to quinolones had 
very different prevalence in the species (Fig. 2b). The single 
mutation gyrA[S83L], which confers a significant increase 
in resistance at a low cost (Marcusson et al. 2009), is pre-
sent in 34% of the strains. The 2 other most frequent mu-
tations (parC[S80I] and gyrA[D87N]) were both present in 
more than 26% and 24% of the strains, respectively. The list 
of mutations in order of frequency then includes a muta-
tion in parE and another in parC. Of note, mutations in 
parE and gyrB are much less frequent than those in gyrA 
and parC. Apart from the sheer abundance of mutations, 
higher in the RefSeq than in the genomes of the 
Australian (AUS) dataset (see Methods section), both data-
sets showed similar patterns in terms of the most frequent 
types of mutations (supplementary fig. S2, Supplementary 
Material online). Hence, and in agreement with the litera-
ture (Saenz et al. 2003; Johnning et al. 2015), a group of 3 
mutations in 2 (of the 4) key genes targeted by quinolones 
(gyrA[S83L], gyrA[D87N], and parC[S80I]) are by far the 
most frequent in E. coli.

We then mapped the resistant isolates on the phylogen-
etic tree. We found them scattered across the species. They 
are present in all phylogroups, but their prevalence can be 
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quite different. In phylogroups E and B1, these mutations 
are rare, whereas in phylogroup F, they are very frequent. 
Hence, there is a nonuniform distribution of mutations 
for resistance across the species, with certain clades con-
taining many more mutations than others (Fig. 1). The 
AUS dataset shows similar results, with high frequency of 
resistance mutations in phylogroup F and low in E and 
B1 (supplementary fig. S1, Supplementary Material online). 
Overall, the clustered distribution of resistances and the 
frequent presence of multiple mutations suggest that 
they accumulate in nonrandom ways.

Order of Acquisition of the Mutations Conferring 
Resistance to Quinolone
The phylogenetic analysis shows a strong cooccurrence of the 
different mutations conferring quinolone resistance. It is well 
known that the combination of gyrA[S83L], parC[S80I], and 
gyrA[D87N] confers high level of resistance with limited fit-
ness cost (Bagel et al. 1999). These 3 mutations cooccurred 

much more frequently together (182) than separately (90). 
The other low-frequency mutations are often associated 
with them (supplementary fig. S3, Supplementary Material
online). Only one relatively rare mutation (gyrA[S83A]) 
was more typically found alone than in combination 
with the 3 major ones (supplementary table S2 and fig. S3, 
Supplementary Material online). The systematic identifica-
tion of large combinations of mutations raises the possibility 
that there exist typical chronologies for their accumulation. 
Indeed, it was shown using a combination of experimental 
biology and modeling that given the resistance they provide, 
the most likely path to adaptation was gyrA[S83L] -> 
parC[S80I] -> gyrA[D87N] (Marcusson et al. 2009; Huseby 
et al. 2017).

To test this hypothesis, we searched for the preferential 
chronologies of the 5 main mutations on the RefSeq data 
using the species phylogenetic tree (see Methods section; 
Fig. 3). We did not consider the reverse mutations because 
these are very rare (1.7% of all paths across the tree) and 

Fig. 1. Phylogeny and distribution of quinolone resistance mutations in DNA gyrase (gyrA) and topoisomerase IV (parE and parC) genes in E. coli 
(RefSeq dataset). The maximum likelihood phylogenetic tree of the species was built with IQTree (model GTR + F + I + G4 and 1,000 ultrafast 
bootstraps), and its scale (in substitutions per site) is in the center. The tree was midpoint rooted. The E. coli phylogroups are represented by the 
colors in the inner center. The outer circles indicate the presence of the most frequent mutations across the species. Ultrafast bootstrap values 
superior to 75% are shown with a light gray circle and values superior to 90% with a black circle (see Supplementary material online).
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because reversions are sometimes associated with poorly 
resolved regions of the tree and may thus be spurious. 
We observed similar trajectories toward the acquisition 
of the 3 main mutations in AUS dataset (Figs. 3; 
supplementary fig. S4 and tables S6 and S7, 
Supplementary Material online). In the RefSeq data, we 
identified 48 occurrences of lineages acquiring only the 
gyrA[S83L] mutation. This suggests that the mutation 
gyrA[S83L] is the first one fixed in most lineages. Some of 
the clones with this mutation then gave rise to the triple 
mutated strain. The other most frequent trajectory was 
the one going from the fully sensitive combination to the 
triple mutant (37 occurrences). Hence, our analysis failed 
to reveal unequivocally the substitution paths from the an-
cestral sensitive state to the triple mutant (gyrA[S83L], 
parC[S80I] and gyrA[D87N]). This suggests that the other 
2 major mutations are acquired and fixed very quickly, 
such that they are inferred to arrive jointly in a single 
branch of the phylogenetic tree.

To identify the paths toward the triple mutant, we used 
3 genomic datasets already available in our laboratory con-
sisting of very closely related genomes (one single ST): 757 
of ST410, 85 ST131, and 579 for ST167. In ST410, of the 757 
strains, most (656) contain mutations conferring resist-
ance to quinolone. This trait is not ancestral, as shown 
by the phylogenetic reconstruction of the sequences 
(supplementary fig. S5, Supplementary Material online). 
This is consistent with previous works, which dated the 
emergence of quinolone resistance within ST131 or 
ST410 (some basal ST131/ST410 lineages still missing it) 
in the early 1990s (Stoesser et al. 2016; Roer et al. 2018). 
Yet, almost all the resistant clones (653/656) harbor the 
gyrA[D87N]/gyrA[S83L]/parC[S80I] combination of muta-
tions, and only 2 among the basal isolates contain the 

gyrA[S83L] alone. We found similarly inconclusive results 
for the other STs. Hence, even at this fine level of granular-
ity, one cannot reconstruct the precise order of fixation of 
the 3 mutations (supplementary figs. S6–S10 and table S8, 
Supplementary Material online).

The quick accumulation of the 3 mutations could be 
due to homologous recombination replacing in one single 
event the ancestral sequences by the triple mutant. This 
seems unlikely because parC and gyrA are 1.39 Mb apart 
in the strain MG1655, and even parC and parE are more 
than 8 kb part (while observed average recombination 
tracts in E. coli are less than 1 kb [Didelot et al. 2012]). 
Still, we searched for evidence of recombination in the gen-
omes using Gubbins. This analysis showed that in 7 of the 
39 events of acquisition of the 2 mutations in gyrA, there 
was a recombination tract that was acquired overlapping 
the position of the mutations at the same time (same 
branch in the tree). This suggests that recombination 
may occasionally contribute to the emergence of the dou-
ble mutant in the lineages. Yet, of the 37 events of acqui-
sition of the 3 mutations in a branch of the tree, only one 
coincided with the acquisition of recombination tracts at 
both genes (different tracts). Overall, these results suggest 
that gyrA[S83L] is the main initial driver of the evolution of 
quinolone resistance in E. coli and that the subsequent mu-
tations are fixed almost simultaneously by rapid accumu-
lation of novel point mutations, although recombination 
may occasionally accelerate the process.

Clusters of Gene Gains and Losses Shaping the 
Emergence of Resistance Mutations
To investigate how the dynamics of gene repertoires favor 
the acquisition of resistance to quinolones by point 

Fig. 2. Distribution of the antibiotic resistance classes detected in the RefSeq dataset. a) Antibiotic resistance classes are ordered according to 
their frequency (total number in the dataset). Resistances to quinolone are separated into 3 distinct classes: resistance conferred by point muta-
tions of core genes (black), by acquisition of qnr genes or oqx genes (gray), b) Mutations are ordered according to their frequency. The first letter 
in the name in the square brackets correspond to the ancestral amino acid, the number to the position of the transition, and the last letter to the 
amino acid conferring the resistance, e.g. gyrA[S83L] means that the mutation is in gyrA at position 83 and involves a substitution Ser->Leu.
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mutations in the core genes targeted by the antibiotics, we 
searched for genes that were frequently gained or lost be-
fore the emergence of these mutations. Since most resist-
ance mutations cooccurred, and they were all shown to 
have significant individual effects on resistance, we defined 

taxa as resistant when they had at least one resistance mu-
tation. We then reconstructed the ancestral states of re-
sistance (as defined above) and of each gene family of 
the pan-genome to infer the moments of gains and losses 
of the gene families and of the resistance. Finally, we used 

Fig. 3. Chronologies of acquisition of the main resistance mutations in E. coli of the RefSeq dataset. Graphical representation of the method: 
Starting from the phylogenetic tree and the presence/absence matrix of the mutation conferring the resistance to quinolone, we inferred 
the ancestral state of each mutation at every node. These states were used to reconstruct the chronologies of acquisition of the mutation con-
ferring resistance to quinolone. Reversions were very rare (<1% of all transitions) and were not plotted for clarity. The chronologies identified in 
this figure represent successions of events in the tree and thus account explicitly for the population structure. The vertical areas represent the 
number of distinct mutations in genomes. The size of the square scales with the number of genomes observed (leaves of the tree). The edges 
represent the chronologies of acquisition of one or several mutations as inferred from the reconstruction of ancestral states on the tree. The edge 
size is proportional to the frequency of the respective transition, with the labels showing this exact number.
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Evo-Scope to compare the chronology of gains and losses 
of every family in the pangenome with the acquisition of 
the resistance to the antibiotic. Of note, this software 
searches for successions of events in different branches 
of the tree. The 2 events are thus well-separated in time. 
This allowed to identify the significant chronologies, 
i.e. when one event of gene gain or loss was followed by 
the acquisition of resistance more frequently than ex-
pected given the frequency of events and their distribution 
on the phylogenetic tree (Behdenna et al. 2016). We iden-
tified 183 gene gains and 26 gene losses occurring fre-
quently before the acquisition of the resistance (P < 10−5 

after correction for multiple tests, Fig. 4, supplementary 
table S9, Supplementary Material online, P-value distribu-
tions in supplementary figs. S11 and S12, Supplementary 
Material online).

Our method searches for preferential chronologies 
between a type of event that occurs in a set of branches 
of the phylogenetic tree and resistance mutations that 
emerge later (on higher branches). It is not aimed at iden-
tifying events that are associated, such as genes directly 
involved in the phenotype. Yet, it may also reveal associa-
tions in the sense usually employed in genome-wide asso-
ciation studies (GWAS). To assess if chronologies differ 
significantly from GWAS, we performed a GWAS analysis 
to identify genes whose presence or absence is associated 
with quinolone resistance. We then identified those posi-
tively or negatively associated with the trait (quinolone re-
sistance) while accounting for the phylogenetic structure 
of the data using a linear mixed model (LMM) (see 
Methods section). This analysis yielded no significant asso-
ciations at the same statistical threshold (correction for 
multiple tests and P < 10−5). Lowering the significance 
threshold revealed 53 genes (P < 0.01). Most of the 20 
genes positively associated with quinolone resistance en-
code transporters, regulators, transposases, or enzymes as-
sociated with antibiotic resistance (e.g. beta-lactams or 
tetracycline, supplementary table S10, Supplementary 
material online). None of the 209 genes involved in the 
chronologies identified by the Evo-Scope analysis as occur-
ring more often than expected before the resistance muta-
tions was identified by the GWAS analysis. This may seem 
surprising, but while requiring frequent ordered acquisi-
tion of the 2 traits, our method does not require a very 
significant overlap of the presence of the genes with the re-
sistance, contrary to the GWAS. For instance, the gene en-
coding the toxin RelE/ParE (not to be confounded with the 
topoisomerase ParE) was yielded by the Evo-Scope analysis 
as significantly acquired before the acquisition of the resist-
ance to quinolone (e-value = 8.6 × 10−11). However, this 
gene was not detected as significantly associated with 
the resistance by the GWAS analysis (e-value = 0.275). 
The gene was acquired 130 times and lost 21 times in 
the tree and is present in 192 genomes (of which 60 
have the resistance mutations, i.e. a fraction close to the 
one observed across the species). This suggests that our 
chronologies identify events that favor the acquisition of 
resistance without contributing very strongly to it. This is 

not very surprising, considering that strong resistance is 
well-known to be due to mutations in a few core genes 
(and that was how it was defined in the GWAS).

Many of the events identified in the chronologies were 
acquisitions (see below, Fig. 4). Genes acquired by HGT are 
often initially grouped in large mobile genetic elements 
(MGEs) or at least in fragments of DNA with more than 
one gene. If one of these genes is biologically associated 
with the emergence of resistance, other genes under 
strong genetic linkage, e.g. entering the genome in the 
same event of transfer, may also be identified as signifi-
cantly associated with the emergence of resistance. 
Indeed, an analysis of the presence of the 209 genes re-
vealed cooccurrence of many of them (supplementary 
fig. S13, Supplementary Material online). To control 
for the effect of genetic linkage, we clustered the genes 
in function of their tendency to be acquired or lost in 
the same branches of the species tree (supplementary 
tables S11–S13, Supplementary Material online). We 
then subdivided these clusters using information on 
genomic colocalization to group genes that tend to be 
neighbors (see Methods section; Fig. 4; supplementary 
table S14, Supplementary Material online). This led to 
the identification of 26 clusters of genes and 34 isolated 
genes (singletons) (Fig. 4; supplementary table S15, 
Supplementary Material online). Hence, our analysis 
suggests that there is a minimal number of 60 genes 
whose gain/loss affect the probability of acquisition of 
resistance mutations.

The Evo-Scope method provides a parameter (λ), which 
is a measure of the impact of an event (here gene gain or 
loss) in increasing the likelihood of another (acquisition of 
resistance mutations) in a higher branch of the tree. These 
values were not used for the clustering but are expected to 
be similar among genes under strong genetic linkage. 
Indeed, genes in clusters had more homogeneous lambda 
values relative to the others (levene Test: P-value = 5.71 ×  
10−06, mean square of the error = 0.591, one-way analysis 
of variance ***), meaning that genes within the same clus-
ter have approximately similar impacts on the acquisition 
rate of the quinolone resistance from the statistical point 
of view. Of the 60 clusters, the majority (49) promotes the 
acquisition of the resistance mutations (λ>1), while only 
11 clusters reduce it (λ<1) (Fig. 4, bottom right). Most 
of the latter are close to the significance threshold. This 
means that most of the significant events of gene gain 
and loss associated with mutations tend to increase the 
likelihood of the resistance mutations.

The clustering procedure aimed at identifying blocks of 
genes that were acquired at the same time (along the same 
branch). As expected, all the clusters were exclusively 
made of groups of either lost or gained genes, not both. 
Of the 60 clusters, the majority (41) correspond to gene 
gains and 19 correspond to gene losses. One might expect 
that the first correspond to gain of functions and the latter 
to losses. Bacteria need to acquire all the genes involved in 
a function to express it. However, the loss of only few genes 
is sufficient to disrupt the activity of entire pathways. This 
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may explain why our analysis reveals that groups of gains 
are larger than groups of losses (Mann–Whitney U test: 
P-value = 0.0108) (Fig. 4, bottom left). The acquisition of 
functions in large MGEs may also contribute to explain 
these results. Except for one cluster that was either part 
of a plasmid or of a chromosome (depending on the gen-
ome), clusters were made exclusively of plasmid, prophage 
genes, or neither of the 2. Eighteen clusters, including the 
largest, were in prophages. All the prophage clusters are as-
sociated with promotion of resistance mutations. Five 
clusters were on plasmids including the second largest 

(Fig. 4, top right). In conclusion, our analysis identified 
60 groups of genes, most of them corresponding to gen-
etic acquisitions. Many of these are in MGEs and they 
tend to increase the likelihood of acquisition of resist-
ance mutations.

Acquired Functions That Induced Subsequent 
Resistance Acquisition
Among the 60 clusters identified above, 17 lack genes with 
predicted functions. The other clusters tend to have many 
genes involved in closely related functions, organized in 

Fig. 4. Cluster of genes consistently acquired or lost prior the acquisition of the quinolone resistance. Graphical representation of the method: the 
209 genes were clustered in 2 steps using hierarchical clustering. Genes were initially clustered if they were often coacquired or colost in the 
branches of the tree and then clustered if they were colocalized in the genome. The center figure represents the different clusters according 
to their size. Clusters with known functions or encoded by a specific mobile genetic element type were named accordingly. Others were given 
roman numbers. Clusters are represented according to their location on prophage, plasmid, or chromosome (top right), to their influence on the 
acquisition of the quinolone resistance (bottom right), to the nature of the event (bottom left), and to the functions they encode (top left).
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loci with the characteristics of operons (cooriented closely 
spaced genes). The analysis of the AUS dataset revealed 
much fewer genes (62) significantly associated with the 
emergence of quinolones (supplementary table S16, 
Supplementary Material online), which is probably caused 
by the much lower frequency of resistance in that dataset. 
Of these, 27 were also identified in the RefSeq analysis 
(supplementary table S17, Supplementary Material on-
line). Most of the other are of unknown function or related 
to MGEs. Among all the genes of known or putative func-
tion that were identified as affecting the emergence of the 
resistance mutations, we found a few recurrent broad 
functions involved in mitigation of the effect of quino-
lones, growth arrest, metal metabolism, biofilm formation, 
and sugar metabolism.

Mitigation of the Effect of Quinolones
The loss of the marR gene is associated with an increase in the 
probability of subsequent acquisition of resistance in the 
RefSeq dataset. Inactivating mutations in marR were previ-
ously found to be associated with decrease of sensitivity to 
different antibiotics including quinolones (Maneewannakul 
and Levy 1996). marR code for a repressor of marA, which 
code for a transcriptional activator of acrAB and tolC. 
Increase in the activity of the AcrAB-TolC multidrug efflux 
pump has been shown to increase resistance to quinolones 
(Wang et al. 2001). Inactivating mutations in marR are fre-
quent in E. coli clinical isolates resistant to fluoroquinolones 
(Komp Lindgren et al. 2003). In viral region 1, we found a 
gene encoding DinI-like protein. DinI turns off the SOS re-
sponses through inhibition of the RecA coprotease activity 
(Yasuda et al. 1998). E. coli mutants deficient in SOS induction 
were previously shown to survive longer in the presence of 
several quinolones, suggesting that induction of the SOS re-
sponse by quinolones is harmful to wild-type cells (Piddock 
and Walters 1992). Finally, the cluster named sit encodes 
CrcB, a plasmid-encoded protein whose overexpression not 
only increases the supercoiling level of plasmids but also re-
duces the sensitivity of gyrase and topoisomerase IV 
temperature-sensitive E. coli mutants to nalidixic acid (1st 
quinolone) (Sand et al. 2003).

Cell Growth Inhibition
Functions associated with bacterial growth arrest are 
amongst the most represented functions in the 60 groups 
of genes. Slow growth decreases the bactericidal efficacy of 
antibiotics, whether because it increases tolerance or per-
sistence (Schumacher et al. 2009). Of note, evolution of tol-
erance was found to systematically precede the 
experimental evolution of resistance to ampicillin (Levin- 
Reisman et al. 2017). We found 8 clusters encoding 
toxin-antitoxin (TA) systems (NinE, rac, plasmidic group 
1, plasmidic group 2, ydfR, TA1, TA2, and TA3) whose ac-
quisition was inferred to increase the acquisition rate of re-
sistance mutations. TAs have been describe to induce 
persister phenotypes that are highly tolerant to antibiotics, 
including quinolones (Dorr et al. 2010), although recent 
data have questioned this (Goormaghtigh et al. 2018). 

Three of the identified TA hits are from the ParDE family, 
which was described to contribute to more than a 
1,000-fold increase in survival in the presence of supra- 
minimum inhibitory concentration (MIC) concentrations 
of quinolones (Kamruzzaman and Iredell 2019). Four 
groups encode cell division inhibitors (dicC, dicB, kill, and 
rac). Single-cell imaging showed that ofloxacin persisters 
formed polynucleoid filamentous cells. This phenotype 
was independent of the conserved filamentation inducer 
genes sulA or damX, suggesting that it was controlled by 
other cell division inhibitors (Goormaghtigh and Van 
Melderen 2019). Interestingly, it was previously found 
that cryptic prophages of E. coli contribute significantly 
to resistance to sublethal concentrations of quinolone 
through proteins that inhibit cell division, notably KilR of 
Rac and DicB of Qin (Wang et al. 2010), both of which 
were identified in our analysis. Hence, the presence of TA 
and cell division inhibitors seems to provide a favorable 
ground to the acquisition of resistance mutations, presum-
ably because they provide more time for the mutations to 
emerge under antibiotic therapy.

Metal Uptake
Five clusters encode genes encoding proteins involved in the 
uptake of metals, such as iron, zinc, manganese, or copper. In 
all cases, the acquisition of these genes is associated with a 
subsequent increase in the rate of acquisition of quinolone re-
sistance. Notably, 4 clusters (fec, sit, silver, and irp) encode al-
most exclusively genes involved in metals intake, showing 
that the effect is not related with genetic linkage to other 
functions. In viral region 2, there is a gene encoding a protein 
with a domain TonB/TolA, C-terminal. This domain is also in-
volved in iron transport (Braun and Hantke 2011). The case of 
iron uptake could be regarded as surprising, because iron is 
associated with the creation of reactive oxygen species that 
were suggested to add to the toxicity of antibiotics. Yet, 
iron acquisition was shown to increase the MIC of quinolones 
in E. coli (Smith and Lewin 1988) and to promote the acqui-
sition of quinolone resistance (Méhi et al. 2014). Moreover, 
several projects are considering therapies that combine cipro-
floxacin and iron chelators that reduce the iron availability to 
bacteria to suppress the growth rate of drug-resistant subpo-
pulations (Allan and Holbein 2022). Of note, 1 of the 2 groups 
of genes detected only in the AUS dataset consists of yet an-
other iron siderophore systems of the aerobactin pathway of 
iron uptake (iucABD and iutA; supplementary table S16, 
Supplementary material online) (Challis 2005). Other metals, 
especially copper and zinc, were associated with elevated re-
sistance rates against several antibiotics (Poole 2017). For ex-
ample, minimal selective concentration for ciprofloxacin 
resistance increased up to 5-fold in the presence of zinc 
(Vos et al. 2020).

Biofilm Formation
We found 3 clusters with genes involved in biofilm forma-
tion. Of these, the acquisition of 2 clusters, ag43 and plas-
midic group 1, is associated with increased probability of 
acquisition of resistance mutations. These clusters contain 
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the Ag43 gene and the epsB/macA/macB genes, respective-
ly, which enhance biofilm formation (Kjaergaard et al. 2000; 
van der Woude and Henderson 2008; Baugh et al. 2012; 
Gerwig et al. 2014). The third cluster contains only the 
chromosomal gene yliE/pdeI, whose overexpression re-
duces biofilm formation (Boehm et al. 2009) and whose 
mutant formed more biofilm in the mouse gut (Da Re 
et al. 2013). In our analysis, the loss of this cluster in-
creases the acquisition rate of the quinolone resistance 
across the tree. Taken together, this suggests that a high-
er capacity to form biofilms increases the acquisition 
rate of quinolone resistance. Quinolones are known to 
be efficient at diffusing through biofilms. (Brooun et al. 
2000). However, when compared with planktonic life-
style, bacteria in biofilms developed more mutants 
with low-level resistance to quinolones. This is because 
the biofilm growth mode promotes the upregulation 
of efflux pumps (Ciofu et al. 2022). Even if these low-level 
resistances do not reach the clinical resistance level, bio-
films might increase the time of survival of bacteria, giv-
ing them more opportunities for the emergence of 
mutations responsible for high-resistance levels to quin-
olone (Costerton et al. 1999; Lewis 2001).

Sugar Metabolism
Three clusters contain genes involved in sugar metabolism. 
Of these, 2 clusters, sgc and gatC, contain genes involved in 
the galactitol metabolism. The gain of sgc increases the rate 
of acquisition of the quinolone resistance, while gatC reduces 
it when lost. A recent screen showed that mutants in the ga-
lactitol pathway repressor have a reduced susceptibly to 
fluoroquinolone in Salmonella, suggesting that this pathway 
is associated with low-level resistance to the antibiotic 
(Turner et al. 2020). The 3rd cluster contains the rfbB gene 
that is involved in the dTDP-rhamnose biosynthesis 
(Marolda and Valvano 1995). Intracellular dTDP-rhamnose 
concentration correlates with the MIC of nalidixic acid and 
norfloxacin (Zampieri et al. 2017). This occurs because 
dTDP-rhamnose upregulates gyrA transcription in E. coli in 
the presence of norfloxacin and nalidixic acid. This helps cells 
to cope with the quinolones by sequestering the antibiotic 
and thereby reducing its effect. Taken together, these results 
suggest that the metabolism of certain sugars may facilitate 
the acquisition of quinolone resistance by contributing to re-
duced susceptibility.

Cooccurrence of the Quinolone Resistance with 
Other Antibiotic Resistance Classes
We have shown above that E. coli strains encode numerous 
ARGs (Fig. 2A; supplementary table S5, Supplementary 
Material online). Among the 490 RefSeq genomes with 
point mutations conferring resistance to quinolone, 400 
also encode well-known determinants of resistance to beta- 
lactams, 372 to aminoglycosides, and 352 to sulfonamides 
(Fig. 5; supplementary fig. S14, Supplementary Material on-
line). This raises the question of how the presence of one 
antibiotic resistance influences the acquisition of another. 

We screened our chronologies for ARGs systematically ac-
quired before the resistance mutations and found none 
that was below the statistical significance level. Hence, it 
seems that in lineages resistant to quinolones, the acquisi-
tion of resistance to quinolones occurs early on, often being 
among the first resistance mechanisms acquired.

We then checked if other classes of ARGs were system-
atically acquired after the acquisition of the quinolone re-
sistance mutations. We found 43 ARGs that were 
significantly more likely to be acquired after the emer-
gence of quinolone resistance (Fig. 5; supplementary 
table S18 and fig. S15, Supplementary Material online). 
For these families, the acquisition of resistance to quin-
olone increased the rate of subsequent acquisition of the 
ARG (λ > 1). These families correspond to various anti-
biotic resistance classes among which the most diverse 
are for resistance to aminoglycosides (12/43), phenicol 
(6/43), beta-lactamases (5/43), and trimethoprim (5/43). 
Hence, resistance to quinolones seems to precede resist-
ance to most other antibiotics. Alternatively, quinolone re-
sistance may be less frequently lost and thus remain for 
longer periods in lineages than resistances that are very 
costly and/or encoded in MGEs that are easily lost.

As mentioned above, low-level resistance to quinolones 
can also be acquired through the acquisition of certain 
plasmid-associated genes. Interestingly, accumulation of 
these resistance mechanisms is frequent. Three of the fam-
ilies identified as systematically being acquired after the 
point mutations conferring resistance to quinolone corres-
pond to genes that provide low-level resistance to quino-
lones (either qnr or oqx). Hence, we observe an initial 
emergence of point mutations conferring fluoroquinolone 
resistance and then the acquisition of specific resistance 
genes by HGT. This is in line with historical data: resistance 
to quinolones due to point mutations is almost as old as 
the quinolone usage. In contrast, resistance due to ac-
quired genes is more recent. This accumulation is clinically 
relevant because the resistance effect provided by these 
novel genes affects resistance to all quinolones (at least 
for qnr), and it is additive to the one provided by the point 
mutation (resulting in increased resistance) (Ruiz 2019).

Discussion
In this study, we have searched to identify chronologies 
shedding light on the evolution of resistance to quinolones 
in E. coli. We have searched for them before, during, and 
after the acquisition of resistance. We found many genes 
that were preferentially gained/lost before the acquisition 
of the resistance mutations. During the process of acquisi-
tion of the mutations, there is a preferred initial one and 
then a very quick succession of mutations whose order 
we could not trace. Once resistance to quinolones was ac-
quired, other resistances quickly accumulated in the 
lineages. It should be emphasized that these chronologies 
correspond to pairs of events that are far apart in time 
(they are found in different branches of the phylogenetic 
tree). Resistance mutations are usually very recent, 
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whereas the preceding acquisitions or losses of genes can 
be recent or very ancient (supplementary fig. S16, 
Supplementary Material online). Simultaneous dating of 
recent and ancient events in the same tree is very difficult 
because the observed density of polymorphism per unit of 
time increases from the root to the tip (Rolland et al. 
2023). This effect and the lack of information on the dates 
of isolation of the RefSeq strains precluded a reliable dating 
(in years from present) of the chronologies. In any case, 
they should not be interpreted in the framework of hyster-
esis, which is a transgenerational change in cellular physi-
ology (Roemhild et al. 2018). Instead, we interpret the 
chronologies for gene gains/losses as changes that predis-
pose a lineage to the acquisition of resistance, but that 
were selected for other reasons. We think many of the 
genes identified by this approach fall into 3 categories: 
functions in epistatic interaction with quinolone resist-
ance, functions coselected in lineages for ecological/epi-
demiological reasons, and genes in genetic linkage with 
the former.

Many of the functions frequently acquired before the 
resistance mutations might make the bacterium more tol-
erant, resistant, or able to persist in the presence of quino-
lones. This is the case of functions that are known to arrest 
growth (TAs), those that diminish the availability of quino-
lones as a side-effect (transporters, metal chelators), or 
those that increase the expression of the gyrase. These 
functions could allow the bacterium to cope with the pres-
ence of quinolones for a longer period and thus provide 
time for resistance mutations to arise. This does not re-
quire any kind of foresight for natural selection. These 
functions might have their own adaptive role and may 
have been fixed independently of the possible advantage 
they may subsequently give under quinolone treatment. 
In some cases, the phenotype under selection before anti-
biotics is also adaptive under antibiotic therapy. In other 
cases, the phenotypes under selection with or without 
antibiotics may be very different, as observed for the acqui-
sition of low-dose resistance to quinolones by overproduc-
tion of gyrase by the dTDP-rhamnose (Zampieri et al. 

Fig. 5. Cooccurrence of the different AMR classes (as defined by AMRfinder+), and the point mutations conferring the resistance to quinolone in 
the RefSeq dataset. The node size represents the number of times the resistance was found across the genomes. The resistances to quinolone 
conferred by point mutations and by qnr or oqx genes are represented in black and gray, respectively. The edge width represents the number of 
cooccurrences in a genome. Edges were converted into arrows when the chronologies between acquisition of mutations and the AMR classes 
were significant (mutations emerging first). When the resistance is conferred by other mechanisms, genes involved are annotated between 
brackets.
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2017). Such latent phenotypes may be frequent across mi-
crobial systems, as previously suggested for gene regula-
tory circuits (Payne and Wagner 2014), moonlighting 
proteins (Henderson and Martin 2011), and biofilm forma-
tion (Nucci et al. 2023). The constant gain and loss of genes 
in bacterial genomes may produce a wide diversity of such 
latent phenotypes in natural populations rendering cer-
tain lineages better prepared than others to acquire specif-
ic novel traits (like antibiotic resistance). Such 
predisposition does not preclude the acquisition of resist-
ance in other lineages that lack these genes, because the 
trait is accessible by mutation and is under strong selec-
tion. What we propose is that acquisition of certain genes 
might increase the probability of subsequent emergence of 
resistance to quinolones either because they increase the 
likelihood of appearance of resistance mutations or be-
cause they provide less costly genetic backgrounds.

Epistatic interactions in the process of accumulation of 
the mutations conferring resistance to quinolones have 
been described before (Silva et al. 2011; Hughes and 
Andersson 2017). The chronology usually starts by the mu-
tation gyrA[S83L] (which was shown to have the largest ef-
fect and low cost) followed by quick fixation of the 
parC[S80I] and gyrA[D87N] mutations, which further in-
crease resistance at low cost (Komp Lindgren et al. 2005; 
Rozen et al. 2007; Marcusson et al. 2009; Hughes and 
Andersson 2017; Huseby et al. 2017). The second most fre-
quent evolutionary trajectory is the simultaneous acquisi-
tion of the 3 mutations. We thought this could be due to 
recombination, since the simultaneous acquisition of 4 mu-
tations in gyrA, gyrB, parC, and parE after one single event of 
chromosomal conjugation was described in mycoplasma 
(Faucher et al. 2019). Yet, we detected only one case with 
clear evidence that the mutations in gyrA and parC were 
acquired in the same branch of the tree by recombination. 
Alternatively, the lack of time-resolution at the scale of the 
species trees could explain the apparent simultaneous 
emergence of all mutations. To test this idea, we performed 
the same analysis on 3 STs for which many genomes were 
available, which should improve the resolution of our 
study. Even in this case, we failed to untangle the order of 
acquisition of the mutations. While this matter remains 
to be completely resolved, we propose that natural selec-
tion for resistance by multiple mutations may be so strong 
in the clinical environment (Santos-Lopez et al. 2021; Karve 
and Wagner 2022) that the multiple point mutations are 
quickly acquired in succession and outcompete the other 
mutants. If so, then these lineages have frequently endured 
3 successive (possibly nested) selective sweeps.

Epidemiological factors may explain some of the identi-
fied chronologies. The lineages of pathogens are more likely 
to encounter antibiotic pressure. Mutations conferring the 
resistance to quinolone are then more likely to be selected 
in such lineages. Hence, the acquisition of virulence factors 
may be associated with an increase in the rate of emergence 
of quinolone resistance once it started to be used in the 
clinic. Of note, the most obvious virulence factors (such 
as toxins, protein secretion systems, or their effectors) 

were not revealed by our analysis. But, we did find functions 
that while being very frequent in environmental bacteria 
are also associated with host colonization, like biofilm for-
mation or iron uptake. Although there are data associating 
these traits with the acquisition of quinolone resistance 
outside the context of pathogenesis (Méhi et al. 2014; 
Liang et al. 2023), one cannot exclude the possibility that 
some of our results are due to epidemiological factors.

Epidemiological factors seem particularly pertinent to 
explain the chronologies of ARG acquisitions after the 
emergence of quinolone resistance. None of the genes sys-
tematically acquired before the quinolone resistance was 
annotated as ARG. However, genes encoding resistance 
to many antibiotic classes such as beta-lactams and amino-
glycosides are consistently acquired after quinolone resist-
ance. This suggests that quinolone resistances were usually 
acquired before the bacteria became multidrug resistant. 
Historically, resistance to quinolone was not the first one 
acquired by E. coli where resistance to penicillin was de-
scribed in the 40s while quinolone resistance only in the 
70s (Abraham and Chain 1940; Gellert et al. 1977). 
However, quinolone resistance is the one that best corre-
lates with its antibiotic usage in E. coli across European 
countries (Redgrave et al. 2014), in agreement with this 
and other works showing that it can emerge very rapidly 
(Komp Lindgren et al. 2003). The accumulation of the full 
set of resistance mutations makes the clones fitter when 
compared with other antibiotic resistances, so that the re-
sistance is less likely to be lost (Rozen et al. 2007; Marcusson 
et al. 2009). It may also be difficult to lose the resistance to 
quinolones by multiple mutations since it requires the re-
version of all of them, whereas many other resistances 
may be lost simply by plasmid loss, gene deletion, or inacti-
vation. Several studies have reported that mutations in the 
core genome often do not reverse even when antibiotic re-
sistance pressure was removed (Pallecchi et al. 2012; Baker 
et al. 2013; Johnning et al. 2015). This combination of high 
acquisition/low reversion rates could be the reason why the 
quinolone resistance appears very early in lineages of bac-
teria becoming multidrug resistant. Nevertheless, some 
studies have shown that resistance to quinolones does pro-
mote resistance to other antibiotics. For example, substitu-
tion at gyrA[87] in Salmonella influences sensitivity to 
other types of antibiotics and results in increased expres-
sion of stress response pathways (Webber et al. 2013). 
Hence, even the chronologies of gene gains/loss after acqui-
sition of resistance may result from epistatic interactions.

A specificity of our approach is that functions acquired 
as the result of the same event of transfer will have similar 
statistical signal. Yet, this does not mean they are all bio-
logically pertinent. One single gene under strong selection 
and strong linkage with others may lead to the entire set of 
genes coming out as significant in our analysis. Our cluster-
ing approach allowed to regroup such genes together and 
provides a more parsimonious analysis of the functions 
that may explain the chronologies. Several of these groups 
only have genes of unknown function. It is beyond the 
scope of this work to elucidate these functions or to 
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disentangle the most important in each group of linkage. 
Yet, our analysis reveals many functions that were previous-
ly shown to be involved in the acquisition of quinolone re-
sistance (or associated with it). This validates our approach 
and provides a rich list of genes for future experimental 
analysis.

The clustering of genes in linkage also allowed to study the 
vehicles of gene acquisition, i.e. the MGEs that promoted the 
gene transfer. Several of these groups of genes are in plasmids 
or prophages. If the acquisition of one gene carried by an 
MGE influences the acquisition of the mutation conferring 
resistance due to epistatic interactions, other genes carried 
by the same MGE will hitchhike with it. This has often 
been theorized as being one of the potential reasons why 
costly and autonomous MGEs, such as prophages and conju-
gative elements, encode traits adaptive for bacteria (Rankin 
et al. 2011). Hence, we do not think that the entire MGEs 
are favoring the acquisition of quinolones, only a few of their 
genes. MGEs, especially plasmids, are known to carry ARGs to 
the bacteria they infect. But, our results suggest they are also 
responsible for facilitating the acquisition of antibiotic resist-
ance by carrying functions that make the bacterium better 
prepared to acquire the resistance itself. In this context, the 
identification of prophages having such an effect is intriguing 
(even though it fits previous works (Wang et al. 2010). 
Quinolones are known to induce the SOS response, which in-
duces the lytic cycle of many prophages (Baharoglu and 
Mazel 2014). It is tempting to speculate that prophages might 
carry traits favoring resistance or tolerance to quinolones to 
avoid induction at a moment where most potential hosts in 
the near environment are not promising hosts for infection. 
These genes may not have evolved to tackle quinolone resist-
ance, presumably a recent threat to E. coli but may have be-
come advantageous under it. Anti-SOS genes have been 
found in both conjugative plasmids and prophages where 
they may serve to manipulate the host responses or those 
of other mobile elements (Bagdasarian et al. 1992; Azulay 
et al. 2022). This fits our observation that the prophages iden-
tified in this work encode functions resulting in growth arrest 
or mitigation of the effect of quinolones.

Bacteria colonize diverse environments that vary in 
terms of selective pressures. Epistatic interactions create 
complex evolutionary patterns of adaptation. Our results 
suggest that this complexity further increases when a mix 
of HGT and mutations produce bacteria with very different 
genetic backgrounds within lineages. While these interac-
tions can facilitate the emergence of antibiotic resistance, 
they may also render evolutionary processes less predict-
able (Palmer et al. 2015). They may contribute to explain 
why within many microbial species some lineages tend to 
accumulate traits like virulence factors and antibiotic re-
sistance. Interestingly, recent studies show that the decline 
of resistance to a cephalosporin in Pseudomonas is also con-
tingent on the genetic background (Hernando-Amado et 
al. 2022). Understanding how frequent chronologies of 
events result from genetic, functional, and epidemiological 
interactions will shed further light on the evolution of anti-
biotic resistance and how one can forecast it.

Methods
Genome Data and Pangenome Construction
We analyzed 3 datasets in this study.

The 1st dataset is the one used across the study unless 
otherwise specified. It includes 1,585 genomes of E. coli 
identified from 21,086 complete bacterial genomes re-
trieved from NCBI RefSeq representing 6,124 species of 
Bacteria (http://ftp.ncbi.nih.gov/genomes/refseq/bacteria/), 
in March 2021. This dataset has the advantage of being 
very large and diverse, and we know the structure of the gen-
ome (chromosome, plasmids). This facilitates the study of 
the MGEs allowing gene acquisition, such as plasmids and 
phages, and provides high-quality data for the identification 
of mutations. It is usually presumed that it contains many 
clinical isolates.

The 2nd dataset was used to control for the presumed 
overrepresentation of clinical isolates in the RefSeq 
dataset. It includes a collection of 1,294 E. coli draft gen-
omes from isolates recovered in Australia between 1993 
and 2015 chosen to represent the phylogenetic diversity 
of the species (Touchon et al. 2020). It includes less 
than 25% of clinical isolates and allows to control for 
sampling biases commonly encountered in public 
databases.

The 2,879 E. coli genomes were analyzed for assembly 
quality using their L90 value and for genetic distance using 
Mash v2.2 (Ondov et al. 2016). We removed from further 
analysis 369 strains from the Australian dataset because 
they had a L90 superior to 100 (i.e. the sum of the 100 long-
est contigs does not cover at least 90% of the genome size, 
suggesting that they are highly fragmented). Additionally, 
365 were removed because they were very similar (MASH 
distance <10−4). This resulted in a dataset of 2,145 (877 
from the Australian dataset and 1,268 RefSeq sequences) 
completely sequenced and assembled E. coli genomes.

The 3rd dataset was only used to pinpoint the chron-
ology of mutations for quinolone resistance at a short evo-
lutionary time scale. We used all E. coli sequence type (ST) 
131 (ST131) genomes from RefSeq (n = 85), and we re-
trieved all available E. coli ST 410 and 167 (ST410 and 
ST167) genomes from Enterobase (n = 1,000 and n =  
801) (last accessed in December 2021) (Zhou et al. 
2020). We removed from further analysis 45 ST410 and 
29 ST167 genomes because they had a L90 superior to 
100. Additionally, 198 ST410 and 193 ST167 strains were 
removed because they were too similar (MASH distance 
<0.0001). This resulted in a dataset of 757 E. coli ST410, 
85 E. coli ST131, and 579 E. coli ST167 genomes.

Identification of the Pangenome and of the Core 
Genome
The pangenome and core genome of the 2,145 E. coli from 
the RefSeq and Australian datasets were computed using 
PanACoTA v.1.3.1 (Perrin and Rocha 2021). Briefly, the 
pangenome was constructed by clustering all protein se-
quences in the set of genomes using MMseqs2 (protein 
identity >80%). We retrieved the core genome from this 
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pangenome. It consists of 2393 gene families present in 
exactly 1 copy in at least 99.0% of all genomes. In the re-
maining 1% genomes, we accepted the presence of 0 or 
several members of the gene family (in which case the se-
quence of the gene is not used for the strain). The pangen-
ome (27,556 gene families) and core genome (3,933 gene 
families) for the 757 ST410 E. coli were built the same way.

Phylogenetic Reconstruction
The multiple sequence alignments of the families of the 
core genes were computed using the “align” PanACoTA 
v1.3.1 module. Briefly, the protein sequences of the core 
genes were aligned with MAFFT v7.467 (-auto parameters) 
(Katoh and Standley 2014) and then back-translated to 
nucleotide alignments (i.e. each amino acid was replaced 
by the original codon) and concatenated. The large mul-
tiple sequence alignment including the RefSeq and 
Australian dataset was then separated in an alignment 
with the 1,268 RefSeq genomes and another with the 
877 genomes from the Australian dataset. The phylogenet-
ic inference was done from the resulting multiple align-
ments using IQ-TREE 2.0.6 (Nguyen et al. 2015) with the 
ultrafast bootstrap option (-bb 1,000 bootstraps) and 
with the best fitting model estimated using ModelFinder 
Plus (-MPF) (Kalyaanamoorthy et al. 2017). The best model 
for the 3 datasets was GTR + F + I + G4 according to the 
bayesian information criterion (BIC). Trees were rooted 
using the midpoint function from the phangorn packages 
(v.2.5.5) for R (Schliep 2011). The root obtained is in agree-
ment with the literature, as strains belonging to clade 1 
(outgroup closest to the E. coli species) are indeed the 
most external.

Mutation Profile
Point mutations leading to quinolone resistance in E. coli 
are found in the DNA gyrase and the DNA topoisomerase 
IV genes, i.e. in gyrA, gyrB, parC, and parE (Hopkins et al. 
2005). We retrieved the sequences of these proteins using 
blastp v2.12.0 (default parameters, identity threshold of 
90%) (Camacho et al. 2009). We then built a multiple 
alignment of the proteins using MAFFT v7.429 (with 
-auto parameters). The alignments were parsed using 
Biopython (Cock and Whitworth 2010). We looked for 
point mutations leading to quinolone resistance, at each 
expected position (accounting for gaps) using the compre-
hensive list provided by Hopkins et al. (Hopkins et al. 2005) 
for E. coli (Table S1). For each dataset, the distribution of 
every combination of resistance mutation was summar-
ized in an upset plot computed using the R package 
UpsetR v1.4.0 (Conway et al. 2017).

Inference of Ancestral Gene Repertoires
We counted the number of occurrences of each family of 
the pangenome in all genomes. This was used to build a 
gene presence (1 or more copies)/absence matrix in all 
leaves of the phylogenetic trees. From this occurrence ma-
trix, we inferred the ancestral state (presence or absence) 

of each gene family at every internal node of the phylogen-
etic trees with PastML v1.9.33 (Ishikawa et al. 2019). We 
used the JOINT method with default parameters, and 
this method reconstructs the states of the scenario with 
the highest likelihood. From the ancestral state matrix 
computed by PastML, we inferred the gene gains and 
losses at all the branches of the species tree by subtracting 
the gene content of the child node to the gene content of 
the parent node.

Trajectories of Acquisition of Mutations
To infer the history of the quinolone resistance mutations, we 
constructed a matrix with the presence or absence of each 
type of mutation in gyrA, gyrB, parC, and parE in each strain. 
The ancestral states for each mutation were inferred the 
same way as described in the previous section for the genes 
in the pangenome. To identify the acquisition chronologies 
of the multiple mutations, every path starting from the 
root and leading to a leaf containing at least one quinolone 
resistance mutation was extracted using the ape package 
v5.3 for R (Paradis and Schliep 2019). Paths were then tra-
versed from the root to the first acquisition of a mutation 
conferring quinolone resistance (as inferred by PastML). All 
the paths arising from the point in the tree where this first 
mutation occurred were then traversed from this event of ac-
quisition to the next event on the path, and this recursively 
until the last event of acquisition on each path (for the scripts 
used to perform this analysis, see Supplementary material on-
line). This way, we only consider the number of events in the 
tree, not the number of taxa affected by them. This is import-
ant because events of gain and loss within a gene family can 
be regarded as independent, whereas resistant taxa are not 
(they may result from the same ancestral mutation event). 
Counting resistant taxa would inflate and bias the statistics, 
overrepresenting some chronologies. Counting events allows 
to identify independent events across the tree. This proced-
ure results in a collection of paths corresponding to every sin-
gle chronology of mutation acquisition.

Detection of Preferential Chronologies
Preferential chronologies of events leading to the acquisi-
tion of resistance to quinolones were identified in a 2-step 
procedure using the program Evo-Scope v1.0.0 (Godfroid 
et al. 2022).

In the first step, we analyze all possible chronologies to 
identify events often preceding the acquisition of resist-
ance to quinolones. This is done with the Epics module 
of Evo-Scope (with the -S parameter). The procedure iden-
tifies the number of occurrences of an event E1 (e.g. acqui-
sition of resistance) following an event E0 (e.g. acquisition 
of a certain gene) on a phylogenetic tree. The observed va-
lues of all pairs of events are compared with the expected 
numbers under a null model of uniform rates of distribu-
tion of events on the tree (Behdenna et al. 2016). P-values 
were adjusted for multiple tests using the “fdr_bh” meth-
od (P < 10−5) (Benjamini–Hochberg correction) from 
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SciPy v.1.10.1 (Benjamini and Hochberg 1995; Virtanen et 
al. 2020).

In the 2nd step, we retrieved the significant chronolo-
gies identified above and inferred the interaction type 
and strength of correlated evolution between these pairs 
using the Epocs module of Evo-Scope (Behdenna et al. 
2022). This module classifies interactions, by maximum 
likelihood, in 3 different categories depending on the influ-
ence of a trait on the occurrence of the other one. 

• Scenario of independence (-Si): The occurrence of 
event E0 does not change the occurrence rate of E1.

• Scenario of asymmetric induction (-Sa, -Sb): The 
occurrence of event E0 changes the occurrence rate 
of event E1, or the occurrence of event E1 changes 
the occurrence rate of event E0.

• Scenario of reciprocal induction (-Sl): Event E0 en-
hances the occurrence rate of event E1, and reciprocal-
ly, event E1 enhances the occurrence rate of event E0.

These scenarios are described by models containing 
from 2 to 4 parameters, which are associated to each trait. 
The parameters are divided into natural occurrence rates 
(i.e. rates at which the trait mutates from present to absent 
or from absent to present) and modified occurrence rates 
(i.e. rates at which the trait mutates from present to absent 
or from absent to present after a change of state of the 
other trait). The ratio λ between the modified occurrence 
rates and the natural occurrence rates can be interpreted 
as an induction factor. If λ > 1, the induction between the 
2 traits is positive (i.e. E0 increases the occurrence rate of 
the subsequent event E1), whereas it is negative when λ  
< 1 (i.e. E0 decreases the occurrence rate of the subse-
quent event E1). The model best describing the data under 
study is selected following a significant likelihood ratio test 
(Neyman and Pearson 1933)

Detection of Recombination
The alignment of the core genome that was used to build 
the phylogeny was scanned with Gubbins v2.4.1 to find re-
combination tracts (Croucher et al. 2015). The maximum 
likelihood tree previously built was provided for the first 
iteration using the “—starting-tree” command. The pos-
ition of the recombination tracks was compared with 
the position of mutations in gyrA (gyrA[S83L] and 
gyrA[D87N]) and in parC (parC[S80I]) in the alignment 
of the core genome to identify overlaps that could indicate 
that mutations arrived by recombination. We then com-
pared the nodes at which recombination occurred with 
nodes where the mutations gyrA[S83L], gyrA[D87N], and 
parC[S80I] were acquired. When overlapping recombin-
ation tracks and acquisition of mutations occurred at 
the same nodes, we considered the mutations to be ac-
quired by events of recombination.

Genome-Wide Association Study
We performed a GWAS for the presence of fluoroquino-
lone resistance using 1,268 E. coli genomes with pyseer 

v.1.3.9 (Lees et al. 2018). The association between the 
gene presence/absence and the resistance phenotype (de-
fined by the presence of a known resistance mutation) was 
assessed with an LMM in which the STs were considered as 
covariates. We used the recombination-free phylogenetic 
tree produced by Gubbins. This tree allowed us to generate 
a distance and a kinship matrix with the scripts coming 
with pyseer. The LMM used the multidimensional scaling 
(MDS) of these matrices to control for population struc-
ture. Ten dimensions were included in the MDS. To ad-
dress the problem of multiple comparisons in our 
analysis, we used a Benjamini–Hochberg procedure 
(Benjamini and Hochberg 1995) on the P-value of the as-
sociation already adjusted for population structure using 
the p.adjust function with the “BH” method in R v4.2.2. 
For a corrected P-value inferior to 0.05, we deemed the as-
sociation between the gene presence/absence and the re-
sistance as significant.

Identification of Groups of Genes in Genetic Linkage
Gene families consistently acquired before the resistance 
to quinolone can be in genetic linkage, e.g. if they are sys-
tematically coacquired within a plasmid, a phage, or re-
combination. In such cases, there may be only one gene 
that effectively changes the likelihood of acquisition of 
the resistance, but the method will also highlight genes 
in strong linkage with this one. To control for this effect, 
we took all the genes highlighted by the analysis of chron-
ologies and clustered them using 2 key information: first 
coacquisition or coloss in the phylogenetic tree and then 
colocalization in the genome.

First, 2 gene families were clustered together if they were 
consistently coacquired or colost in the same branch or 
node of the tree. To assess the statistical significance of these 
simultaneous events, we used the Epics module of the pro-
gram Evo-Scope with the parameter -I (i.e, Identity matrix). 
Thus, the program compares the number of cooccurrences 
of 2 events E1 and E0 in a branch of the tree with their ex-
pected cooccurrence under a null model of uniform distribu-
tion of events on the tree. Pairs of events that frequently 
cooccurred in time were then clustered by single-linkage 
using the agglomerative clustering algorithm from 
scikit-learn v1.2.2 (parameters: affinity=“precomputed,” dis-
tance_threshold = 1, linkage=“single,” n_clusters = None) 
(Pedregosa et al. 2011). We used single-linkage to obtain large 
clusters that could then be further split.

Second, we split the clusters of coacquired or colost genes 
using information on the distance between the genes in the 
genomes. For every pair of gene families in a cluster of cooc-
currences, we computed the median number of genes be-
tween them in the genomes (in which they cooccur). As all 
pairs of genes need a distance, when genes were present on 
different DNA molecules (e.g. one in the chromosome and 
another in a plasmid), the number of genes in the largest rep-
licon in both bacteria was set as the distance between them. 
This way, the distance between genes on different DNA 
molecules will be above the clustering threshold (they will 
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not be clustered together). These values were then used to 
cluster the gene families by average-linkage using the agglom-
erative clustering algorithm from scikit-learn v1.2.2 (para-
meters: affinity=“precomputed,” distance_threshold = 30, 
linkage=“average,” n_clusters = None). At the end of these 
procedures, all clusters were checked for homogeneity of 
induction values (λ) and event type (loss or gain).

Functional Annotation of the Pangenome Families
We picked at random a representative sequence of each 
pangenome family. These sequences were annotated using 
eggNOG-mapper v2.1.9. In order to be exhaustive, we also 
fetched the gene name and product functions from the 
RefSeq annotations. When both eggNOG and RefSeq yield 
different gene names, we used the RefSeq gene name.

Detection of the Antibiotic Resistance Pangenome 
Families
We picked at random a representative sequence of each 
pangenome family. These sequences were screened for 
ARGs using AMRfinderPlus v3.10.18 with default para-
meters (Feldgarden et al. 2021). If the representative se-
quence was identified as an AMR gene, the pangenome 
family was considered as an antibiotic resistance one.

Statistics
Unless mentioned otherwise, all statistics were performed 
within R (v3.6.3).

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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