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FOXP3™ regulatory T cells (T,eq) are indispensable for immune homoeostasis and for the prevention of autoimmune diseases.
Interleukin-2 (IL-2) signalling is critical in all aspects of T,.q biology. Consequences of defective IL-2 signalling are insufficient
numbers or dysfunction of T,y and hence autoimmune disorders in human and mouse. The restoration and maintenance of
immune homoeostasis remain central therapeutic aims in the field of autoimmunity. Historically, broadly immunosuppressive drugs
with serious side-effects have been used for the treatment of autoimmune diseases or prevention of organ-transplant rejection.
More recently, ex vivo expanded or in vivo stimulated T4 have been shown to induce effective tolerance in clinical trials
supporting the clinical benefit of targeting natural immunosuppressive mechanisms. Given the central role of exogenous IL-2 in Tyeq
homoeostasis, a new and promising focus in drug development are IL-2-based approaches for in vivo targeted expansion of T,.g Or
for enhancement of their suppressive activity. In this review, we summarise the role of IL-2 in T4 biology and consequences of
dysfunctional IL-2 signalling pathways. We then examine evidence of efficacy of IL-2-based biological drugs targeting T,eq With
specific focus on therapeutic candidates in clinical trials and discuss their limitations.
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INTRODUCTION

In 1976, the supernatant of activated T cells was found to contain
a potent T cell growth factor, which was cloned in 1983 as
interleukin-2 (IL-2) [1-3]. The identification of IL-2 marked the start
of substantial efforts to unravel IL-2-dependent immunological
processes, to mechanistically understand IL-2 binding to its
receptor and to dissect the signalling pathways downstream of
receptor activation. Importantly, with the discovery of IL-2 and an
increasing knowledge on IL-2 functions, immense research efforts
were launched to develop IL-2-based immunotherapies to exploit
its properties in cancer and autoimmune diseases. Here, we
provide a brief overview on IL-2 signalling, its relevance in the
biology of regulatory T cells (T,.g), and detail recent advances in IL-
2-based immunotherapeutics for autoimmune and inflammatory
diseases predominantly in clinical stages of development.

IL-2 EXPRESSION, CAPTURE AND SIGNALLING

The signalling-competent IL-2 receptor (IL-2R) is expressed either
as heterodimer or -trimer [4]. The dimeric IL-2R consists of the IL-
2RpB chain (CD122, shared with IL-15R) and the common y chain
(Yo, CD132, shared with the receptors for 1L-4/7/9/15/21) [4-10]
and displays intermediate affinity for IL-2 (Kd~107°M). It can
hence signal upon binding of IL-2 as well as IL-15. The trimeric IL-
2R additionally includes the IL-2Ra chain (CD25) [11]. CD25 can be
considered a monomeric IL-2R as it binds IL-2, however, it is not
capable of signalling. Although CD25 itself displays only low
affinity (Kd~10"8 M) and a high on-off rate for IL-2, it delivers IL-2

to the dimeric receptor [11] and its presence increases the affinity
of the trimeric receptor for IL-2 100-fold (Kd~10"""M), conse-
quently providing the expressing cells with a substantial
competitive advantage in IL-2 capture [12-14].

Various immune and non-immune cell types express the IL-2R.
In humans and mice, the dimeric IL-2R is expressed at low levels
by CD4 memory T cells and naive T cells and at high levels by CD8
memory T cells [15, 16] and CD56" NK cells [17]. In mice, the
trimeric IL-2R on the other hand is expressed highest on Tq
[18, 19] and at lower levels on recently activated and effector CD8
T cells, ILC2, and some NKT and CD56""9" NK cells [17, 20-23].
Similarly, in human peripheral blood mononuclear cells (PBMC),
Treq express the highest levels of the trimeric IL-2R whereas other
immune cells such as CD45ROP®® CD4 T cells, most CD56™9" NK
cells, few CD4 and CD8 naive T cells express it at lower levels [24].
The trimeric IL-2R is also expressed by endothelial cells, with
further CD25 upregulation upon IL-2 treatment [25, 26], and
signalling can cause the vascular leak syndrome—a known
adverse effect of high-dose IL-2 therapy in mice and patients.

IL-2 is a pleiotropic cytokine that can act in an autocrine and
paracrine way, with cell type- and context-dependent positive
effects on survival, population expansion or lineage stability
[17, 27-29]. The main source of IL-2 are CD4 conventional T cells
upon T cell receptor (TCR)/CD28 (co-) stimulation [30, 31]. Other
immune cells such as CD8 T cells, NK(T) cells or dendritic cells can
produce IL-2 as well albeit at lower quantities [24, 29]. T4 are
highly dependent on exogenous IL-2 sources as FOXP3 in
cooperation with other transcription factors represses /2
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Fig. 1 IL-2 expression in mouse and human conventional and
FOXP3* CD4 T cells. Mouse splenocytes (wildtype C57BI6/J, n = 4)
and healthy human PBMC (n=5) were stained for CD3, TCRy&
[mouse], CD4, FOXP3 and IL-2 along with a viability dye. Representa-
tive flow plots depicting IL-2 expression in mouse (top) and human
(bottom) conventional T cells (Teony blue) (live CD3" TCRy8"?
[mouse] CD4" FOXP3"*9) and T, (red) (live CD3* TCRy8"*? [mouse]
CD4*" FOXP3™). The frequency of IL-2" cells of FOXP3"9 and FOXP3™"
cells is shown (mean+SEM). The geometric mean fluorescence
intensities of IL-2 as a measure to compare per cell protein levels
between Tcon, and T,eg are 2958 £ 160 (mouse Tcon,) Vs 2130 £ 125
(mouse T.g) and 7308 904 (human Tcyn,) vs 5555+452 (human
FOXP3P® cells) (mean + SEM). Ethical approvals were obtained from
the KU Leuven Animal Ethics Committee (150/2019) and the
University Clinic Leuven Ethical Committee (565883). Antibodies were
purchased from BD Biosciences (564667, 566405, 624295), Biolegend
(100225, 503840, 320214), Miltenyi Biotec (130-111-601), and
ebioscience (65-0865-18, 56-0038-80, 48-0048-42).

transcription [32-34]. Yet, a sizable population of T4 in mice is
capable of producing IL-2, albeit at a lower per cell level compared
to Foxp3"®9 CD4 T cells [29]. In contrast, IL-2 expression in human
peripheral blood FOXP3P°® CD4 T cells is limited to a subset of cells
with low expression of FOXP3 likely not representing suppressive
Treg (Fig. 1) [35].

Upon binding of IL-2 to its receptor the quaternary complex is
internalised, CD25 is recycled back to the cell surface while CD122
and CD132 are degraded [36, 37]. The IL-2:IL-2R complex can
signal via three major pathways, each activating different down-
stream transcriptional regulators [27, 38, 39]. Depending on the
downstream signalling pathway, PI3K (PI3K-AKT-mTOR pathway),
SHC1 (MAPK pathway) or STAT (signal transducer and activator or
transcription) 5 (Janus activating kinase [JAK]1/3-STAT pathway)
are triggered. In T cells, and particularly Ty, phosphorylation of
the IL-2RB chain and common y chain by JAK1 and JAK3 and
subsequent activation of STAT5 accounts for 90% of IL-2 signalling
(Fig. 2)[40, 41]. In T,eg, the PI3K-AKT-mTOR pathway is suppressed
by PTEN (phosphatase and tensin homologue). This mechanism
regulates T,.q homoeostasis by negatively regulating proliferation
and positively regulating lineage stability likely by increased
nuclear translocation of FOXO1/FOXO3a [42-44]. Further, to
regulate T,.g homoeostasis and maintain T4 lineage fate, STAT5
activation and SOCS1 expression regulate each other in a positive
inhibitory loop. IL-2 signalling induces SOCS1 expression and
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SOCS1 in turn attenuates IL-2R signalling by blocking JAK proteins,
hence interrupting the phosphorylation of STAT5 [45-49].

Treg homoeostasis is essential to preserve the delicate balance
of immune activation. Absence of T4 or decreased function will
result in autoimmune diseases, while abundance of T,.q will lead
to overt immune suppression. These events are balanced by the
exclusive IL-2 capture sensitivity of T.g an overall high
dependency of T,y on exogenous IL-2 sources and, hence, a
reciprocal control between effector T cells and T.g The
preferential and high expression of the trimeric IL-2R renders T,q
most sensitive to IL-2 capture thereby outcompeting other cell
types. This superior efficiency in IL-2 capture is exploited by low-
dose IL-2 therapy to specifically target and expand T,eq [50, 51].
Further, in T,oq the cooperation of the trimeric receptor and the
serine/threonine phosphatase PP2A confers increased sensitivity
to IL-2 [52, 53] and PP2A deficiency in T,q results in autoimmunity
[54]. Consequently, 10-fold lower IL-2 levels are required for STAT5
activation in T4 compared to CD25-expressing non-T,.y and
optimal IL-2-dependent gene expression in T, occurs at 100-fold
lower IL-2 concentrations compared to other cell types expressing
CD25 [55]. The high sensitivity to IL-2 signalling allows for
sufficient signalling when available CD25 surface levels are
reduced [56]. If the superior IL-2 capture is strongly compromised
such as it is in CD25-deficient mice or in patients with risk alleles
for CD25, systemic inflammation and/or autoimmunity are the
consequence of the resulting T,y deficiency or disturbed T,q
homoeostasis.

IL-2 IN Treg BIOLOGY AND FUNCTION

Initially, and with the assumption that the main function of IL-2
was the activation of effector T cells and NK cells, efforts to exploit
IL-2 in immunotherapy were focused on promoting anti-tumour
immunity [57]. High-dose recombinant IL-2 (aldesleukin; trade
name Proleukin) was the first immunotherapy approved by the
U.S. Food and Drug Administration (FDA) in 1992 [58, 59]. The
activation of effector T cells as the main function of IL-2 was
contested when ablation of /12, I2ra and //2rb expression in mice
caused lethal lymphoproliferation and autoimmunity, rather than
immunodeficiency [60]. Ten years later, these observations were
explained with the discovery of T,y as an immunosuppressive
CD4P T cell subset characterised by high levels of CD25 and a
non-redundant function for IL-2 in many aspects of T,y biology
[18, 61]. The absence or dysfunction of T,y results in fatal
multiorgan autoimmunity in mice (scurfy [62]) and human
(immune  dysregulation, polyendocrinopathy, enteropathy,
X-linked syndrome, IPEX [63]), and their reduced function has
been reported in several systemic (auto-)inflammatory diseases
[51, 64-69].

IL-2 signalling (via JAK-STAT5) has been demonstrated to be
important for T4 thymic development, peripheral induction,
lineage commitment and stability sustainability, and homoeostasis
(Fig. 2). T,eq development takes place in the thymus (thymic T,
tT,eg) but conventional CD4 T cells can convert into T.eq upon
tolerogenic stimulation in the periphery as well (peripherally-
induced Treq, PTreg). IL-2 signalling is important in establishing the
Teg identity alongside with TCR and TGF@ signalling [70, 71]. For
tTeg development, a two-step model of TCR and cytokine
signalling has been proposed in which the main driving cytokine
is IL-2 and its induction of the JAK-STAT5 signalling pathway. IL-7
and IL-15 can compensate for the lack of IL-2 but in the presence
of IL-2 their receptors are downregulated establishing a dominant
role for IL-2 [72-75]. Defective expression of IL-2 or its receptor
subunits, caused by single nucleotide polymorphisms in human or
via introduced genetic modification in mice, results in a lack of
functional T,q and consequently lymphoproliferation, multiorgan
infiltration of activated lymphocytes and lethal autoimmunity
[15, 60, 76-81]. Similarly, inappropriate regulation of IL-2 signal
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Fig.2 Critical roles of IL-2 in T,.4. Upon binding of IL-2 to the trimeric IL-2R, JAK1 and JAK3 phosphorylate the IL-2Rp or IL-2R common v (c,)
chain, respectively. STAT5 docks onto the phosphorylated residues and is then phosphorylated by JAK1/3. Phosphorylated STAT5 (pSTAT5)
dimerises and translocates to the nucleus to bind its target loci (such as FoxP3/FOXP3). IL-2 signalling is critical in T,ey biology. It plays a
dominant role in thymic T,.q development (bottom, left), during peripheral T,.4 functional maturation in barrier tissues (bottom, middle), and
is indispensable for the survival and functional lineage stability of mature T4 in secondary lymphoid organs (SLO) (bottom, right).

transduction impairs T, homoeostasis and functional stability
[42, 54, 82-86]. Although genetic studies using germline deletion
cannot ultimately dissect the requirement for IL-2 during (thymic
or peripheral) T,y development from the requirement for IL-2
during peripheral survival and expansion, several lines of evidence
support both intrathymic and peripheral roles for IL-2 in Tyeg.

IL-2- or IL-2R-deficient mice

Autoimmunity in IL-2- or IL-2R-deficient mice can be prevented by
adoptive transfer of T,.y demonstrating that proficiency in IL-2-
signalling in mature T,q is sufficient and necessary for peripheral
tolerance even when thymic T4 development is impaired
[61, 87-89]. Notably, T,y numbers but not their suppressive
activity can be rescued in IL-2- or CD25-deficient mice by
depletion of the pro-apoptotic protein Bim [90]. Also in IL-2-
sufficient mice, Bim has been shown to mediate T,.q apoptosis to
regulate T,y numbers. A critical role for IL-2 in T4 peripheral
survival is to maintain the pro-survival protein Mcl-1 [91].

Antibody-mediated neutralisation or preferential delivery of
IL-2

Further, antibody-mediated neutralisation of IL-2 and studies
utilising IL-2:anti-IL-2 immune complexes have illustrated the
indispensable role of IL-2 in peripheral T,y maintenance and
functional maturation. Neutralisation of IL-2 induces T cell-
mediated autoimmunity by selectively reducing T, numbers
[92]. Conversely, the application of IL-2:anti-IL-2 immune com-
plexes can prevent the binding of IL-2 to effector T cells and
preferentially deliver it to T,eq to substantially expand these [93].

Competitive advantage of IL-2R"" cells in mixed bone marrow
chimeras

In Treg, IL-2-STAT5 signalling is sensed via the conserved non-
coding sequence 2 (CNS2) in the FoxP3 locus sustaining FOXP3
expression and controlling stable FOXP3 expression inheritance
[94]. The requirement for IL-2 in T,.q development, homoeostasis
and competitive fitness has further been studied in mixed bone
marrow chimeric mice co-transplanted with IL-2 signalling-
deficient bone marrow and wild-type bone marrow. In these
mice, wild-type T4 greatly outnumbered mutant FOXP3P°* CD4
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T cells in the thymus and in the periphery illustrating the
competitive disadvantage conferred by IL-2 signalling deficiency
[19, 95]. These experimental designs, however, use bone marrow
from IL-2R germline knockout mice and hence, despite analysing
thymic as well as peripheral T fall short on undoubtedly
dissecting the role of IL-2 signalling during development versus its
role in homoeostasis of T,.q. Indeed, the shared signalling pathway
with IL-15 and IL-7 and hence their compensatory potential [74]
together with data obtained in TCR-transgenic mice [96], indicate
that T4 lineage induction can be IL-2 signalling-independent.

Treg-specific rescue of IL-2 signalling

Finally, the intrinsic requirement for IL-2 signalling in Tegq
maintenance and fitness has been demonstrated in mice with
Treg lineage-specific deficiency of CD25 or the IL-2RB chain
presenting with decreased T,y frequencies and reduced per cell
FOXP3 protein levels, and developing fatal autoimmune disease
[97]. In line with the aforementioned studies, dysfunctional
FOXP3'°% CD25M9 Treg Can be found in mice with germline
deficiencies of IL-2 and IL-2R [19, 95, 96].

Together, these studies demonstrate the relevance for IL-2 in
Treg development, maturation, and survival, and suggest that it
serves a direct role in T4 suppressive function.

The role of IL-2 in T,y maturation and function can in part be
attributed to a positive feedback loop between FOXP3 and CD25
expression. Upon activation of the IL-2-STAT5 signalling pathway
in Treg, phosphorylated STATS binds the FoxP3 locus to promote
its expression. FOXP3 in turn positively regulates expression of
CD25 [33, 85, 98, 99]. CD25 expression constitutes part of the Tyeq
transcriptional signature and upon loss of T,.q4 lineage fate, CD25
gene expression is lost quickly, further illustrating the interde-
pendency of T4 signature genes such as FoxP3 and CD25 [100].
High expression of the high-affinity trimeric IL-2R on Tieq,
however, is not only necessary for T4 to scavenge the low levels
of IL-2 for their homoeostasis; the ability to preferentially capture
IL-2 also presents an immunosuppressive mechanism by starving
effector T cells and NK cells from IL-2 and hence limiting their
activation and proliferation. The requirement for the IL-2-STAT5-
FOXP3 axis in T.q suppressive function was elegantly demon-
strated in a study using transgenic mice with T..g-specific
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deficiency of the IL-2R with simultaneous expression of constitu-
tively active STATS5 [97]. Early fatal autoimmune disease otherwise
observed in mice with T,.4-specific IL-2R deficiency can be rescued
by constitutive STAT5 signalling; however, the mice still
succumbed at a later age from uncontrolled CD8 T cell activation
and expansion. This demonstrated that IL-2 consumption via the
high-affinity trimeric IL-2R expressed by T,.4 particularly controls
the CD8 T cell population size and activity.

Memory T.g (mT.g)—analogous to their non-regulatory
counterparts—are long-lived cells which upon secondary expo-
sure however do not respond with proliferation and pro-
inflammatory cytokine production but instead possess increased
suppressive function. The induction of mT,.g would hence be of
therapeutic interest. They are thought to mitigate tissue damage
during the rapid and heightened response of effector memory
T cells upon secondary antigen exposure or to reinforce foetal
tolerance during pregnancy. Accordingly, mT.y present as
antigen-experienced, CCR7'" cells, express high levels of anti-
apoptotic BCL-2 and proliferate less (Ki67'°") compared to
activated T4 [101, 102].

While memory T,y may be less dependent on IL-2 for long-term
maintenance, they express high levels of CD25 and expand in
response to low-dose IL-2 therapy [55, 101, 103-105]. However,
long-lived (local) tolerance induced by IL-2-based therapy relies on
the pre-existence of antigen-specific mT,eq or (local) induction of
mT,.g. Antigen therapy to induce hyposensitivity to allergens
might be explained by the induction of mT,.,. However, e.g. islet-
specific antigen therapy alone has been disappointing in trials
with type 1 diabetes patients and it has been suggested that
antigen therapy must be combined with a T.4-inducing agent
such as low-dose IL-2. While this presents a promising strategy for
type 1 diabetes and other autoimmune diseases, clinical trials are
needed to establish antigen dosing and boosting regimens, long-
term efficacy and its correlation with mT.g4 induction and
persistence.

The roles of IL-2 in T4 biology and suppressive function make
IL-2 a highly attractive immunotherapeutic molecule in the
context of autoimmunity and transplantation. However, its
activities on different (immune) cell types also demand caution
in clinical trial design and close monitoring of adverse effects. In
the below chapters, we will discuss recent pre-clinical and clinical
efforts to develop IL-2-based immunotherapeutic strategies that
target T4 to treat autoimmune conditions characterised by low
numbers or reduced suppressive activity of T,y as well as to
prevent transplant rejection.

IL-2-BASED IMMUNOTHERAPIES
IL-2 was the first cytokine therapy approved by the U.S. FDA [58].
The initial indications were in metastatic cancers where IL-2 had to
be administered at very high doses (HD IL-2) to achieve clinical
benefit. The high doses were necessary because of a very short
half-life of IL-2 in vivo and for stimulation the cytotoxic effector
T cells and NK cells, presumably, once the high-affinity receptor on
Treg has been saturated. The approval was based on the overall
objective response rates in up to 20% of patients and durable
complete responses for up to 91 months [59]. However, the
treatment also induced severe treatment-associated toxicities
including vascular leak syndrome and clinical manifestations of a
cytokine storm. Efforts to reduce toxicities by lowering the dose
led to a considerable loss of therapeutic efficacy due to the
expansion of immunosuppressive T4 that contain a high-affinity
IL-2 receptor and thereby outcompete other cells for IL-2 [106]. HD
IL-2 remains an important treatment in selected patients, either as
a first-line option or in combination with new targeted and
immunological therapies [107].

The preferential capture of natural IL-2 via the high-affinity IL-2R
expressed by T4 is exploited in low-dose (LD) IL-2 therapy. The
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short half-life of IL-2 (<10 min [108]) requires daily injections of
0.5-3 million international units (MIU) in repetitive treatment
courses with effects on T4 lasting days to weeks, but at the same
time its quick clearance allows for fast and flexible dose
adjustment to ameliorate possible adverse effects. Overall, LD IL-
2 treatment is well-tolerated as documented in animal studies and
clinical trials (reviewed in [50, 51]). Long-term administration in
mice showed no impairment of immune responses or vaccination,
nor did it increase cancer occurrence [109]. Similarly, a long-term
study in children with early onset type 1 diabetes mellitus (T1D)
concluded that the treatment was safe and well-tolerated [110].
However, inherent to the pleiotropic nature of IL-2, dose-
dependent mild-to-moderate adverse effects are associated with
LD IL-2 treatment. While high-dose IL-2 treatment can induce
vascular leak syndrome, LD IL-2 may result in transient influenza-
like symptoms, or in eosinophilia driven by ILC2-produced IL-5
[24, 51]. Overall, data obtained in murine disease models and
clinical studies are promising with partial or complete response to
treatment. Completed and ongoing clinical trials with LD IL-2 in
autoimmune and rheumatic diseases are summarised elsewhere
[111].

Fuelled by the therapeutic benefit of LD IL-2 and to overcome
its limitations, further efforts have focused on the development of
second-generation versions of IL-2 with superior pharmacokinetics
and Tg selectivity. Aims of these efforts beyond target cell
selectivity and reduced off-target effects are to increase the half-
life of the novel molecules (at the expense of fast adjustment of
dosing in case of adverse effects), less frequent administration,
and increased therapeutic dose range. Several groups and
pharmaceutical companies have developed PEGylated IL-2 var-
iants [112, 113], IL-2 muteins [114-116], fusion proteins of IL-2
linked to CD25 [117, 118], and IL-2:anti-IL-2 antibody complexes
[93, 119-121] that promote T4 cell expansion in vivo.

Here, we will present promising IL-2-based molecules and
clinical translation thereof with focus on selected therapeutic IL-2
molecules with post-translational modifications, IL-2 muteins,
fusion proteins of IL-2 with other molecules, alternative delivery
methods of IL-2, and IL-2:anti-IL-2 antibody complexes (Table 1).

PEGylated IL-2 variants
PEGylation is a covalent conjugation of proteins to inert
polyethylene glycol (PEG) moieties. PEGylation extends the half-
life of protein therapeutics by increasing the effective molecular
weight of the molecule, while the PEG moieties can also shield the
proteins from digestion by proteolytic enzymes via increased
steric hindrance. For example, a PEG-modified murine IL-2
increased IL-2 retention in vivo by protection from enzymatic
digestion and renal clearance [122]. Although PEG is known as a
safe, inert and non-immunogenic synthetic polymer, some FDA-
approved drugs are associated with the development of
antibodies against PEG moieties that accelerate drug clearance
and loss of clinical efficacy [123, 124].
NKTR-358/LY3471851/rezpegaldesleukin (Nektar/Lilly) is recombi-
nant human IL-2 (aldesleukin sequence) chemically conjugated
with stable PEG moieties, which has an attenuated affinity for IL-
2RB compared with recombinant human IL-2. NKTR-358 promoted
selective T,.q activation and increased T,.4 suppressive function in
mice. The durability and specificity of the response was greater
following a single subcutaneous administration of NKTR-358
compared to five daily administrations of IL-2, and led to disease
suppression in a mouse delayed-type hypersensitivity (DTH)
model [125]. Further, biweekly dosing induced preferential and
sustained T, expansion in mice and non-human primates (NHP)
resulting in ameliorated disease progression in a mouse model of
systemic lupus erythematosus (SLE), and in a non-human primate
cutaneous hypersensitivity model [112]. The single ascending
dose study in healthy volunteers (NCT04133116) and the multiple
ascending dose study with three biweekly subcutaneous doses of
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hIL-2/F5111 mAb-fusion

protein

F5111 mAb-fusion

[178]

AE adverse events, HSA human serum albumin, IL-2¢ IL-2/anti-IL-2 antibody complex, IL-2m IL-2 mutein, LNP lipid nanoparticle, MAS multiple ascending dose, PP/ pre-proinsulin, SAD single ascending dose, RA

rheumatoid arthritis, SLE systemic lupus erythmatosus, T1D type 1 diabetes, EAS/ eczema area and severity index, ADA anti-drug antibodies.

V. Lykhopiy et al.

rezpegaldesleukin  versus placebo in patients with SLE
(NCT03556007) yielded promising results [126]. Dose-dependent,
selective, and sustained increases in percentages and absolute
numbers of total CD4”* T, and CD25°"9" T, were observed,
with no significant changes in conventional CD4 and CD8 T cells,
and low-level increases in NK cells. At the highest dose tested, a
12-17-fold increase in CD25°"9" T, over baseline was sustained
for 20-30 days. Most adverse events were grade 1-2 injection-site
reactions. Immunogenicity was not observed. SLE disease score
was not evaluated due to study limitations, however, data for the
follow-up phase 1b randomised studies in psoriasis
(NCT04119557) and atopic dermatitis (NCT04081350) have been
recently presented [127]. Treatment of patients with psoriasis with
rezpegaldesleukin resulted in increased T,y numbers, and
improved disease score (PASI, psoriasis area and severity index)
versus placebo, which was maintained up to week 19 post-
treatment [128]. In atopic dermatitis, biweekly subcutaneous
injections of rezpegaldesleukin increased total T,eq and CD25Pright
Treg during treatment period (12 weeks), while a dose-dependent
improvement was observed in disease-relevant scores (EASI,
eczema area and severity index) versus placebo up to 36 weeks
following end of treatment [129]. Together with a favourable
safety profile these data further support clinical development of
rezpegaldesleukin in patients with atopic dermatitis [130]. Less
encouraging data were reported for phase 2 ISLAND study
(NCT04433585) that enroled adults with moderate-to-severe SLE.
Although respegaldesleukin led to dose-dependent proliferation
of Treg, the primary endpoint of the study—a four-point reduction
in the SLE disease activity index (SLEDAI-2K)—was not met [131].

THOR-809/5AR444336 (Synthorx/Sanofi) is a site-specific PEGy-
lated IL-2 variant with a PEG moiety attached to an unnatural
amino acid at the IL-2Rp interface designed to increase half-life
and enhance selectivity for the trimeric IL-2R. The modified IL-2
has a reduced affinity to the IL-2RB chain so that the potency of
trimeric IL-2R engagement relies on the IL-2Ra chain binding
[132]. In mice and NHP, THOR-809 preferentially stimulated
proliferation of peripheral T4 relative to effector T cells and NK
cells. Expanded T,.g had sustained pSTAT5 signalling and
upregulated suppression markers FOXP3, CD25, ICOS and HELIOS.
Furthermore, THOR-809 administration in mice led to dose-
dependent expansion of highly suppressive T4 and control of
skin inflammation in the DTH mouse model [133]. A phase 1 trial
in healthy subjects (NCT05876767) is currently ongoing [134].

Another promising IL-2 variant with site-specific PEGylation,
designated dual 31/51-20K, similarly displayed substantially
increased clearance half-life, preferentially stimulated T,y over
effector T cells compared with unmodified IL-2 by selectively
reducing the binding affinity for the (3 subunit of IL-2R, and
significantly reduced disease activity and severity in mouse
models of xenogeneic graft-versus-host disease (GvHD), SLE and
collagen-induced arthritis. Moreover, a single subcutaneous
injection of this PEGylated IL-2 did not induce anti-drug antibody
formation, nor did it compromise the host defence against viral
infection [113].

IL-2 muteins

The elucidation of the crystal structure of IL-2 bound to its trimeric
receptor [11, 135, 136] facilitated the informed introduction of
mutations into IL-2 with the aim to increase its affinity or direct its
binding. Such targeted mutagenesis allows to uncouple the
pleiotropic effects of IL-2 on different immune cells and to target
IL-2 activity toward specific cell populations that express either the
dimeric IL-2R to boost tumour immunity or the trimeric IL-2R
expressed by T4 to increase tolerance in autoimmunity and to
transplanted grafts. IL-2 variants with increased binding to CD25
and/or decreased binding to CD122 and/or CD132 preferentially
activate and expand T, These cytokines are further fused to
either the fragment crystalisable (Fc) domain of immunoglobulin
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(IgG) or the full IgG, which results in significantly extended half-life
due to increased hydrodynamic radius and hence decreased renal
clearance but also due to the recycling of the protein via the
neonatal Fc receptor. In the following paragraphs, we discuss a
selection of promising IL-2 mutein molecules, each designed for
Treg selectivity and application in autoimmune or inflammatory
disease, that are currently in clinical development.

AMG592 or efavaleukin alpha (Amgen) is an IL-2 mutein with
V91K/C125A mutations that confers high CD25-binding affinity,
and that is expressed as a fusion to the C-terminus of an Fc
homodimer [137]. In a first-in-human study, efavaleukin alpha
single subcutaneous administration resulted in dose-dependent
Treg €xpansion, which was highly selective relative to conventional
T cells (Tcony) and NK cells. Tyeg-to-Teony ratio peaked at day 8 (4-
fold vs baseline) and remained elevated up to day 29, while no
increases in serum proinflammatory cytokines IL-6, TNFa or IFNy
were detected. The expanded T4 displayed increased CD25 and
FOXP3 levels and were enriched for CD31P% recent thymic
emigrants. Treatment was well tolerated [138] and several early-
phase studies were initiated to further evaluate safety and efficacy
in subjects with rheumatoid arthritis (RA) (NCT03410056), steroid-
refractory chronic GvHD (NCT03422627), and SLE (NCT03451422).
Amgen ended the trials in RA due to insufficient therapeutic
benefit for the use of efavaleukin alpha plus standard of care
therapy in the assessed study population (NCT03410056); and
chronic GvHD [139]. Data from a multiple ascending dose phase
1b study in patients with SLE demonstrated that efavaleukin alpha
was well tolerated and induced a robust and prolonged dose-
dependent T,y expansion, with minimal changes in CD4 and CD8
Teonvs NK cells or serum levels of pro-inflammatory cytokines [140].
The biweekly administration resulted in a 50-fold increase in
CD25bright Treg above baseline, and the T,og Nnumbers remained
above baseline for an average of 42 days after the last dose.
Despite these promising results, a phase 2b study of efavaleukin
alpha in patients with SLE (NCT04680637) has been discontinued
as it met pre-defined criteria for futility, i.e., it was unlikely to
achieve its objectives [141]. However, a phase 2 study in ulcerative
colitis (NCT04987307) is still ongoing.

RG7835 (Roche) is a bivalent conjugate of human IL-2 mutein
(T3A, N88D, C125A) and a human IgG1 with abolished binding to
Fcy receptors. Due to its reduced affinity to IL-2RBy, lgG-(IL-
2N88D), has a 6-9-fold reduced ability to stimulate T,eq in human
whole blood pSTATS5 activation assays compared to a wild-type IL-2
dimer but had no effect on other cell types except some activity on
CD56°"9" NK cells. Treatment of cynomolgus monkeys and
humanised NSG mice (engrafted with human foetal liver CD34”°°
cells) with a single dose of 1gG-(IL-2N88D), induced sustained 10-
14-fold expansion of CD4P°* and CD8P°® CD25P°* FOXP3P® Tioq
with no effect on other cell types. The in vivo activated and
expanded cynomolgus and human T,y had demethylated
epigenetic signatures for FOXP3 and CTLA4 characteristic of
functionally suppressive cells. However, neither mouse disease
models nor multiple-dose studies in NHP could be performed due
to the immunogenicity of the molecule in both species [115].
Phase 1b study initiated to assess safety, efficacy, pharmacoki-
netics, and pharmacodynamics of RG7835 in patients with
ulcerative colitis (NCT03943550) was terminated after 8 weeks
based on the lack of robust clinical improvement in the underlying
condition, according to ClinicalTrials.gov. Following the failure in
ulcerative colitis, a phase 2 clinical trial designed to evaluate the
effect of RG7835 on time to relapse following forced corticosteroid
tapering in patients with autoimmune hepatitis (NCT04790916)
was also terminated.

Using a structure-guided approach, several mutations in IL-2
were introduced that significantly decreased CD122 binding
affinity in addition to other mutations that increased CD25
binding affinity (L118l, N88D, V69A, Q74P, C125S) [142]. The
resulting Fc-fusion molecules, PT101/MK-6194 (Pandion/Merck),

SPRINGER NATURE

selectively activated and expanded T,o4 in preclinical studies in
humanised NSG mice and NHP without significant effects on other
immune cell types, and without eliciting proinflammatory cytokine
production [143]. These expanded T4 had increased expression
of FOXP3 and CD25, suggesting enhanced function and stability.
In a phase 1a single ascending dose clinical trial in healthy
volunteers, PT101 was safe and well-tolerated, and a dose-
dependent expansion of CD25°"9ht Teg cells was observed with a
mean maximum increase of 72.5-fold for CD25°"9" T, by day
8-10 (and an overall 3.6-fold increase in total Tyeg) [144]. Tcony and
NK cells were not increased while increases in eosinophil counts
were transient. A phase 1 clinical trial in ulcerative colitis
(NCT04924114) was initiated by Merck & Co. in 2021 to further
evaluate PT101/MK-6194.

A similar molecule, an IL-2 mutein (T3A, N88R, C125S) fused to a
human IgG Fc domain, DEL106/CC-92252 (Delinia/Celgene/BMS)
also preferentially binds to IL-2Ra. A single intravenous dose of the
compound in cynomolgus monkeys resulted in dose-dependent
and selective T,4 expansion and activation, which was better
compared to IL-2 [145]. An increase in total circulating T.eq cells
was 15-fold on day 5, while no change in the number of
circulating Teony Or CD8 cells was detected. The compound also
stimulated expression of suppression and proliferation markers
CD25, FOXP3 and Ki67 on Teq. IL-2 induced selective STAT5
phosphorylation of T,.4 over a narrow dose range, also activating
Teonvs CD8 T, NK and B cells; in contrast, DEL106 demonstrated
over 1000-fold-greater selectivity for T, over other immune cells.
In addition, subcutaneous administration showed that DEL106
exhibited a lower serum clearance and had a longer circulating
half-life than IL-2. A phase 1 first-in-human study with this
molecule was conducted in three parts: as a single ascending dose
or multiple ascending dose study in healthy volunteers and a
multiple ascending dose study in psoriasis patients
(NCT03971825). CC-92252 was found safe and well-tolerated
across studies with adverse effects of mild to moderate intensity.
The treatment resulted in a selective but modest (maximum 2-
fold) T,y expansion in circulation of healthy participants and in
skin lesions of participants with psoriasis. However, as for RG7835
(Roche), no apparent trend of clinical improvement compared to
placebo was observed in patients, indicating that the achieved
Tieg €xpansion may be insufficient for robust efficacy in active
disease. Mechanistic studies revealed that although highly
selective, CC-92252 is a weak partial agonist with only a subset
of Tg responding to this IL-2 mutein [146]. Given limited
evidence for clinical efficacy, the CC-92252 programme has been
discontinued, although BMS is pursuing alternative approaches to
Treg selectivity with IL-2 constructs (see below, with IL-2/CD25
fusion).

The therapeutic molecule CUG252 (Cugene/Abbvie) is an IL-2
mutein (L19H, C125I, Q126E) Fc-fusion protein designed for biased
binding activity to IL-2Ra but attenuated binding to the IL-2RBy
complex [147]. In mice and cynomolgus monkeys, administration
of CUG252 resulted in dose-dependent increases in T4 €xpansion
by 10- to 30-fold, with largely abolished activities in effector T cells
and NK cells [148]. T .y had enhanced expression of functional and
inhibitory markers (CD25, FOXP3, PD-1, CTLA-4, TIM3 and ICOS)
and increased suppressive capacity in DTH. In T cell-dependent
antibody response models, CUG252 strongly inhibited antigen-
driven inflammation, B cell maturation, and antibody production.
The molecule is currently in phase 1 study, which aims to evaluate
the safety and tolerability of single escalating subcutaneous doses
of CUG252 in healthy adult subjects, and multiple escalating
subcutaneous doses of CUG252 in patients with mild to moderate
SLE (NCT05328557).

MDNA209 (Medicenna) is an IL-2 mutein (L18R, Q22E, Q126T,
S130R) with increased affinity to the IL-2RP and greatly decreased
affinity for IL-2Ry, resulting in attenuated IL-2RBy heterodimeriza-
tion and reduced signalling. The design of MDNA209 is based on
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the scaffold of IL-2 ‘superkine’ variants that had an increased
affinity for the B chain of the IL-2 receptor [114]. Rather than
triggering IL-2 signalling, however, MDNA209 acts as an antago-
nist, blocking the receptor and preventing it from transmitting the
signal. When targeted to T cell subsets, this IL-2 variant could be
clinically translated in the context of controlling T-cell mediated
(auto)immune disorders where it is essential to prevent effector T
cell activation and expansion resulting in effector cell-mediated
tissue damage, such as during acute GvHD. The mutein and its Fc-
fusion version have been characterised ex vivo and in vivo.
MDNA209 prevented IL-2- and IL-15-induced signalling via STAT5
and blocked proliferation of CD8P** T cells and NK cells, while
inhibiting helper T cell type (Ty) 1, Ty9 and T.4 cells but
promoting Ty17 cell differentiation. Mice treated with an Fc-fusion
version of MDNA209 for 10 days showed prolonged survival in a
full MHC-mismatched acute GvHD model compared to control IgG
[149].

Other IL-2 fusion proteins

An alternative approach to increase the selectivity of IL-2 for T,eg is
through fusion with CD25. The mouse IL-2/CD25 fusion protein
forms a tight inactive dimer that slowly releases the active
monomer to stimulate the high-affinity IL-2R [117]. The long-
acting biologic expands T4 in vivo more potently than IL-2, but
also increases their activation and migration into lymphoid tissues
as well as non-lymphoid tissues as shown for the pancreas and its
inhibition of anti-insulin autoantibodies. Moreover, the IL-2/CD25
fusion protein was effective in treating diabetes and inhibiting
lupus nephritis in mouse models [118, 150]. The human version of
the compound is a full agonist, which maintains high selectivity on
Teg OVer other cell types in whole blood pSTAT5 assays [151]. The
human IL-2/CD25 had a prolonged half-life and induced a dose-
dependent selective increase in T4 in cynomolgus monkeys
compared to IL-2 or IL-2 mutein Fc-fusion molecules [146]. The
first-in-human study is still ongoing, but preliminary single-dose
pharmacodynamics data confirm robust and prolonged T,q
induction in humans with no expansion of inflammatory CD8 or
Teonv cells [152, 153].

CUE-401 (Cue Biopharma) is a tolerogenic IL-2/TGFf3 Fc-fusion
protein designed to activate and induce FOXP3 expression in CD4
T cells (iTreg). In mouse CD4 T cells, it induces FOXP3 expression
in vitro (iTeg). Also, in human CD4 T cells from healthy donors,
inflammatory bowel disease and RA patients, it results in increased
number of FOXP3-expressing cells, however, induction of FOXP3
expression versus preferential expansion of containing T4 has not
been dissected. The in vitro induced/expanded T,y suppress
polyclonal T cell proliferation and express comparable phenotypic
markers as iT,eq induced with combination of TGFf and IL-2 (CD25,
CTLA-4, PD-1, GITR, CD38, CD73, GARP). A single dose of CUE-401
administered to TxA23 mice with ongoing autoimmune gastritis
increased FOXP3P®* CD4 T cells in blood and lymph nodes and
inhibited autoreactive T cell proliferation in gastric lymph nodes
[154, 155].

TNF signalling via TNFR2 enhances expansion, function and
stability of T,eq [156]. A dual-acting fusion protein, with IL-2 fused
to a TNFR2-selective TNF mutein (IL2-EHD2-sc-mTNFR2) promoted
strong activation and expansion of CD4 and CD8 T4 cells in vitro
compared to either IL-2 or TNFR2 stimulation alone, with both
components necessary for superior biological activity [157]. The
combination of IL-2 and a TNFR2 agonist is therefore a promising
approach for selective T,.q expansion in vivo [158].

Alternative IL-2 delivery methods

The therapeutic IL-2 molecules described above are expressed in
living cells and are administered as formulations of recombinant
protein. Novel technologies are instead based on the in situ
expression of encoded proteins and include lipid nanoparticle
(LNP)-mediated mRNA delivery, DNA vaccines and gene transfer
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using viral vectors. Nucleic acid therapeutics are considered safe,
well-tolerated and efficacious with major advantages over protein-
based therapeutics including simple and cost-effective production
processes and opportunities to improve the drug characteristics
[159, 160]. However, several challenges remain. The greatest
challenge for mRNA nanomedicine is immunogenicity both
against the LNP itself as well as against the mRNA-encoded
proteins. With gene therapies, which are designed for permanent
integration of the viral vector into genome, the uncertainty about
delayed adverse events remains the greatest risk factor [160].

mMRNA-6231 (Moderna) is a lipid nanoparticle (LNP)-encapsulated
mRNA encoding a T,eq -specific IL-2 mutein fused to human serum
albumin (HSA). Two triple-mutant molecules (V69A/Q74P/N88D or
V69A/Q74P/V91K) showed the highest difference in pSTAT5 signal
between T4 and other cell subsets in human PBMC in vitro and
selectively activated and expanded T,.q in mice. LNP-formulated
mRNA encoding HSA fused to wild-type IL-2 elevated the
percentage of T4 in cynomolgus monkeys and was also effective
in preclinical models of murine acute GvHD and collagen-induced
rat arthritis [161, 162]. The first-in-human trial of mRNA-6231 in
healthy adult participants (NCT04916431) was stopped after early
clinical data became available [163].

A tolerogenic immunotherapy NNC0367-0041 (Novo Nordisk)
involves a DNA plasmid which encodes for pre-proinsulin (PPI),
TGFp1, IL-10, and IL-2 [164]. The combination of antigen (PPI) with
the three immune response modifiers (TGFf1, IL-10, and IL-2) is
intended to induce antigen-specific Ty accumulating in the
pancreas, and to preserve beta cell function in type 1 diabetes
(T1D). The safety and efficacy of treatment was demonstrated in
NOD mice as assessed by delayed disease progression, necessity of
both antigen and IL-2 for increased efficacy and robustness, and
tolerability of chronic dosing [165]. However, no pharmacodynamic-
related measurements such as T4 activity or cytokine expression
were performed. The phase 1 trial in adults with recent-onset T1D is
currently recruiting and will evaluate safety, tolerability, and
pharmacokinetics of the therapy (NCT04279613).

Adeno-associated viral (AAV) vector-mediated gene transfer for
systemic and continuous IL-2 production has been investigated
using a single administration of an AAV-IL-2 vector in mice. The
treatment enabled sustained stimulation and expansion of T,
without inducing effector T cell activation while preventing
diabetes in NOD mice [109] or alleviating Alzheimer’s disease in
APP/PS1AE9 mice with established pathology [166]. Moreover, the
long-term IL-2 expression did not impair immune responses to
infections, vaccination or cancer [109]. However, this approach
does not allow to interrupt or stop the treatment in case of
adverse events. A tissue-specific gene-delivery approach of IL-2 for
the treatment of neuroinflammatory pathologies has been
developed by Yshii et al. Ty constitute a small resident cell
population in the brain, where low levels of IL-2 are thought to
limit the natural anti-inflammatory processes. Tissue-specific IL-2
expression targeted to astrocytes via an AAV vector induced a
local and transient expansion of the T,y cell population in the
mouse brain, which led to beneficial effects in mouse models of
traumatic brain injury, multiple sclerosis and stroke [167]. Both the
tissue-specific IL-2 delivery system as well as the ability to control
the encoded protein expression are promising approaches to
improve the clinical translation of gene therapy.

IL-2/anti-IL-2 antibody complexes

Coupling of IL-2 to specific monoclonal antibodies can modify the
interaction of IL-2 with its receptor leading to a targeted and
longer-lasting in vivo biological activity compared with soluble IL-
2 [93, 119]. Depending on the antibody-binding site on IL-2, the IL-
2:antibody complex (IL-2¢) can preferentially activate either the
cells expressing high levels of CD122, such as memory CD8 T cells
and NK cells, or CD25-expressing cells such as Treg. A prominent
and well-studied example is the complex of mouse IL-2 bound to
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the anti-mouse IL-2 antibody JES6-1. JES6-1 binding sterically
obstructs mouse IL-2 interaction with the IL-2RBy heterodimer to
block the signalling on IL-2Ra'®" effector cells. Thereupon, IL-2 is
preferentially delivered to the trimeric receptor via a unique
allosteric exchange mechanism, where the IL-2Ra subunit
displaces the JES6-1 antibody allowing IL-2 to initiate signalling
via the IL-2By subunits. This complex prolonged the in vivo half-
life of IL-2 and led to selective expansion of murine T,y in a
murine dextran sodium sulphate colitis model [119, 168]. The
efficacy of this approach has been further demonstrated in various
experimental models of autoimmune diseases or other inflamma-
tory settings as exemplified below:

® enhanced allograft survival in a murine model of islet
transplantation and experimental autoimmune encephalo-
myelitis (EAE) prevention in combination with rapamycin
[169],

® markedly attenuated acute GvHD while preserving graft-
versus-leukaemia activity after allo-hematopoietic cell trans-
plantation at higher efficacy than tacrolimus treatment [170],

® survival of fully MHC-mismatched skin allograft: IL-2c failed to
augment the survival of skin allografts as monotherapy but
initial treatment with anti-IL-6 monoclonal antibody followed
by supplementation with rapamycin led to graft survival and
elevated intra-graft T4 levels [171],

® attenuation of CNS inflammation and neurological deficits in
EAE [172],

® suppression of experimental myasthenia gravis [173],

® inhibition of collagen-induced arthritis [174],

® attenuation of atherosclerosis in apolipoprotein E-deficient
mice [175],

® decreased myofiber injury in murine muscular dystrophy
model [176].

These results motivate the investigation of IL-2-based therapies
in inflammatory diseases or conditions that are not caused by
autoimmune or alloimmune reactions.

A fully human anti-IL-2 antibody F5771.2 that resembles the
exchange mechanism observed for the anti-mouse IL-2 antibody
JES6-1, was developed by Trotta et al. [120]. Comparison of the
crystal structure of IL-2c with the IL-2/IL-2R quaternary structure
revealed that F5111.2 sterically obstructs the binding of human IL-
2 to IL-2Rp and allosterically reduces the affinity of the cytokine to
IL-2Ra. Administration of F5111.2-hIL-2 complex results in the
preferential STAT5 phosphorylation of T4 in vitro and selective
expansion of Tg in vivo. When complexed with human IL-2,
F5111.2 induced remission of T1D in the NOD mouse model,
reduced disease severity in a model of EAE and protected mice
against xenogeneic GvHD [120].

Another anti-human IL-2Ra-biased IL-2 antibody, UFKA-20, uses
a similar mechanism to selectively target T,eq [121]. The IL-2 bound
to UFKA-20 fails to induce cell activation via the dimeric IL-2R
unless the cells also express CD25. Once the IL-2/UFKA-20
complex is bound to CD25, the antibody dissociates from IL-2
and allows the formation of high affinity quaternary IL-2/IL-2R
structure that leads to intracellular signalling. Consequently, the
IL-2/UFKA-20 complexes efficiently and preferentially stimulated
CD4P T,og in freshly isolated human T cells ex vivo and in mice
and rhesus macaques in vivo [121].

The clinical translation of the IL-2/antibody complex approach is
complicated by the instability of the cytokine/antibody complex
and the need to optimise dosing ratios, as dissociation would lead
to off-target effects and rapid clearance. Genetically fusing IL-2
and the antibody should circumvent these drawbacks [168, 177]. A
single-chain hIL-2/F5111 antibody-fusion protein has been engi-
neered that demonstrated selective T4 bias and showed efficacy
in mouse models of colitis and checkpoint inhibitor-induced
diabetes mellitus [178].
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CONCLUSIONS

IL-2 is central in the biology of T,y during development,
functional maturation, lineage stability, peripheral homoeostasis,
and function. The consequence of the dependency of T4 on IL-2
is the development of autoimmunity in the absence of IL-2
signalling. T,.q compensate for the dependency with an excep-
tional IL-2 capture sensitivity that outcompetes that of other cell
types. The necessity for IL-2 signalling and the high expression of
the high-affinity trimeric IL-2R make the IL-2 signalling pathway a
prime-candidate for T.gtargeting therapeutic approaches in
autoimmune and inflammatory diseases as well as in the
prevention of transplant rejection.

Despite its high efficacy, given the limitations of low-dose IL-2,
numerous approaches have been developed to increase the
targeting specificity of IL-2 and hence to avoid binding of the new
IL-2-based biologicals to non-T,4 cells. Informed by structural and
empirical studies, modified IL-2-based molecules are being tested
in pre-clinical studies as well as in clinical trials. Yet, informed
design may not entirely predict therapeutic success as illustrated
by insufficient efficacy and incomplete translation of pre-clinical
data in clinical trials for some candidates. However, despite the
requirement for thorough clinical assessment of therapeutic
benefit in each disease, recent successes in clinical trials for
several modified IL-2-based molecules in various autoimmune
contexts are representative of the promising therapeutic perspec-
tive of IL-2-based immunotherapeutics.

The further possibility to target (modified) IL-2 to T,y subsets of
particular prevalence in a disease context by the use of additional
moieties may expand the drug development toolbox in the future.
Similarly, combinatorial therapy, such as with rapamycin, may prove
beneficial but will require assessment in clinical trials. Finally, and
undoubtedly, an increasing understanding of structural modifications
and their functional consequences will further the design of IL-2-based
molecules to increase targeting efficiency as well as to minimise risk for
off-target activity and hence maximise safety and efficacy.
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