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Cognitive deficits are a core feature of schizophrenia, account for much of the impaired functioning associated with the disorder
and are not responsive to existing treatments. In this review, we first describe the clinical presentation and natural history of these
deficits. We then consider aetiological factors, highlighting how a range of similar genetic and environmental factors are associated
with both cognitive function and schizophrenia. We then review the pathophysiological mechanisms thought to underlie cognitive
symptoms, including the role of dopamine, cholinergic signalling and the balance between GABAergic interneurons and
glutamatergic pyramidal cells. Finally, we review the clinical management of cognitive impairments and candidate novel
treatments.
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INTRODUCTION
Individuals with schizophrenia show a substantial impairment in
overall cognitive performance, which, on average, is around two
standard deviations below that in healthy controls [1]. Moreover,
this deficit contributes to poor clinical outcomes such as
unemployment and an inability to live independently [2]. While
cognitive function in schizophrenia is an area of increasing
research interest (Fig. 1) [3], this has yet to translate into the
development of novel treatments for cognitive problems. All
currently approved pharmacological treatments for schizophrenia
exert their effects via antagonism of the dopamine D2 receptor
[4, 5]. This mechanism of action is efficacious for symptoms that
are thought to be driven by excessive striatal dopamine signalling,
such as hallucinations and delusions. However, antipsychotic
medications have little impact on cognitive impairments in
schizophrenia, perhaps because the latter are related to different
pathophysiological processes [5]. In the current paper, we outline
the clinical nature of cognitive impairment in schizophrenia and
consider potential aetiological factors. We then discuss pathophy-
siology, before concluding with an examination of current and
potential future treatment options.

THE NATURE OF COGNITIVE IMPAIRMENTS IN SCHIZOPHRENIA
Cognitive deficits appear to be distinct from positive and
negative symptoms
Factor analyses of the Positive and Negative Syndrome Scale
(PANSS) indicate that a five-factor model (positive, negative,
disorganised, excited, and depressed) captures the symptom
structure of schizophrenia better than the original a priori grouping
of positive, negative, and general symptoms [6, 7]. Of these five
factors, the disorganisation factor (which includes difficulty in

abstract thinking, poor attention, disorientation, stereotyped
thinking and conceptual disorganisation) shows the strongest
association with cognitive test scores, but still only accounts for a
small proportion of the variance [8, 9]. Network analyses have
identified broadly similar symptom groupings, and again find that
cognitive scores are distinct from positive and negative symptoms,
although linked to disorganisation [10, 11]. Deficits in social
cognition are also apparent in individuals with schizophrenia, and
these too are separable both from the five PANSS factors and other
cognitive domains [12, 13]. Social cognition also has a major impact
on functioning [13], and may have distinct pathophysiological
underpinnings. This important aspect of cognition in schizophrenia
has been reviewed in detail elsewhere [14, 15], and is not within the
scope of the present review.

Are impairments global or domain-specific?
For a given cognitive domain, patients with schizophrenia perform
around one standard deviation below the level of controls.
However, the psychometric properties of composite scores are
such that they are typically more extreme than their constituent
parts [16]. Thus, patients show an impairment of around
1.5 standard deviations on overall composite scores relative to
controls [1, 17–22]. An unresolved issue is whether there are
distinct domains of cognitive impairment in schizophrenia, or
whether the deficits are better summarised as global. This issue
maps to a parallel debate over whether the pathophysiology of
schizophrenia involves specific loci of brain dysfunction or a
systems-level disruption.
Factor analyses of the Measurement and Treatment to Improve

Cognition in Schizophrenia test battery identified seven cognitive
domains: Processing speed, Attention, Working memory, Verbal
learning and memory, Visual learning and memory, Reasoning,
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and Social cognition [23]. Further dimensionality reduction
suggests that these seven domains can be reduced to parent
domains of Processing speed, Attention/Working memory and
learning [24].
Some reports indicate that processing speed is the domain

most affected in schizophrenia, and that processing speed
deficits are the strongest predictor of general cognitive perfor-
mance [24–27]. However, processing speed is particularly affected
by antipsychotic medications [28], and in medication-naïve
cohorts, the magnitude of this impairment is no greater than
that for verbal or working memory [19]. Because processing
speed is a component of many cognitive functions, deficits in this
domain may reflect impairments in other higher-order functions.
For example, patients with schizophrenia may approach proces-
sing speed tests, such as symbol-coding, less strategically than
controls [29]. Equally, impairments in even lower-level domains
such as reaction time could contribute to deficits in higher-order
domains [23]. Given the existence of severe impairments of low-
level processes, and the presence of deficits across many
domains, it could be argued that cognitive impairments in
schizophrenia are best conceptualised as a generalised deficit.
However, it is unclear whether the limitations of existing
cognitive tests are such that they cannot isolate specific cognitive
processes, precluding the capture of more specific impairments
[30, 31]. Tests that can examine more specific cognitive and
perceptual processes may be more sensitive to the non-
generalised components of cognitive impairments in
schizophrenia.

Variation in cognitive impairments between and within
individuals
Cognitive functioning appears to vary significantly between
individual patients with schizophrenia [32]. Cluster analyses of
raw test scores point to a heterogeneity of cognitive function
similar to that seen in samples of healthy controls. While these
findings provide evidence for clusters of cognitive performance
similar to those observed in the general population, they do not
demonstrate that the population of patients with schizophrenia

comprises clusters of individuals with distinct patterns of cognitive
impairment. Thus, it is still unclear whether there are different
forms of cognitive impairment across patients, or a generic
impairment which is differentially expressed due to variations in
premorbid cognitive ability. Analysis of the variability of cognitive
functioning between people at clinical high risk (CHR) for
psychosis indicates that there is significantly greater variability
among these individuals than among controls across a wide range
of cognitive domains. This result suggests that there is a
heterogeneity in the magnitude of the impairment across
individuals, rather than a uniform deficit (Fig. 2) [33].
Variability within individuals has also been examined, and it

appears that both over time and across cognitive domains
individuals with schizophrenia and those at risk of the disorder
display greater intra-individual variability than control subjects
[34, 35]. These findings suggest different individuals may show
impairments in different domains. However, precisely delineating
this is more challenging, and may require prospective studies that
begin even earlier than the clinical high-risk stage, before the first
expression of symptoms.

Time course of cognitive deficits in schizophrenia
In people who later develop schizophrenia, relatively global
impairments in cognitive function are detectable in childhood
[36], and there is an increase in the severity of nonverbal deficits
during adolescence due to the slower development of these
abilities (Fig. 3) [37, 38]. This alteration in developmental trajectory
over adolescence is a stronger predictor of the subsequent onset
of schizophrenia than a cross-sectional impairment in cognitive
performance at the age of 18 [39].
Much of the impairment in cognitive functioning that is evident

in adults with schizophrenia is thus established before the first
expression of symptoms [40] or contact with mental health
services. This raises the possibility that even in patients in whom
cognitive deficits are not clinically obvious, a degree of deteriora-
tion relative to the premorbid state has already occurred. This is
supported by the finding that people with schizophrenia, when
matched to controls with the same current IQ, have higher scores

Fig. 1 Increasing interest in cognitive impairment in schizophrenia. The graph illustrates the proportion of PubMed articles on
schizophrenia that include ‘cognitive impairment’ in the title.
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on cognitive tests that are sensitive to premorbid IQ, but lower
scores on working memory (which is not) [32, 41].
The first episode of schizophrenia is often preceded by a CHR

state in which cognitive deficits are also observed [42]. Individuals
at CHR may or may not progress to develop schizophrenia [43],
and cognitive deficits are most severe in the subgroup of the CHR
population that subsequently develops the disorder [42]. Whether
the transition to frank psychosis in these individuals is associated
with a further decline in cognitive function remains an important
question. A progression of cognitive impairments (as well as
psychotic symptoms) would suggest that neurobiological changes
occurring over this period underlie the changes in cognitive
function. Alternatively, an absence of progression would indicate
that the neurobiological factors critical to cognition are pre-
existing and neurodevelopmental. At present, there is no evidence
of a decline in raw cognitive performance following transition,
although this could reflect practice effects [44]. However, there is
some evidence for a relative decline: a recent meta-analysis found
that CHR individuals who develop psychosis display a relative
worsening in processing speed subsequent to baseline compared
to CHR individuals who did not transition [45].
A decline in cognitive function over the course of the illness was

originally seen as a defining feature of schizophrenia [46]. Meta-
analyses of longitudinal studies, however, have tended to show
improvement across multiple cognitive domains. However, many
of the studies examined were of limited duration and the
observed improvements are likely artefacts of practice effects,
with less improvement observed in patients than in controls
[47–49]. Long-term longitudinal studies of over 10 years duration
are rare, and have shown both improvement [50] and decline
[51, 52] in cognitive function. It is difficult in these studies, either
due to lack of controls, relatively small sample sizes, or poor
matching to controls, to disambiguate how much observed
changes reflect normal cognitive trajectories, versus how much
is due to a changing magnitude of impairment. Large-scale cross-

sectional studies have suggested that while cognitive functioning
decline with age this follows normal trajectories with no increase
in the severity of impairment [53]. There is some evidence for a
more rapid decline in cognitive function over the age of 65 in
institutionalised individuals with schizophrenia than controls [54].
The basis of this decline is unclear, but could partly be secondary
to poor physical health in patients with schizophrenia, which
becomes increasingly evident in later life (Fig. 3). Both the lower
starting point and this subsequent decline likely contribute to the
increased incidence and earlier onset of dementia in individuals
with schizophrenia [55].

Are cognitive deficits in schizophrenia distinct from those in
other psychiatric disorders?
During the development of the DSM-5, the addition of cognitive
impairment as a new diagnostic criterion for schizophrenia was
considered. However, this was not implemented, because
cognitive deficits in schizophrenia were regarded as not
sufficiently distinct from those in other conditions (such as bipolar
disorder) to be of diagnostic value [56–59]. Nevertheless, the
pattern of deficits across different psychiatric disorders is not the
same. For example, cognitive impairments in schizophrenia are
more severe than in bipolar disorder and depression, and are
clearly present before the expression of symptoms, which is not
the case for bipolar disorder or depression [60, 61] Ironically,
subjective cognitive impairment is one of the DSM criteria for the
latter disorders. In schizophrenia, however, the use of a subjective
criterion is complicated by the lack of insight associated with the
disorder, although subjective cognitive difficulties can be used as
diagnostic criteria for the CHR state [62].

Lived experience of cognitive impairment in schizophrenia
Some individuals with schizophrenia complain of subjective
cognitive impairments, and these appear to be even more
common among people at clinically high risk for the disorder

Fig. 2 Variability of cognitive function in schizophrenia. Examining the population distribution of cognitive ability can help to determine
whether impairments reflect a generalised deficit or are greater in magnitude in some patients than others. Recent data indicate that the
distribution is more like that shown in (B) than (A), with more variability in the patient than the control sample. This suggests in psychosis,
rather than there being a constant effect on cognition, in some individuals, there is a large impairment, but in others relatively little. It is also
valuable to look at intra-individual variability, unlike (A) and (B) which represent data from many individuals, (C) and (D) represent data from a
single individual. From this perspective variability again appears greater in schizophrenia and those at risk with the data resembling the
distribution in (D) more than that in (C).
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[63]. In addition to their potential pathophysiological and
diagnostic significance, these self-reported symptoms are impor-
tant because they are associated with distress and a reduction in
quality of life [64]. At the same time, it is clear that a significant
proportion of individuals with schizophrenia have severe cognitive
impairments but do not report subjective deficits [65].
Among patients with schizophrenia there is only a weak

correlation between subjective reports of cognitive impairment
and objective measures of cognitive performance, and the
reporting of subjective impairments appears to be higher in
patients with comorbid depression [66, 67]. Although the
correlation between subjective reports and objective measures
is stronger when the analysis is restricted to the 50% of patients
who report the greatest subjective impairment, it is still only
modest [65]. Similarly, there is minimal correlation between
objective and subjective measures of cognition in individuals at
clinically high risk of psychosis [63, 68]. The absence of a strong
correlation across the psychosis spectrum is in keeping with
findings that individuals at high risk of psychosis report a greater
severity of subjective impairment than people with schizophrenia,
despite having a lesser degree of impairment on objective testing
[63, 69]. A lack of insight and higher levels of disorganised
symptoms appear to be key factors that contribute to a poor
ability to self-assess cognitive abilities [70, 71], and individuals
with high scores on self-certainty measures (e.g., endorsing
statements such as ‘my interpretations of my experiences are
definitely right’) tend to be those with greater cognitive problems
[72]. This has relevance for the delivery of treatments for
cognition, as individuals with subjective impairments appear to
be more willing to engage in therapy, whereas those with more
severe objective impairments may not see the need [73].
Despite the importance of cognitive deficits in schizophrenia,

the formal assessment of cognitive function is rarely part of the
routine clinical care of people with schizophrenia [74]. With
limited time and the absence of formal training, it is difficult to
assess accurately [75], and most established instruments require a
trained assessor and a lengthy assessment period, which patients
often find demanding. Clinicians have an increasingly limited time
to see patients, and clinical teams often lack access to a
neuropsychologist to conduct cognitive assessments. Moreover,
in the absence of effective interventions for cognitive deficits,

clinicians may reason that quantifying their severity is unlikely to
be of benefit to their patients.

Functional consequences of cognitive impairments
There is a direct correlation between the level of cognitive
performance in schizophrenia and the level of real-world
functioning [24, 76]. This relationship is particularly strong when
functioning is assessed using performance-based measures such
as the UCSD Performance-based Skills Assessment (correlations
ranging from r= 0.4 to 0.8), as opposed to an interview-based
assessment (correlations ranging from 0.1 to 0.3) [24, 76].
A key driver of the substantial health costs associated with

schizophrenia is admission to the hospital. Cognitive impairment
is linked to reduced adherence to treatment, a greater likelihood
of hospital admission, and to longer lengths of hospital stay
[77–79]. In addition to health costs, schizophrenia is associated
with even greater societal costs, as 80–90% of patients are
unemployed, and remain so for most of their adult lives
[77, 78, 80]. Cognitive impairments, as well as negative symptoms,
are a major factor in this lost productivity [78, 81]. Among people
with schizophrenia, a greater severity of cognitive symptoms is
associated with lower wages, fewer hours worked in supported
employment programs, and fewer benefits gained from employ-
ment interventions [82, 83]. Measures of functioning are more
strongly correlated with measures of cognition in individuals with
schizophrenia than in healthy controls [84], consistent with a non-
linear relationship between cognitive performance and function in
people with the disorder. The latter raises the possibility that in
those with more marked deficits, interventions that result in
improvements in cognition could have a disproportionately large
benefit on the level of functioning.

THE AETIOLOGY OF COGNITIVE IMPAIRMENT IN
SCHIZOPHRENIA
Genetic factors
Both cognitive ability in healthy individuals and cognitive
impairments in schizophrenia appear to be highly heritable. The
relatives of people with schizophrenia also show cognitive deficits
[85, 86], and twin studies suggest that a significant proportion of
the variance in cognition and schizophrenia risk is due to shared

Fig. 3 Aetiological factors and time course of cognitive impairments in schizophrenia. Cognitive deficits in individuals who develop
schizophrenia are apparent in childhood and do not appear to increase markedly in the initial phase of the illness. While CHR individuals as a
group score higher than FEP individuals, longitudinal studies do not provide clear evidence for a decline over the period of transition to
psychosis. The decline in cognitive function that occurs in later life in healthy individuals is evident at an earlier age in individuals with
schizophrenia, potentially related to neurovascular factors.
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genetic factors [87]. Schizophrenia is regarded as a polygenic
disorder in which multiple genes of small effect increase risk of
illness when certain alleles are present together. The same
architecture applies to cognitive abilities in the general population
[88, 89].
While attempts have been made to characterise the effects of

specific alleles [90], most contribute only a minimal degree of risk
(median odds ratio 1.05), and are therefore unlikely to have major
pathophysiological relevance in isolation [89]. However, functional
consequences of increased genetic risk may be detected by
assessing polygenic risk scores. Both twin and genome-wide
association studies (GWAS) show a strong negative genetic
correlation exists between liability for schizophrenia and cognitive
ability, indicating that they share common genetic factors
[88, 91–94]. However, this negative genetic correlation is minimal
or absent between polygenic risk for bipolar disorder and
cognitive function [88, 91, 93, 95]. This is remarkable, given the
overlap in genetic risk factors for schizophrenia and bipolar
disorder [96]: cognitive function appears to be one phenotypic
component that reflects a fundamental difference in their
respective genetic architectures. Consistent with this, in healthy
cohorts, a high polygenic risk score for schizophrenia is associated
with poorer cognition, and low polygenic scores for cognition are
associated with an increased risk of schizophrenia [97]. The
polygenic risk score for bipolar is also associated with poorer
cognition in childhood, primarily as a result of single-nucleotide
polymorphisms shared with schizophrenia [98], but bipolar
disorder-specific risk alleles are associated with better cognitive
performance [99]. Among patients with schizophrenia, cognitive
performance is correlated with the polygenic risk scores for IQ and
for educational attainment, but not that for schizophrenia
[95, 100]. Although this lack of direct correlation suggests that
cognitive impairment in schizophrenia is not a consequence of
genetic liability for the disorder, cognition may a mediating factor
through which genetic risk exerts its effects [101]. As mentioned
above, in healthy controls there is an association between higher
polygenic risk scores for schizophrenia and lower baseline
cognitive performance; however, there is no association with
greater cognitive decline, implicating neurodevelopmental rather
than neurodegenerative processes [102]. Conclusions drawn from
polygenic risk score analyses must be tempered by the fact that
these typically account for less than 10% of risk variance, and at
present, inferences can only be made in relation to people of
European ancestry [103].
Another approach to unpicking GWAS results is to examine

associated groups of functionally related genes to determine if
genetic pathways are implicated. Counter-intuitively, given the
negative correlation at the phenotypic level, these studies have
reported a positive correlation between polygenic risk scores for
schizophrenia and polygenic risk scores for educational attain-
ment [100]. A recent analysis investigated genes that were
positively associated with schizophrenia risk but negatively
associated with cognitive ability and looked at how this related
to genes associated with both positive and negative educational
attainment. For the concordant pathway (i.e., positive educational
attainment), gene sets enriched for expression in brain tissue and
the CHD8 neurodevelopmental pathway were implicated. When
examining the discordant pathway, several synaptic pathways
were implicated such as ion channels and synaptic density, and
when examining enrichment for drug mechanisms of action,
voltage-gated calcium channel genes were over-represented
[104].
When considering the genetic underpinning of cognitive

abilities, it is important to bear in mind that these do not
necessarily imply a direct link. As an example, if individuals of a
certain ethnicity have less access to educational opportunities, the
alleles associated with this phenotype might show a negative
association with cognitive ability. In cases such as this, time will be

better spent tracking the environmental mechanism mediating
the association than investigating the biological function of the
alleles.

Environmental factors
Although the heritability of schizophrenia is substantial at around
80% [105], even identical twins tend to be discordant for the
disorder, underlining the importance of environmental influences
[106]. Similarly, in the general population, a wide range of
environmental factors are associated with cognitive abilities, and
these are of greater importance in situations of socioeconomic
disadvantage, where they effectively mask genetic heritability
[107]. The increased prevalence of negative environmental factors
in individuals who develop schizophrenia therefore raises the
possibility that similar mechanisms may hold for cognitive
impairments in schizophrenia as in the general population, with
environmental influences also playing a major role.
In the prenatal period, obstetric complications are a well-

established risk factor for schizophrenia [108] and are also
associated with lower IQ in both individuals with schizophrenia
and in healthy controls [109]. While prenatal infection is
associated with risk of schizophrenia, and some prenatal infections
are associated with cognitive impairment in the offspring [110], it
does not appear that there is a general association with cognitive
abilities when evidence of infection is broadly defined [111]. For
some infections such as influenza, the deleterious cognitive effects
may be more pronounced in individuals who subsequently
develop schizophrenia, suggesting that other aetiological factors
play a role, or, alternatively, that individuals with schizophrenia
represent a group in which a more serious infection is more likely
to have occurred [112].
Growing up in an urban environment is linked to a raised

incidence of schizophrenia, although the direction of causality
remains unclear [113–115]. Some of this association may be
mediated by higher levels of socioeconomic deprivation. In the
general population, socioeconomic deprivation is associated with
poorer educational attainment [116], potentially because living in
affluent neighbourhoods is associated with more pro-cognitive
exposures [117]. However, there appear to be additional factors
linking cognition and urbanicity. In children born preterm, living in
an urban environment is associated with lower cognitive
development scores, even after controlling for socioeconomic
factors [118]. In the general population, growing up in an urban
environment is associated with poorer spatial navigation abilities
[119], and air pollution is associated with both poorer cognitive
function and with an increased risk of developing schizophrenia
[120–122]. Exposure to childhood trauma is associated both with
an increased risk of developing schizophrenia, and also with lower
performance on cognitive batteries in childhood and adolescence
[114, 123, 124].
Acute cannabis use is associated with a clear cognitive

impairment [125], and regular users also appear to perform worse
on cognitive testing [126]. However, among people with schizo-
phrenia, some studies have reported that cannabis users show
better cognitive performance than patients who are non-users
[127, 128]. This finding appears counter-intuitive, as cannabis use
in healthy volunteers and other studies in schizophrenia has been
associated with impairments in cognitive function [125, 129, 130].
The association with better performance in schizophrenia may
depend on the pattern of cannabis use, as it is mainly evident in
infrequent users rather than in regular or dependent users
(Chester et al., in submission). The basis of the association is
unclear. One possibility is that occasional cannabis use is a proxy
for patients in whom cognition is relatively less impaired: the
ability to source illicit cannabis requires motivation, and organisa-
tional and social skills. Another is that individuals who develop
schizophrenia in the context of cannabis use have a relatively less
genetic predisposition and less impairment of cognitive function.
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However, among people with schizophrenia who use cannabis,
those with a family history of schizophrenia have better cognitive
performance than those who do not. This has been attributed to
cannabidiol (CBD) in cannabis exerting a neuroprotective effect
[131]. However, most currently available illicit cannabis contains
high levels of THC but minimal amounts of CBD [132].
Ethnic minority status is one of the strongest risk factors for the

development of schizophrenia, and ethnically minoritized indivi-
duals also tend to have poorer educational attainment [114, 133].
When examining specific ethnic groups, there are examples of
correspondence between these outcomes. In England, individuals
with Caribbean ancestry show both the greatest increased risk of
developing a psychotic disorder and also the poorest educational
attainment [114, 133]. Similarly, in individuals of South Asian
descent, individuals with Pakistani heritage show both poorer
educational attainment and an increased risk of schizophrenia
that is not seen in those of Indian heritage [133–135]. Among
ethnically minoritized individuals, the effect of ethnicity on
schizophrenia risk is even greater if they are also a minority in
their local neighbourhood [136]. Similarly, an increase in median
neighbourhood income is linked to better cognitive test results in
black children, but only if they live in an area that has a high
proportion of black individuals [137]. Greater exposure to socio-
economic deprivation, childhood trauma, and racism both
structural and interpersonal all have the potential to play a role
in explaining these associations, and it remains to be determined

to what extent the pathways to increased schizophrenia risk and
poorer performance on indices of cognitive ability are parallel or
intertwined [138].
Individuals with schizophrenia show a further decline in

cognitive ability in later life. The latter may reflect an increased
prevalence of smoking [139], obesity [140], and hyperglycaemia
[141], which can have an adverse effect on cerebrovascular
function. Hypertension, diabetes, and metabolic syndrome are all
associated with significantly worse cognitive functioning in
individuals with schizophrenia [142]. Additional factors include
the lack of social and vocational stimulation that can be associated
with the disorder [143].
In summary, impaired cognitive function in people with

schizophrenia is related to their genetic loading, an increased
exposure to environmental factors that are associated with
reduced cognitive performance (Fig. 3), and with poor physical
health in later life.

THE PATHOPHYSIOLOGY OF COGNITIVE IMPAIRMENT IN
SCHIZOPHRENIA
A wide range of neurotransmitters and brain circuits are
implicated in schizophrenia. Many of these appear to converge
on a common pathway fundamental to cognitive functioning,
namely the balanced interactions between excitatory and
inhibitory (E/I) neurons of cortical microcircuits (Fig. 4). Excitation

Fig. 4 E/I balance as a common pathway to cognitive dysfunction in schizophrenia. A Muscarinic, dopaminergic, glutamatergic, and
GABAergic influences on E/I balance in healthy controls and mechanisms of disruption in schizophrenia. B E/I balance and cognition. In
healthy individuals, interactions between excitatory pyramidal cells and inhibitory interneurons generate gamma oscillations, which are
associated with functional brain networks observable using fMRI, with all levels showing links to healthy cognitive function. In individuals with
schizophrenia, disruptions to muscarinic and dopaminergic signalling, an intrinsic interneuron deficits may underlie a state of cortical
disinhibition. This disinhibition would account for the aberrant gamma activity and functional networks observed in the disorder and
contribute to cognitive impairments.

R.A. McCutcheon et al.

1907

Molecular Psychiatry (2023) 28:1902 – 1918



allows neurons to fire in response to stimuli, while inhibition tunes
their responses, allowing for precise neural representations. The
balance between the two is crucial for the neural computations
underlying cognition. We now discuss the role of dopaminergic,
cholinergic, glutamatergic, and GABAergic systems. We discuss
the evidence for aberrant function in schizophrenia, the role in
healthy cognitive function, and their part in modulating E/I
balance.

Dopamine
Dopamine occupies a central role in the pathophysiology of
schizophrenia [144–146]. In preclinical models, increased dopa-
mine signalling is associated with schizophrenia-like behaviours
[147]. In patients, post-mortem studies show dopamine receptor
upregulation [148], and the potency of antipsychotic medications
is tightly linked to their affinity for the D2 receptor [4, 149].
Neuroimaging studies indicate that schizophrenia is associated
with presynaptic hyperdopaminergia in the dorsal striatum [150],
and experimental stimulation of striatal dopaminergic transmis-
sion (e.g., following administration of amphetamine) can induce
and exacerbate psychosis [151, 152].
Although dopamine dysfunction has mainly been linked to

positive psychotic symptoms, striatal dopamine signalling nor-
mally has widespread effects on cortical function [153–156], and
its dysregulation can also cause cognitive symptoms [157].
Measures of striatal dopamine signalling appear to index ‘state’
aspects of psychosis, increasing during acute psychosis and
demonstrating an association with the severity of positive
psychotic symptoms, positioning striatal dopamine as ‘the wind
of the psychotic fire’ [158–160]. Cognitive symptoms, however,
follow a much more constant trajectory than positive symptoms,
and as such, it is less likely that they are directly tied to
neurochemical measures that fluctuate over the illness course
[161, 162].
In vivo measurement of cortical dopamine signalling is

challenging given the relative sparsity of the receptors. However,
data from recent studies are consistent with the hypothesis that
schizophrenia is associated with a hypodopaminergic state in the
cortex [163–165]. Moreover, cortical hypodopaminergia may be
linked to striatal hyperdopaminergia in schizophrenia: preclinical
work has demonstrated that depletion of cortical dopamine
increases striatal dopamine levels [166, 167], and there is
preliminary in vivo evidence that the same relationship applies
in people with schizophrenia [165]. The lack of effect of dopamine
antagonists on cognitive symptoms may reflect the fact that
correcting the dysregulated striatal signalling in schizophrenia
requires not only the blocking of aberrant signals, but also the
restoration of the signal-to-noise ratio of adaptive signals [168].
Cortical dopamine signalling plays a role in normal attention,

working memory, and executive function, so impaired dopamine
function in schizophrenia may therefore affect these processes
[169–171]. Dopamine promotes the persistent cortical activity
required for the maintenance of working memory, while inhibiting
unrelated signalling so that relevant information is precisely
represented [172]. Studies in people with Parkinson’s disease, and
in non-human primates with experimental lesions of prefrontal
dopamine function indicate that impaired dopamine signalling
leads to working memory and executive functioning deficits
[173, 174]. Conversely, The effectiveness of pro-dopaminergic
compounds in the treatment of ADHD suggests that augmenta-
tion of cortical dopamine signalling has the potential to exert
cognitive benefits [175]. Recently the dopaminergic partial agonist
cariprazine has demonstrated some advantages on cognitive
subscales of the PANSS when compared to antagonists, but more
in-depth testing of its cognitive effects is required [176].
However, despite some promising signals in experimental

medicine studies [177], pro-dopaminergic treatments have not
been approved as treatments for the cognitive deficits of

schizophrenia. This may reflect the complexity of the system
involved. The effects of dopamine in the cortex are distinct to
those in the striatum, and only a fraction of cortical pyramidal
neurons express dopamine receptors, with cortical interneurons
showing proportionally greater expression [178]. For both
pyramidal cells and interneurons, dopamine’s presynaptic effects
predominantly reduce neurotransmitter release. Postsynaptically,
dopamine enhances the excitability of deep-layer pyramidal
neurons, and increases the frequency of interneuron spiking.
The net effect of these various mechanisms is that cortical
dopamine depresses pyramidal cell firing via its action on
interneurons. A link with E/I balance is therefore apparent, in that
reduced cortical dopamine signalling is associated with a reduced
net inhibitory input, termed disinhibition.

Acetylcholine
Acetylcholine plays a central role in attention and memory.
Treatment with anticholinergic drugs can lead to cognitive
impairments in these domains as a side effect, and the majority
of medications used for treating symptoms of Alzheimer’s disease
operate by promoting cholinergic signalling [179, 180]. Central
cholinergic innervation is split between two primary networks, the
pedunculopontine cholinergic complex which projects to the
midbrain, and the forebrain complex which projects to the cortex.
The effects of acetylcholine are mediated by two receptor types—
ionotropic nicotinic receptors and G protein-coupled muscarinic
receptors.
A link between the nicotinic system and schizophrenia is

supported by the strikingly high prevalence of tobacco depen-
dence, with around 65% of patients being smokers [181]. This high
prevalence has persisted despite clinical initiatives to reduce
smoking in patients with schizophrenia, which is a key factor in
the 15–20-year reduction in life expectancy associated with the
disorder [182]. Most patients are aware of this health risk, but
report that they continue to smoke because it improves their
concentration and reduces anxiety [183]. This is in keeping with
evidence that the acute administration of nicotine ameliorates
sensory gating abnormalities and enhances cognitive perfor-
mance in schizophrenia [184, 185]. However, this enhancement is
not seen with chronic use [186], and in the longer term, smoking
in schizophrenia is associated with poorer cognitive performance
and increases the risk of late-life cognitive decline [187].
Furthermore, smoking cessation appears to improve cognition in
schizophrenia [187]. The immediate benefits of tobacco smoking
may arise from initial agonism at cholinergic receptors, with the
deleterious effects resulting from receptor desensitisation due to
chronic exposure. In addition, in people with schizophrenia, the
repeated stimulation of nicotinic receptors by smoking leads to
less of a reduction in nicotinic receptor expression than in control
smokers [188]. Despite this strong association between cholinergic
signalling and cognition in schizophrenia, agents that affect
nicotine receptor function such as varenicline, or that target
cholinergic neurotransmission more broadly, like acetylcholines-
terase inhibitors have had disappointing results when used to
treat the cognitive deficits of schizophrenia [189, 190].
A separate body of evidence suggests that schizophrenia is

associated with aberrant functioning of the muscarinic system.
Acute administration of muscarinic antagonists can exacerbate
both cognitive deficits and positive symptoms in individuals with
schizophrenia, and can induce cognitive deficits and positive
symptoms in controls [191]. The G protein-coupled muscarinic
receptors either have predominantly excitatory (M1, M3 and
M5 subtypes) or inhibitory (M2 and M4) effects. Post-mortem
studies in schizophrenia show significant reductions of both M1
and M4 receptors in hippocampus and cortex [191–193]. Similarly,
PET studies have found reduced muscarinic receptor density in
schizophrenia, and have linked this to the presence of cognitive
symptoms [194–196]. M1 receptors play an important role in
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learning and memory [197], and M1 agonism may improve both
positive symptoms and cognitive performance in people with
schizophrenia [198–200].
Both nicotinic and muscarinic receptor systems affect GABAer-

gic and glutamatergic signalling and can thereby contribute to the
maintenance of E/I balance [197]. Nicotinic receptors are sparsely
distributed on pyramidal cells but are more frequently expressed
on interneurons, particularly those expressing vasoactive intestinal
peptide (VIP) [201–203]. VIP interneurons predominantly inhibit
other interneurons, and the net effect of nicotinic stimulation
upon E/I balance is therefore to increase pyramidal cell firing. This
effect may be beneficial if there is reduced pyramidal signalling,
but is unlikely to be helpful if there is a state of cortical
disinhibition, as may occur in schizophrenia. In contrast to
nicotinic receptors, M1 receptors are widely expressed on
parvalbumin-positive interneurons and their activation enhances
GABA release, playing an important role in learning and memory
[197]. M1 receptors are also strongly expressed on pyramidal cells,
suggesting that the net effect of M1 agonism might be to increase
cortical excitability. Recent work, however, demonstrates that both
M1 agonism and antagonism have a net inhibitory effect on
cortical pyramidal neurons. The overall effect of modulating
activity at M1 receptors is likely to depend on the degree of
endogenous tone: at typical levels, this may already be saturated,
such that effects are primarily inhibitory via increased activation of
interneurons, or a direct effect on pyramidal cells via other
pathways [204]. These effects on E/I balance are evident in the
modulation of gamma oscillations by muscarinic compounds
[205]. Muscarinic agonism is therefore likely to produce cognitive
benefits when there is a state of cortical disinhibition, which the
evidence presented below suggests occurs in schizophrenia.
In addition to the links with excitation and inhibition,

cholinergic signalling also impacts on the dopamine system. At
low agonist concentrations, stimulation of nicotinic receptors on
GABAergic projections to mesostriatal dopamine neurons inhibits
dopamine release, while at higher concentrations this mechanism
becomes saturated and stimulation of receptors on glutamatergic
projection neurons increases dopamine neuron firing [206].
Stimulation of M4 muscarinic receptors on striatal cholinergic
interneurons can reduce acetylcholine release and thereby
minimise cholinergic excitation of dopamine neurons projecting
to the striatum. M4 agonism can also reduce striatal dopamine
release by inhibiting the activity of spiny projection neurons to the
midbrain [207, 208]. In contrast, and of particular interest given
the reduced cortical dopamine signalling observed in schizo-
phrenia, M1 agonism appears to increase cortical dopamine
release [209–211].

E/I balance
GWAS have demonstrated that SNPs associated with schizophre-
nia are concentrated in genes expressed in E/I neurons [89]. Post-
mortem studies, in line with a model of cortical disinhibition, have
found reductions in the enzymes GAD65 and GAD67, which are
required for GABA synthesis, as well as reduced excitatory input to
inhibitory neurons, and reduced interneuron numbers [212, 213].
A wide range of animal models that display cognitive deficits
analogous to those observed in schizophrenia, demonstrate
cortical disinhibition as a common final condition underlying
pathological behaviour [214, 215].
E/I balance in humans can be assessed using neuroimaging.

Magnetic resonance spectroscopy (MRS) can measure glutamate
and GABA concentrations at rest, and functional MRS (fMRS) can
examine how these dynamically change in the face of a cognitive
challenge [216–218]. Studies in individuals with schizophrenia
have demonstrated increased Glx (glutamate and glutamine
signal combined) [219] and reduced GABA [220], consistent with
underlying cortical disinhibition. However, it is not possible to
disambiguate intracellular and intrasynaptic signals in MRS data,

and there is heterogeneity in the direction of reported findings,
which may reflect differences in acquisition methods and
medication exposure as much as pathophysiological heterogene-
ity [219, 221–223]. Nevertheless, an increase in patients who do
not benefit from standard treatment with dopamine antagonists
appears to be a relatively robust finding [220, 224, 225]. fMRS
shows that cognitive challenges induce an increase in the ratio of
glutamate:GABA concentrations, and there is preliminary evidence
that this increase is reduced in schizophrenia [226, 227]. PET
ligands can provide a greater level of molecular specificity than
MRS. There have been fewer studies, but these have suggested a
reduction in both GABA and NMDA receptors [228–230]. In
addition, reduced availability of the metabotropic glutamate
receptors type 5 has been linked to cognitive symptoms in
schizophrenia [231].
E/I can also be investigated using electroencephalography

(EEG). Interactions between pyramidal cells and interneurons
generate neuronal oscillations in the gamma (γ) frequency range
(Fig. 4) [232, 233]. In controls, gamma oscillations are associated
with working memory, and memory tasks elicit an increase in
pyramidal neuron firing which is manifest as an increase in
gamma power [234, 235]. Cortical disinhibition is associated with
increased resting gamma power, and a reduced ability to mount
the normal increase in gamma power in the face of cognitive
demands [215, 233, 236–239]. Several studies suggest that
schizophrenia is associated with both increased resting gamma
power and reduced task-induced increases in power [240–247],
consistent with a state of cortical disinhibition. Furthermore,
reduced mismatch negativity (an EEG-detectable response to
surprising stimuli) is a marker of cortical disinhibition [248, 249],
and is observed in psychosis where it is associated with cognitive
symptoms [250–254].
Gamma oscillations are associated with the emergence of

whole-brain functional networks observable using fMRI (Fig. 4)
[255–257]. These fMRI-derived networks are associated with
cognition in healthy individuals, and with the cognitive symptoms
of schizophrenia [258, 259]. Computational models have demon-
strated how a global disruption of cortical disinhibition may be
manifest through regionally varying patterns of aberrant resting
state fMRI activity that mirror those observed in schizophrenia
[260–263]. These models indicate that despite the ubiquitous
nature of glutamatergic and GABAergic signalling, even a globally
present microscale deficit may result in non-uniform effects on
macroscale neural dynamics across the cortex, as the wiring
patterns of the brain are non-random [261]. Regions that are
situated centrally in terms of network dynamics may be where
functional effects become concentrated and therefore appear to
reflect focal alterations in neuroimaging studies, despite having a
spatially distributed molecular basis [264]. Nevertheless, however,
focal effects at a molecular level are also possible. For example,
because parvalbumin interneurons have extremely high energy
requirements, oxidative and metabolic stressors can have a
disproportionate impact on these neurons, and their effects may
be greatest in regions where they are present at high densities
[265].
Thus, while the model of E/I imbalance discussed aims to

explain systems-level phenomena, it is not inconsistent with
findings that certain brain regions, such as the hippocampus,
appear to play a central role in both cognitive function and
schizophrenia [266]. Similarly, the functional alterations described
above are likely to be interlinked with other well-established
aspects of schizophrenia pathophysiology. Aberrations of neuro-
transmitter function will be coupled, both as cause and
consequence, to structural alterations in terms of both anatomical
connectivity and grey matter loss. The relevance of structural
changes to cognition is seen in recent machine learning studies
identifying a pattern of grey matter loss linked to subgroups of
patients with cognitive deficits [267–269].
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Finally, at the level of behaviour, computational models predict
that cortical disinhibition will be associated with a reduced
precision of neural representations, and therefore precision-
related deficits on working memory tasks [260]. The pattern of
working memory deficits observed in both psychosis and
pharmacologically-induced disinhibition are in keeping with these
predictions [260, 263]. At a higher level, a ‘cognitive map’ refers to
the concept that accumulated knowledge and experiences are
linked in an organised structure that allows for subsequent novel
inferences. Disruption to the architecture of cognitive maps
schizophrenia may potentially provide a framework to account for
problems in executive functioning and general reasoning abilities
[270]. A key consideration in terms of the inferential reasoning
supported by a cognitive map is how easily separate memories
can be linked: too high a barrier and no connections can be made;
too low and entirely unrelated memories may be inappropriately
linked. Impairment in this process of memory linkage has recently
been demonstrated in schizophrenia [271]. As inhibitory signalling
is crucial for appropriate memory separation [272], disinhibition
could promote the aberrant associations and working memory
deficits that are evident in people with schizophrenia [270].
There is thus multimodal evidence that E/I balance is disrupted

in schizophrenia and is associated with cognitive deficits. While
we have highlighted findings consistent with a pattern of cortical
disinhibition, the nature of the primary deficit has not been firmly
established. One hypothesis is that the loss, and/or aberrant
function of parvalbumin-positive interneurons (e.g., secondary to
NMDA receptor hypofunction, or reduced dopaminergic stimula-
tion) reflects a direct pathophysiological process, with the
implication that augmenting the activity of this cell type could
ameliorate cognitive deficits. This would be consistent with the
ability of the NMDA antagonist ketamine to induce acute
psychotic symptoms in healthy volunteers [273], and the finding
that anti-NMDA autoantibodies may cause acute psychosis [274].
Moreover, animal models of interneuron dysfunction result in the
expression of schizophrenia-like phenotypes, and various compu-
tational models have linked cortical disinhibition to schizophrenia
[215, 260, 261]. However, it is also possible that the reduced
activity of interneuron populations reflects an adaptive response
to a primary reduction in cortical pyramidal cell activity. According
to this model, a reduction in inhibitory interneuron activity would
restore pyramidal cell firing, so novel treatments designed to
increase interneuron activity would therefore be expected to have
a deleterious effect. Supporting this interpretation are post-
mortem work suggesting that schizophrenia is associated with a
reduction in the density of dendritic spines on pyramidal cells,
in vivo findings demonstrating reduced synaptic density in the
cortex [275–277], and data from biophysical network models of
fMRI and MEG data pointing to a reduction in synaptic gain on
pyramidal cells [278]. It is also consistent with the decline in
cognitive function seen in schizophrenia during adolescence, a
period when the pruning of dendritic spines is at its peak [279]. A
key outstanding question is thus whether reduced inhibitory
signalling in schizophrenia represents a primary pathology which
treatment should aim to ameliorate, or a compensatory mechan-
ism which, conversely, treatment should try to further reduce.

THE TREATMENT OF COGNITIVE IMPAIRMENT IN
SCHIZOPHRENIA
Existing treatments
All medications currently licensed for the treatment of schizophrenia
exert their clinical effects via antagonism of the dopamine D2
receptor, and are described as antipsychotics. In the 1990s, the
introduction of the so-called ‘atypical’ antipsychotics was accom-
panied by trials suggesting that these newer types of antipsychotic
medication had beneficial effects on cognitive symptoms, in addition
to psychotic symptoms. Subsequent research, however, suggested

that these purported advantages may have been artefacts of trial
design, and the current literature suggests that all antipsychotics have
similarly small effects on cognitive function [280].
Other medications used in the management of schizophrenia

may also have effects on cognition. The anticholinergic effects of
many psychotropic medications have a clear detrimental effect on
cognitive function, and reducing the dose of anticholinergic
medications used to ameliorate extrapyramidal side effects of
antipsychotics can improve cognitive function in schizophrenia
[281, 282]. Affective symptoms like depression are often
associated with cognitive symptoms [283, 284], and while the
non-selective administration of antidepressants in schizophrenia
does not appear to have pro-cognitive effects [285], the benefits
on cognitive function from their selective use in the subgroup of
patients with schizophrenia that have prominent depressive
symptoms have yet to be assessed.
In the longer term, treating the high prevalence of obesity, type

II diabetes and cardiovascular illness in patients with schizo-
phrenia has the potential to minimise the cognitive decline
associated with these comorbidities. However, while there has
recently been great progress in the detection and monitoring of
physical health problems in schizophrenia, the impact of
interventions targeting these is only beginning to be investigated
[286]. Sleep disturbance is also common in schizophrenia [287],
and given the well-established links between sleep and cognitive
function [288], addressing sleep problems may also lead to
cognitive benefits in schizophrenia. However, treating sleep
dysfunction is difficult, and the effectiveness of this approach in
people with schizophrenia is unclear. Cognitive remediation
therapy in schizophrenia has been shown to improve cognitive
test scores, although as a significant component of the interven-
tion involves the repeated practice of cognitive tests there is a
question as to how much this represents practice effects.
However, there do appear to be detectable benefits on level of
functioning, although of relatively small effect size [289, 290].
Nevertheless, at present, no psychological interventions have
been approved for the treatment of cognitive symptoms in
schizophrenia [291]. Psychological treatments for impairments in
social cognition have a less established evidence base but also
show some potential [292]. For a more in-depth discussion of
potential mechanisms of psychological interventions for cognitive
deficits see recent reviews [293, 294].

Novel treatments
Trace amine-associated receptor 1 (TAAR1) agonists can reduce
central dopamine signalling by reducing midbrain dopamine
neuron firing [295]. TAAR1 agonism has recently been reported to
reduce psychotic symptoms in schizophrenia [296]. Although its
effects on cognitive symptoms have yet to be examined, in animal
models of schizophrenia it has been found to improve cognitive
performance and increase prefrontal cortical activity [297]. The
precise mechanisms underlying these latter effects are unclear.
Targeting presynaptic neuronal activity may have effects on
dopamine signalling that are different from the antagonism of
post-synaptic D2 receptors, a hypothesis supported by the
absence of extrapyramidal side effects associated with TAAR1
agonism [296]. There is also evidence that TAAR1 agonism affects
E/I balance [298].
While the augmentation of cholinergic signalling via drugs that

inhibit acetylcholinesterase provides some benefit to cognitive
function in Alzheimer’s disease, application of this approach in
schizophrenia has not been successful [299, 300]. This suggests a
more targeted approach to modulating the cholinergic system
may be required. The M1/M4 receptor agonist xanomeline
appears to improve both positive and cognitive symptoms in
randomised controlled trials in schizophrenia, as well as in
Alzheimer’s disease [198, 199, 301]. Initial development of
xanomeline was paused due to the high incidence of peripheral

R.A. McCutcheon et al.

1910

Molecular Psychiatry (2023) 28:1902 – 1918



pro-cholinergic side effects, but combining it with trospium, a
peripheral cholinergic antagonist, markedly reduces its side effects
without affecting its efficacy [199]. As discussed above, the
mechanism of action here likely involves effects on both
dopamine signalling and on E/I balance.
CBD has become increasingly recognised as a potentially

effective treatment for schizophrenia. The largest trial of adjunctive
CBD in schizophrenia to date demonstrated a clear benefit of CBD
on positive symptoms. Although this study was not powered to
assess effects on cognition, there was a trend for an improvement in
the speed of processing [302]. Human imaging studies suggest that
the effects of CBD may be mediated by modulating hippocampal
and striatal function [303], but CBD acts on a variety of molecular
targets, and the precise mechanism underlying its therapeutic
effects remains unclear [304]. However, its efficacy in treating
seizures, ability to improve cognition in a mouse model of E/I
imbalance, and electrophysiological data from rodents suggest that
it may modulate E/I balance, and this may involve antagonising the
G protein-coupled receptor GPR55 [305–307].
A wide range of compounds targeting the glutamate system

directly have been tested as potential treatments for cognitive
dysfunction in schizophrenia, but the results have been disap-
pointing [308, 309]. Agonism of metabotropic mGlu2/3 receptors
was initially seen as promising and led to large-scale trials, but
development ceased when these failed to show an effect on
positive or negative symptoms [310, 311], and the effects on
cognitive impairments were not directly tested. Both riluzole and
memantine, drugs approved for the treatment of motor neuron
disease and Alzheimer’s disease respectively, have complex effects
on the E/I system and have shown promise as treatments for
cognitive symptoms in schizophrenia [312, 313]. Although
demonstrating efficacy on cognitive symptoms in meta-analyses,
memantine did not show cognitive benefits in a large trial,
although this was in an entirely unselected patient population
[314]. More recently a glycine transport inhibitor has demon-
strated efficacy as an augmentation agent for treating cognitive
symptoms [315]. There is also preliminary evidence that luvadaxi-
stat, a D-amino acid oxidase inhibitor that augments glutamater-
gic signalling by elevating serine levels, may have beneficial
effects on cognitive symptoms [316].

FUTURE DIRECTIONS
There remain several questions as to the nature of cognitive
deficits in schizophrenia. Phenotypically similar cognitive impair-
ments are also evident in other psychiatric disorders, mainly
differing from those in schizophrenia in terms of their severity. It is
unclear whether the cognitive deficits in these conditions have
the same pathophysiological basis as those in schizophrenia. If so,
then transdiagnostic approaches to developing interventions may
be of benefit. Identifying whether variation in cognitive perfor-
mance in schizophrenia relates to variation in the severity and
nature of the illness, as opposed to variation in premorbid
function also has relevance for whether precision psychiatry
approaches (which aim to stratify patients according to differing
underlying pathophysiologies [280]) are likely to be indicated. In
the case of the former, it may be possible to match specific
treatments to distinct pathophysiological mechanisms, whereas
the latter case represents a uniform insult and so individual
differences in treatment effects are less likely.
In terms of work with direct clinical relevance, clinical guidelines

recommend the assessment of cognition in standard clinical
practice [317], and raising clinician awareness of the need to
formally assess cognitive function will become increasingly
important as novel interventions become available. It is therefore
critical that clinicians are provided with the tools to facilitate the
measurement of cognitive impairments so that they can assess
the effect of treatment. Traditional cognitive batteries are too time

consuming for use in routine clinical care, but the introduction of
briefer batteries that can be administered without a trained
assessor has major potential here.
In clinical trials, there may be an advantage in evaluating

candidate treatments in specific patient subpopulations. Recruit-
ing patients early in the illness course may be of benefit, as
although most cognitive deficits will already be present, the
higher degree of neuronal plasticity at this stage may increase the
chances that intervention will have beneficial effects. Studying
individuals early in the disorder also reduces the likelihood that
outcomes will be confounded by effects of prior drug treatment.
Another subgroup that could be targeted is patients with the
greatest degree of cognitive impairment. A recent trial of
xanomeline-trospium in schizophrenia found that its impact on
cognition was restricted to those with a prominent degree of
impairment at baseline [199]. However, it could also be argued
that patients with relatively severe cognitive deficits are less likely
to improve, due to the severity of neurobiological damage or a
high burden of risk factors. To date, most trials of interventions
designed to improve cognition in schizophrenia have recruited
patients without stratifying samples according to the severity of
cognitive impairments. Until it is clear whether enriching samples
for patients with marked cognitive deficits will increase or
decrease the detection of therapeutic effects, it may be sensible
to continue with this approach.
Tying the effects of interventions to real-world functional

outcomes is a major challenge but is critical if the aim is to
produce outcomes that are meaningful to patients. The use of
virtual reality tools may be of benefit here [281]. Non-linear
relationships have been observed between symptom dimensions
and cognition in schizophrenia [318, 319]. If non-linearities are also
seen in the relationship between cognition and function, it is
possible that cognitive impairments may only have marked effects
on a patient’s level of functioning when they exceed a certain
severity threshold. Clarifying the nature of this relationship in
schizophrenia could be a goal for future research. If multiple
medications are found to be effective in clinical trials precision
psychiatry approaches will be important to optimise clinical
benefits. Finally, trials aimed at determining whether novel
treatments produce transdiagnostic improvements, or whether
these are diagnosis specific has major relevance for both clinical
practice and development of future treatments.

CONCLUSION
Over the past three decades, cognitive impairment has emerged
as an increasingly important treatment target for schizophrenia.
However, the complexity of the neurobiological substrate has
made the development of treatments for these deficits particularly
challenging. Nevertheless, there are now a number of clinical
interventions which have the potential to improve cognitive
function in individuals with schizophrenia, and several new
treatments with entirely novel mechanisms of action are ready
to be rigorously tested. The development of effective treatments
for cognitive impairments in schizophrenia would represent an
advance in its treatment comparable to the advent of D2
antagonists over 70 years ago.
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