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Abstract
Semi-directed phylogenetic networks have recently emerged as a class of phylogenetic
networks sitting between rooted (directed) andunrooted (undirected) phylogenetic net-
works as they contain both directed aswell as undirected edges.While various spaces of
rooted phylogenetic networks and unrooted phylogenetic networks have been analyzed
in recent years and several rearrangement moves to traverse these spaces have been
introduced, little is known about spaces of semi-directed phylogenetic networks. Here,
we propose a simple rearrangement move for semi-directed phylogenetic networks,
called cut edge transfer (CET), and show that the space of semi-directed level-1 net-
works with precisely k reticulations is connected under CET. This level-1 space is cur-
rently the predominantly used search space for most algorithms that reconstruct semi-
directed phylogenetic networks. Our results imply that every semi-directed level-1
network with a fixed number of reticulations and leaf set can be reached from any
other such network by a sequence of CETs. By introducing two additional moves, R+
and R−, that allow for the addition and deletion, respectively, of a reticulation, we then
establish connectedness for the space of all semi-directed level-1 networks on a fixed
leaf set. As a byproduct of our results for semi-directed phylogenetic networks, we
also show that the space of rooted level-1 networks with a fixed number of reticulations
and leaf set is connected under CET, when translated into the rooted setting.
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1 Introduction

Phylogenetic networks are a generalization of phylogenetic trees allowing for the rep-
resentation of speciation and reticulate evolutionary events such as hybridization or
lateral gene transfer. Traditionally, two types of phylogenetic networks were consid-
ered in the literature: unrooted (also referred to as undirected or implicit) phylogenetic
networks and rooted (also referred to as directed or explicit) phylogenetic networks
(see for example Huson et al. 2010). While the former are often used to represent con-
flict in data and lack evolutionary directionality, the latter explicitly depict evolution
as a directed process from some common ancestor that is represented by the root to
the present-day species that are represented by the leaves of the network. Importantly,
rooted phylogenetic networks are rooted directed acyclic graphs that, in comparison
with phylogenetic trees, contain vertices with in-degree at least two that represent
reticulation events.

Recently, a class of phylogenetic networks that have directed and undirected edges,
called semi-directed phylogenetic networks, has emerged in the literature. Roughly
speaking, semi-directed phylogenetic networks are obtained from rooted phyloge-
netic networks by suppressing the root whose position is not identifiable under many
models of sequence evolution and ignoring the direction of all edges, except for those
directed into a vertex of in-degree at least two, thereby keeping information on which
vertices represent reticulation events. Formal definitions of a semi-directed phyloge-
netic network and other mathematical concepts used in this paper are given in the next
section.

Semi-directed phylogenetic networks have been the focus of studies concerning
identifiability (see, e.g., Allman et al. 2022; Ardiyansyah 2021; Baños 2018; Gross
and Long 2018; Gross et al. 2021; Hollering and Sullivant 2021; Solís-Lemus and
Ané 2016; Solís-Lemus et al. 2020; Xu and Ané 2023) and also play a major role in
phylogenetic network estimation algorithms such as NANUQ (Allman et al. 2019),
SNaQ (Solís-Lemus and Ané 2016), and PhyNEST (Kong et al. 2022). The latter two
find an optimal semi-directed phylogenetic network that best “fits” the observed data
under a composite likelihood (also called pseudo-likelihood) framework and search
through a space of semi-directed phylogenetic networks (detailed below).While SNaQ
is implemented in the popular software tool PhyloNetworks (Solís-Lemus et al. 2017)
and uses gene trees and quartet concordance factors as input, PhyNEST reconstructs
an optimal network from site patterns. Like the reconstruction of rooted and unrooted
phylogenetic networks, the reconstruction of an optimal semi-directed phylogenetic
network typically involves searching the space of all semi-directed phylogenetic net-
works on a fixed leaf set. More specifically, given an initial phylogenetic network, the
network is modified by locally rearranging its structure, the fit of the new network is
evaluated, and if there is an improvement in fit, the search continues from that network
until a local optimum is found. This strategy is referred to as hill-climbing. Although
alternative optimization strategies such as simulated annealing exist, they all involve
the need of traversing spaces of phylogenetic networks.

A fundamental question that arises in this regard is whether the space of phyloge-
netic networks is connected under a given rearrangement operation. In other words,
can every phylogenetic network of a space of networks (e.g., all semi-directed phylo-
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genetic networks on a fixed leaf set) be reached from any other phylogenetic network
in the space by applying a sequence of these rearrangement operations such that the
resulting network after each operation is also in the space? This question has been
analyzed for various spaces of unrooted and rooted phylogenetic trees (e.g., Allen and
Steel 2001; Bordewich and Semple 2005; Hein et al. 1996), unrooted phylogenetic
networks (e.g., Huber et al. 2015, 2016; Francis et al. 2017; Janssen and Klawitter
2019) and rooted phylogenetic networks (e.g., Bordewich et al. 2017; Erdős et al.
2021; Gambette et al. 2017; Janssen 2021a; Janssen et al. 2018; Klawitter 2018), and
several rearrangement moves to traverse these spaces have been introduced. We also
refer the reader to two excellent PhD theses on the topic by Janssen (2021b) and
Klawitter (2020). While Janssen (2021b) argues that connectedness of the space of
all semi-directed phylogenetic networks follows from the connectedness of all rooted
phylogenetic networks, much less is known about smaller spaces of semi-directed
phylogenetic networks such as level-1 or other popular network classes.

Focusing on the reconstruction of semi-directed level-1 networks which are net-
works whose underlying cycles are vertex disjoint, Solís-Lemus and Ané (2016)
suggested that the moves employed in SNaQ assure connectivity due to their sim-
ilarity to moves for which there is an established connectivity result for unrooted
level-1 networks (Huber et al. 2015). However, this has not been formally proven yet.
Indeed, Fig. 1 of Huber et al. (2015) shows that, although the space of all unrooted
level-1 networks on four leaves is connected under the operation proposed in that
paper, the space of all such network restricted to those with two reticulations is not
connected under the same operation.

The main purpose of this paper is to establish rigorous connectivity results for
spaces of semi-directed level-1 networks because SNaQ (Solís-Lemus and Ané 2016)
and other algorithms in this area of research such as NANUQ (Allman et al. 2019)
and PhyNEST (Kong et al. 2022) also focus on the reconstruction of semi-directed
level-1 networks or (in case of PhyNEST) use them as an intermediate step in the
estimation of rooted level-1 networks. To this end, we propose a new rearrangement
operation for semi-directed phylogenetic networks, called cut edge transfer (CET),
which prunes a subnetwork of a semi-directed phylogenetic network by deleting a cut
edge and reconnects the two smaller networks by adjoining them with a new cut edge.
We then prove that, under CET, the space of semi-directed level-1 networks with a
fixed number k of reticulations and leaf set X is connected. Hence, every semi-directed
level-1 network with k reticulations and leaf set X can be reached from any other such
network by a sequence of CETs such that the network resulting from each CET in the
sequence is also a semi-directed level-1 network with k reticulations and leaf set X . As
a byproduct of our results, we establish connectivity of rooted level-1 networks with a
fixed number of reticulations and leaf set under a rooted version of CET. While CETs
operate on semi-directed networks of the same “reticulate complexity” (i.e., the same
number of reticulations), we additionally introduce two moves R+ and R− that allow
for a change in the number of reticulations by one. Here, we show that (unsurprisingly)
under CET, R+, and R−, the space of all semi-directed phylogenetic networks on a
fixed leaf set and the space of all semi-directed level-1 networkswith a fixed leaf set are
connected. Lastly, we show that if two semi-directed level-1 networks are connected by
a single CET, then they are also connected by a sequence of restricted local CETs. Such
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a restricted CET, to which we refer to as CET1, moves a pruned subnetwork across a
single internal edge. This last result suggests that the rearrangement moves employed
in SNaQ (Solís-Lemus and Ané 2016) are sufficient to reach any semi-directed level-
1 network in the search space if their so-called “nearest neighbor interchange (NNI)
move on a tree edge” is slightly relaxed to allow for NNI moves on undirected and
directed edges.

The remainder of the paper is organized as follows. We begin by defining rooted
and semi-directed phylogenetic networks, as well as several concepts in the study of
phylogenetic networks in Sect. 2. In Sect. 3we introduce theCEToperation and discuss
some of its properties. Subsequently, in Sect. 4 we establish connectedness results for
spaces of rooted level-1 networks under CET that play a crucial role in establishing
analogous results for spaces of semi-directed level-1 networks. In Sect. 5, we finally
turn to semi-directed phylogenetic networks.We first establish connectedness of semi-
directed level-1 networks with a fixed number of reticulations and leaf set in Sect. 5.1
and then connectedness for all such networks if only the leaf set is fixed in Sect. 5.2.
Lastly, in Sect. 5.3 we show that if two semi-directed level-1 networks are connected
by a single CET, then they are also connected by a sequence of local CET1 moves.
We end the paper with some concluding remarks and directions for future research in
Sect. 6.

2 Preliminaries

Throughout this paper, X denotes a non-empty finite set.

2.1 Rooted phylogenetic networks and related concepts

Let G be a rooted acyclic directed graph. A loop (v, v) of G is an edge that connects
a vertex v with itself. Furthermore, two edges (u, v) and (u′, v′) of G are said to be in
parallel if u = u′ and v = v′. Intuitively, if (u, v) and (u′, v′) are in parallel, then they
are two copies of the same edge. Now a rooted binary phylogenetic network Nr on
X is a rooted acyclic directed graph with no loops that satisfies the following three
properties:

(i) The (unique) root ρ has in-degree zero and out-degree one;
(ii) A vertex of out-degree zero has in-degree one, and the set of vertices with out-

degree zero is X ; and
(iii) All other vertices have either in-degree one and out-degree two, or in-degree two

and out-degree one.

The set X is called the leaf set of Nr . As with other publications on spaces of phyloge-
netic networks (Bordewich et al. 2017; Janssen andKlawitter 2019), we allow edges to
be in parallel or, equivalently, underlying cycles of length two. Although we do allow
edges to be in parallel in a rooted phylogenetic network, we note that we do not allow
them in rooted level-1 networks as defined later in this section. A vertex with in-degree
two and out-degree one is called a reticulation, and a vertex with in-degree one and
out-degree two is called a tree vertex. Similarly, an edge directed into a reticulation is
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called a reticulation edge and each non-reticulation edge is called a tree edge. Lastly,
for two vertices u and v, we say that u is a parent of v and v is a child of u if (u, v) is
an edge of Nr .

A rooted binary phylogenetic X -tree T is a rooted binary phylogenetic network on
X with no reticulation. Let |X | = n. We call T a caterpillar if n = 1, or if n ≥ 2 and
we can order the elements in X , say x1, x2, . . . , xn , so that x1 and x2 have the same
parent and, for all i ∈ {2, 3, . . . , n−1}, we have that (pi+1, pi ) is an edge in T , where
pi+1 and pi are the parents of xi+1 and xi , respectively. We denote such a caterpillar
T by (x1, x2, x3 . . . , xn) or, equivalently, (x2, x1, x3, . . . , xn).

Finally, we introduce two graph operations for a rooted acyclic directed graph G.
Let e = (u, v) be an edge of G. Then, subdividing e with a vertex w, refers to deleting
e, adding a new vertex w, and adding the edges (u, w) and (w, v). Conversely, given
a degree-2 vertex w of G such that (u, w) and (w, v) are edges, suppressing w refers
to deleting w and adding a new edge (u, v).

2.2 Semi-directed phylogenetic networks and related concepts

We next define a second network type that will play an important role in this paper
and that has directed and undirected edges. Adapting the definition that is used in
Solís-Lemus and Ané (2016), we say that a network Ns with leaf set X is a semi-
directed binary phylogenetic network on X if it can be obtained from a rooted binary
phylogenetic network Nr on X and with root ρ in one of the following three ways:

(s1) If the unique child u of ρ is incident with two reticulation edges in parallel that
are both directed from u to a vertex w, then undirect all tree edges of Nr , delete ρ

and u, and add a (directed) loop (w,w).
(s2) If the unique child u of ρ is incident with one reticulation edge (u, v) and one tree

edge (u, v′), then undirect all tree edges of Nr , delete ρ and u, and add a directed
edge (v′, v).

(s3) If the unique child of u of ρ is incident with two tree edges (u, v) and (u, v′), then
undirect all tree edges of Nr , delete ρ and u, and add an undirected edge {v, v′}.

We define a loop and a pair of parallel edges of a semi-directed phylogenetic network
in the same way as for a rooted phylogenetic network. An example for (i) and (ii) is
shown in Fig. 1. If Ns can be obtained from Nr by applying (i), (ii), or (iii), then we
say that Nr is a rooted partner of Ns . Moreover, Nr is the unique rooted partner of
Ns if (i) applies, in which case (w,w) is the unique loop in Ns . On the other hand,
Nr is not necessarily the unique rooted partner of Ns if (ii) or (iii) applies, in which
case Ns has no loop. Lastly, we call a vertex v of Ns a reticulation if there either exist
two edges that are directed into v or (v, v) is a loop, and we call an edge of Ns that is
directed a reticulation edge.

Let Ns and N ′
s be two semi-directed binary phylogenetic networks on X with vertex

and edge sets V and E , and V ′ and E ′, respectively. Then Ns and N ′
s are isomorphic

if there is a bijection ψ : V → V ′ such that ψ(x) = x for all x ∈ X and (u, v) ∈ E
(resp.{u, v} ∈ E) if and only if (ψ(u), ψ(v)) ∈ E ′ (resp. {ψ(u), ψ(v)} ∈ E ′) for all
u, v ∈ V . If Ns and N ′

s are isomorphic, we write Ns ∼= N ′
s and, otherwise, we write

Ns � N ′
s .
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For the remainder of the paper, we will refer to the two types of rooted binary
phylogenetic networks and semi-directed binary phylogenetic networks as rooted phy-
logenetic networks and semi-directed phylogenetic networks, respectively, as all such
networks considered here are binary. Moreover, whenever we use the expression of
a phylogenetic network N without specifying a type, then the following statement or
definition applies to both types of networks.Making use of this last convention, we use
r(N ) to denote the number of reticulations of a phylogenetic network N . Additionally,
in all figures except for Fig. 1, the edges of rooted phylogenetic networks are directed
down the page and we omit arrowheads.

Similar to rooted phylogenetic networks, we next define the two operations of
subdividing an edge and suppressing a vertex for mixed graphs that have directed and
undirected edges, and are therefore a generalization of semi-directed phylogenetic
networks. Let G be a mixed graph with at least one undirected edge, and let e and e′
be two edges of G. First, if e is a directed edge (u, v) with u �= v (resp. u = v), then
subdividing e is the operation that replaces e with the undirected edge {u, w} and the
directed edge (w, v) (resp. with two directed edges in parallel from w to u). Second,
if e′ is an undirected edge {u, v}, then subdividing e is the operation that replaces e
with the two undirected edges {u, w} and {w, v}. Conversely, for a degree-2 vertex w

of G, we distinguish five cases of suppressing w.

(i) If e is an undirected edge {u, w} and e′ is a directed edge (w, v), then suppressing
w replaces e and e′ with a single directed edge (u, v).

(ii) If e is a directed edge (u, w) and e′ is an undirected edge {w, v}, then suppressing
w replaces e and e′ with an undirected edge {u, v}.

(iii) If e (resp. e′) is an undirected edge {u, w} (resp. {w, v}), then suppressing w is the
operation of replacing e and e′ with an undirected edge {u, v}.

(iv) If e (resp. e′) is a directed edge (u, w) (resp. (w, v)), then suppressing w is the
operation of replacing e and e′ with a directed edge (u, v).

(v) If e is a directed edge (w, u) and e′ is a directed edge (w, v) with u = v, then
suppressing w replaces e and e′ with a (directed) loop (v, v).

2.3 Cycles and cut edges

Let N be a phylogenetic network. Recall that N may have a loop if it is semi-directed.
For � ≥ 1, we refer to a sequence v1, v2, . . . , v� of � distinct vertices of N as a cycle
of length � or as an �-cycle if {v�, v1} and, for each i ∈ {1, 2, . . . , �−1}, {vi , vi+1} are
edges in the underlying graph of N . If � = 1, the definition of a cycle of length one
coincides with that of a loop. Furthermore, if the length of an �-cycle is irrelevant, we
simply refer to it as a cycle. Now, let e be an edge of N . Recalling that all networks in
this contribution are binary, e is called a cut edge (or bridge) of N if the deletion of e
from N results in a graph with exactly two connected components1. Note that this in
particular implies that a cut edge cannot be contained in a cycle.

1 A connected component of a graph G is a subgraph in which each pair of vertices is connected via a path
of edges.
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Fig. 1 a A semi-directed
phylogenetic network Ns on
X = {x1, x2} and the unique
almost level-1 rooted partner Nr
of Ns . As the child of the root of
Nr is incident with two
reticulation edges in parallel, Ns
contains a directed loop. b A
semi-directed phylogenetic
network N ′

s on X = {x1, x2}
and the unique level-1 rooted
partner N ′

r of N
′
s . As the child of

the root of N ′
r is the source of a

cycle of length three, N ′
s

contains a pair of parallel edges.
Each of N ′

r and N ′
s is level-1

2.4 Level-1 networks

Let Nr be a rooted phylogenetic network. Then Nr is said to be level-1 if it has no
pair of parallel edges and no two cycles have a common vertex. Moreover, if Nr is a
rooted level-1 network and v is a vertex of a cycle C of N , we call v the source of C
if no edge of Nr that is directed into v lies on C . If, on the other hand, v is the unique
reticulation of C , then we call it the sink of C . Since Nr is level-1, each cycle of N
has a unique source and sink.

Extending the definition of level-1 to a semi-directed phylogenetic network Ns , we
say that Ns is level-1 if there exists a rooted partner of Ns that is level-1. Notice that a
semi-directed level-1 network may contain one pair of parallel edges. This is the case
if it was obtained from a rooted level-1 network with the property that the unique child
of the root is the source of a cycle of length three. An example of this is depicted in
Fig. 1b.

We remark that the number of reticulations in rooted and semi-directed level-1
networks is bounded.

Lemma 2.1 Let N be a rooted or semi-directed level-1 network on X. Then N has at
most |X | − 1 reticulations.

Proof First, suppose that N is a rooted level-1 network. Then the lemma follows
from (Cardona et al. 2008; McDiarmid et al. 2015) and the fact that each level-1
network is also tree-child (Huber et al. 2022). Second, suppose that N is a semi-directed
level-1 network. Let Nr be a rooted partner of N that is level-1. By construction, v is
a reticulation in N if and only if v is a reticulation in Nr . As, Nr has at most |X | − 1
reticulations, so does N . �	

2.5 Almost level- 1 networks

A rooted phylogenetic network on X is called almost level-1 if it has at most one
2-cycle, all other cycles have length at least three, and no two cycles have a common
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vertex. Similarly, a semi-directed phylogenetic network is called almost level-1 if it has
a rooted partner that is almost level-1. Thus, a semi-directed almost level-1 network
has at most two cycles of length two and no loop, or at most one loop and no cycle of
length two.

3 Cut edge transfers

In this section we introduce a new rearrangement operation that can be applied to
phylogenetic networks and that will play a crucial role in establishing that the space of
semi-directed level-1 networks on a fixed leaf set (and a fixed number of reticulations)
is connected.

3.1 Rooted CETmoves

Let Nr be a rooted phylogenetic network, and let e = (u, v) be a cut edge of Nr such
that e is not incident with ρ and u is not a reticulation. Obtain a network N ′

r from
Nr by deleting e, suppressing u, subdividing an edge of the connected component
that contains ρ with a new vertex u′, and adding a new edge (u′, v). Clearly, N ′

r is a
rooted phylogenetic network on X . If Nr � N ′

r , we say that N ′
r is obtained from Nr

by a single cut edge transfer (CET). Furthermore, if N ′
r can be obtained from Nr by a

single CET, then conversely Nr can also be obtained from N ′
r by the single CET that

reverses the roles of u and u′. Hence, any CET is reversible. Lastly, if Nr is a rooted
phylogenetic X -tree, then CETs coincide with rooted subtree prune and regraft (rSPR)
operations (Bordewich and Semple 2005).

3.2 Semi-directed CETmoves

In the following, we extend the definition of a CET to semi-directed phylogenetic
networks. We begin by establishing a relationship between cut edges and reticulation
edges of such networks.

Lemma 3.1 Let Ns be a semi-directed phylogenetic network, and let e be an edge of
Ns. If e is a reticulation edge of Ns, then e is an edge of a cycle in Ns. Moreover, no
cut edge of Ns is a reticulation edge.

Proof Let Nr be a rooted partner of Ns . Suppose that e is a reticulation edge of Ns .
By construction of Ns from Nr , it follows that, as e is an edge of a cycle in Nr , e is
also an edge of a cycle in Ns . Now, let f be a cut edge of Ns . Since f is not an edge
of a cycle, f is not a reticulation edge of Ns . �	

We next establish a lemma that pinpoints the relationship between cut edges of a
semi-directed phylogenetic network and those of a rooted partner.

Lemma 3.2 Let Ns be a semi-directed phylogenetic network, and let Nr be a rooted
partner of Ns with root ρ. Let u and v be two vertices of Ns. Then e = {u, v} is a cut
edge of Ns if and only if exactly one of the following two conditions applies:
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(i) (u, v) or (v, u) is a cut edge of Nr , or
(ii) (ρ, t), (t, u), and (t, v) are cut edges of Nr , where t is the unique child of ρ.

Proof Let t be the unique child of ρ in Nr . By construction of Ns from Nr it follows
that {u, v} ∩ {ρ, t} = ∅. First, suppose that e = {u, v} is a cut edge of Ns . If (i) does
not apply, then, by construction of Ns from Nr , it follows that neither (u, v) nor (v, u)

is an edge of Nr . Hence, t is the parent of each of u and v in Nr ; thereby implying
that (ii) holds.

Second, suppose that one of (i) and (ii) applies. Clearly, if (i) applies, then {u, v}
is a cut edge of Ns . On the other hand, if (ii) applies, then it again follows from the
construction of Ns from Nr that {u, v} is a cut edge of Ns . �	

We are now in a position to introduce CET moves for semi-directed phylogenetic
networks. Let Ns be a semi-directed phylogenetic network on X . Furthermore, let
e = {u, v} be a cut edge of Ns such that u is not a reticulation and there exists a rooted
partner Nr of Ns that satisfies one of the following two conditions.

1. u is the parent of v in Nr or
2. there exist three cut edges (ρ, t), (t, u), and (t, v) in Nr , where t is the unique

child of ρ.

Observe that, by Lemma 3.2, these are the only two possibilities. Then obtain a net-
work N ′

s from Ns by deleting e, suppressing u, subdividing an edge of the connected
component that does not contain v with a new vertex u′, and adding a new edge {u′, v}.
Recall that if u′ subdivides a loop (w,w) of Ns , then N ′

s has two parallel edges (u′, w).
To see that N ′

s is a semi-directed phylogenetic network, observe the following. If the
connected component containing v does not contain any cycle, then the operation
described above clearly preserves the fact that the edges of the resulting graph can be
directed to yield a rooted phylogenetic network, which implies that N ′

s has a rooted
partner. If, on the other hand, the connected component containing v contains a cycle,
then, by the choice of u and v, there exists a rooted partner Nr of Ns satisfying Con-
ditions 1. or 2. given above. In particular, all edges in the connected component of Ns

that contains v, must be directed away from v in Nr . So again, the described operation
results in a graph that can be directed to yield a rooted phylogenetic network, implying
that, in both cases, N ′

s is a semi-directed phylogenetic network. If Ns � N ′
s , we say

that N ′
s is obtained from Ns by a single cut edge transfer (CET). Similar to the rooted

case, if N ′
s can be obtained from Ns by a single CET, then conversely Ns can also be

obtained from N ′
s by a single CET.

To illustrate, Fig. 2 shows two semi-directed networks Ns and N ′
s such that the latter

network can be obtained from the former by a single CET. We remark that carefully
choosing a cut edge e = {u, v} in the definition of a CET is crucial to ensure that the
CET results in a semi-directed phylogenetic network. For arbitrary choices of u and v,
a CET may result in a graph that is not a semi-directed phylogenetic network. To see
this, we refer back to Fig. 2 and note that the roles of u and v cannot be interchanged
(i.e., we cannot suppress v while keeping u) because there exists no rooted partner of
Ns such that v is a parent of u or each of (ρ, t), (t, u), and (t, v) are cut edges, where
t is the child of ρ.
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Fig. 2 A semi-directed phylogenetic network Ns with cut edge e = {u, v}. It can easily be checked that
there exists a rooted partner of Ns with u being a parent of v. Deleting e, suppressing u, subdividing an
edge of the connected component that does not contain v with a new vertex u′, and adding a new edge
{u′, v} is thus a valid CET and the semi-directed phylogenetic network N ′

s is obtained from Ns by one such
operation

We end this section,with several definitions thatwill be used throughout the remain-
ing sections and that apply to rooted aswell as to semi-directed phylogenetic networks.

3.2.1 CET sequences

We call a sequence N0, N1, N2, . . . , Nm of rooted phylogenetic networks on X or of
semi-directed phylogenetic networks on X a CET sequence of length m if each Ni

with i ∈ {1, 2, . . . ,m} can be obtained from Ni−1 by a single CET.

3.2.2 (Weak) connectedness under CET

Let C be a space of phylogenetic networks on X . We say that C is connected under
CET if, for any pair N and N ′ of networks in C , there exists a CET sequence that
transforms N into N ′ and every network in the sequence is in C .

In the remainder of this paper, we additionally require the notion of weak connect-
edness. More precisely, we say that the space of rooted level-1 networks with exactly
k reticulations is weakly connected under CET, if, for all rooted level-1 networks with
exactly k reticulations, Nr and N ′

r say, there is a CET sequence connecting Nr and N ′
r

whereby every network in the sequence is a rooted almost level-1 network. Similarly,
we say that the space of semi-directed level-1 networks with exactly k reticulations is
weakly connected under CET, if, for all semi-directed level-1 networks with exactly k
reticulations, Ns and N ′

s say, there is a CET sequence connecting Ns and N ′
s whereby

every network in the sequence is a semi-directed almost level-1 network.
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3.2.3 CET distance and diameter

Suppose that a space C of phylogenetic networks is connected under CET. Then
the CET distance between two phylogenetic networks N and N ′ in C is the minimum
length of aCET sequence that connects N and N ′, where every network in the sequence
is in C . Furthermore, the diameter of C under CET is the maximum CET distance
over all pairs of phylogenetic networks in C .

4 Connectedness of rooted level-1 networks

In this section, we establish connectedness results under CET for spaces of rooted
level-1 networks that have a fixed number of reticulations. These results are then
used in the next section to establish analogous connectedness results for spaces of
semi-directed level-1 networks. As we will see, almost all work goes into proving
connectedness for rooted level-1 networks. Once the results of this section are in
place, connectedness for spaces of semi-directed level-1 networks follows relatively
easily by considering semi-directed level-1 networks and their rooted partners that are
level-1.

4.1 Definitions

4.1.1 Standard form and standard shape of rooted level-1 networks

We now introduce what we call the standard form of a rooted level-1 network with
precisely k reticulations. This network will play a crucial role in what follows since
each rooted level-1 network with precisely k reticulations can be transformed into it
by using a sequence of CETs. Let Nr be a rooted level-1 network on X with precisely
k reticulations and |X | = n. We say that Nr is in standard form if, either k = 0 and
Nr is a caterpillar, or, if k ≥ 1 and Nr has the following properties:

(i) Nr contains precisely k 3-cycles. For each such cycle Ci with i ∈ {1, 2, . . . , k},
we denote its source by ui , its sink by vi , and its third vertex by pi .

(ii) For each i ∈ {1, 2, . . . , k}, vertex pi denotes the parent of leaf xi .
(iii) Vertex u1 is the child of the root of Nr , and Nr contains the edges (vi , ui+1) for

each i ∈ {1, 2. . . . , k − 1}.
(iv) Leaves xk+1, xk+2, . . . , xn are the leaves of a caterpillar T , such that:

(a) If n = k + 1, leaf xn is the only leaf of T and Nr contains the edge (vk, xn);
(b) If n > k + 1, leaves xk+1, . . . , xn of T are ordered such that xk+1 and xk+2

have the same parent and, for all i ∈ {k + 2, k + 3 . . . , n − 1}, we have that
(pi+1, pi ) is an edge in Nr , where pi+1 and pi are the parents of xi+1 and xi ,
respectively, and such that Nr contains the edge (vk, pn).

Note that since a rooted level-1 network on X has at most |X | − 1 reticulations,
i.e., k ≤ n − 1, we always have n ≥ k + 1, and thus one of (a) and (b) must occur.
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Fig. 3 The rooted level-1
network on
X = {x1, x2, . . . , xn} with
precisely k reticulations in
standard form

A generic example of a rooted level-1 network in standard form is depicted in Fig. 3.
For fixed X and fixed k, there is a unique rooted level-1 network of standard form.
Continuing on from the definition of a network of standard form, we say that a rooted
level-1 network is of standard shape if it only differs from a network in standard form
by a permutation of its leaf labels.

Finally, we introduce two technical concepts, chains of length k and the notion of
the correct position of a leaf, that will be used in subsequent lemmas.

4.1.2 Chains of length k

Now, let Nr be an almost level-1 network on X . For k ≥ 1, we say that a collection
of k cycles forms a chain of length k of Nr if there is an ordering (C1,C2, . . . ,Ck) of
these cycles such that the path from ρ to u1 contains only tree vertices, where u1 is
the source of C1, and, for each i ∈ {1, 2, . . . , k − 1}, vi is an ancestor of each vertex
in {vi+1, vi+2, . . . , vk}, where vi denotes the sink of Ci .

4.1.3 Correct position

Let Nr be a rooted almost level-1 network on X = {x1, x2, . . . , xn} with precisely k
reticulations. For each i ∈ {1, 2, . . . , k}, let vi be the sink of cycle Ci . We say that xi
with i ∈ {1, 2, . . . , n} is in its correct position if one of the following two conditions
is satisfied.

1. If i ≤ k, then xi is adjacent to a non-sink and non-source vertex of Ci .
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2. If i > k, then xi is a leaf of a caterpillar σ = (y1, y2, . . . , yn′) with n′ ≤ n
that is rooted at vk such that the sequence obtained from σ by deleting each
element in {x1, x2, . . . , xk, xi+1, xi+2, . . . , xn} is equal to (xk+1, xk+2, . . . , xi ) or
(xk+2, xk+1, . . . , xi ).

4.2 Results

The aim of this section is to establish the following theorem.

Theorem 4.1 Let k be a fixed non-negative integer. If k ≤ |X | − 2, then the space of
all rooted level-1 networks on X with exactly k reticulations is connected under CET.
Otherwise, if k = |X |−1, then the space of rooted level-1 networks on X with exactly
k reticulations is weakly connected under CET. Moreover, in both cases, the diameter
of the space of rooted level-1 networks on X with exactly k reticulations is at most
O(|X | + k) under CET.

In order to prove Theorem 4.1, we require several technical lemmas. We start with
a lemma on the number of tree vertices in a rooted phylogenetic network followed
by a lemma that investigates level-1 networks whose cycles all have length three. To
this end, recall that the root of a rooted phylogenetic network has in-degree zero and
out-degree one. By translating Lemma 2.1 and its proof of McDiarmid et al. (2015)
into the language of the present paper, we have the following result.

Lemma 4.2 Let Nr be a rooted phylogenetic network on X. Let k be the number of
reticulations in Nr , and let t be the number of tree vertices of Nr . Then t = k+|X |−1.

Lemma 4.3 Let Nr be a rooted level-1 network on X with root ρ such that each cycle
has length three. Suppose that Nr has exactly k reticulations. Then each reticulation
and tree vertex of Nr is a vertex of a cycle if and only if k = |X | − 1.

Proof Let t be the number of tree vertices of Nr . Since each cycle of Nr has length
three, we have that k + t ≥ 3k. By Lemma 2.1, Nr has at most |X | − 1 reticulations.
Furthermore, by Lemma 4.2, the number of reticulations and tree vertices of Nr is

k + t = k + k + |X | − 1. (1)

First, assume that k = |X | − 1. Then, Eq. (1) simplifies to k + t = 3k. Moreover,
since each cycle of Nr has length three, it follows that each reticulation and each tree
vertex of Nr is a vertex of a cycle.

Second, assume that k < |X |−1. Using again Eq. (1), we have k + t > 3k. Hence,
there exists a vertex v in Nr that is not a vertex of a cycle. By Lemma 3.1, v is a tree
vertex. �	

The next lemma shows that every rooted level-1 network on X with precisely k
reticulations can be transformed into a rooted level-1 network of standard shape using
a sequence of CETs.
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Lemma 4.4 Let Nr be a rooted level-1 network on X with precisely k reticulations.
Then, there exists a CET sequence of length at most 2|X |+2k that transforms Nr into
a rooted level-1 network N∗

r on X with k reticulations of standard shape, whereby

(i) If k ≤ |X | − 2, every network in the sequence is a rooted level-1 network on X
with precisely k reticulations;

(ii) If k = |X | − 1, every network in the sequence is a rooted almost level-1 network
on X with precisely k reticulations.

The high-level idea of the proof is the following: Given a rooted level-1 network
Nr with k ≥ 1 cycles that is not of standard shape, we first transform all cycles
into 3-cycles. We then arrange these 3-cycles into a chain of length k and finish the
transformation by moving individual leaves.

Proof of Lemma 4.4 If Nr is already in standard shape, there is nothing to show.Else, let
C1,C2, . . . ,Ck denote the cycles of Nr with k ≥ 0, and let ui denote the source and vi
the sink ofCi for each i ∈ {1, 2, . . . , k}. In what follows, we generate a CET sequence
of rooted almost level-1 networks on X whereby each network in the sequence has
precisely k cycles. Although the length of a cycle Ci may change throughout the
sequence, its sink remains vi . For each network in the sequence, we therefore refer to
the cycle with sink vi as cycle Ci .

Let (C1,C2, . . . ,Ck) be an ordering on the cycles in Nr such that Ci precedes C j

if ui is a descendant of u j for i < j . For each i ∈ {1, 2, . . . , k} in order, we now
apply a sequence of CETs to transform Ci into a 3-cycle if Ci has length at least
four. Intuitively, each such CET reduces the length of Ci by one. Suppose that N ′

r has
been obtained from Nr by a sequence of CETs and that cycles C1,C2 . . . ,Ci−1 are
3-cycles in N ′

r . Consider the cycle Ci , and let mi denote its length. Further, assume
that the vertices of Ci are {ui , vi , s1, s2, . . . , smi−2}. Let N 0

r = N ′
r and set j = 1. We

apply the following CET to each j ∈ {1, 2, . . . ,mi − 3}: Let e = (s j , t j ) be the cut

edge incident with s j . Then we obtain N j
r from N j−1

r by deleting e, suppressing s j ,
subdividing the edge incident with ρ with a new vertex u′

j , adding the edge (u′
j , t j ),

and incrementing j by one. By the choice of the vertices s j , all moves are valid CETs
and since we apply mi − 3 of them, no pair of parallel edges is created in the process.
Moreover, when j = mi − 2, the size of Ci is three and the process stops. Let N ′′

r
denote the rooted level-1 network obtained from Nr by transforming all cycles of Nr

into 3-cycles. It follows that each CET in the CET sequence that transforms Nr into
N ′′
r cuts an edge e = (s j , t j ) in N j−1

r such that t j is either a leaf or a tree vertex. If t j
is a tree vertex, then it has at least one descendant that is a leaf. Hence, by the chosen
ordering (C1,C2, . . . ,Ck), N ′′

r is obtained from Nr by at most |X | CETs.
Now let (C ′

1,C
′
2, . . . ,C

′
k) be a sequence of the cycles in N ′′

r such that C ′
i pre-

cedes C ′
j if the source u

′
i of C

′
i is an ancestor of the source u′

j of C
′
j for i < j . We

apply a sequence of CETs to transform N ′′
r into a chain of 3-cycles of length k. If

C ′
1,C

′
2 . . . ,C ′

k already form a chain of 3-cycles, we apply no CET. Else assume that
for some maximum k′ with 1 ≤ k′ < k, N ′′

r has a chain Hk′ of 3-cycles of length k′.
Consider the minimum j ∈ {1, 2, . . . , k} such that C ′

j is not part of Hk′ . Note that
j = 1 is possible. Let e = (t ′j , u′

j ) denote the edge directed into the source u′
j of
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C ′
j . By the chosen ordering, t ′j is neither the root nor a reticulation of N ′′

r . We now
distinguish two cases:

(a) If k < |X | − 1, by Lemma 4.3, there exists at least one tree vertex in N ′′
r , t say,

that is not in a cycle. Let e′ = (t, c) denote one of its two out-going edges. We
apply a sequence of three CETs. The first CET deletes e′, suppresses t , subdivides
the edge e = (t ′j , u′

j ) with a new vertex t ′, and adds the edge (t ′, c). The second
CET, deletes the edge (t ′, u′

j ) directed into u
′
j , suppresses t

′, subdivides the edge
incident with ρ with a new vertex t ′′j , and adds the edge (t ′′j , u′

j ). Clearly, no parallel
edges are created in this step. Finally, let w′

j denote the child of t ′′j that is not u′
j .

The third CET deletes the edge (t ′′j , w′
j ), suppresses t

′′
j , subdivides the cut edge

incident with the sink v′
j of C

′
j with a new vertex t ′′′j , and adds the edge (t ′′′j , w′

j ).
Again, no parallel edges are created in this step. Moreover, t ′′′j is a tree vertex in the
resulting rooted level-1 network that is not in a cycle. An example of this sequence
is depicted in Fig. 4.

(b) If k = |X |−1, the procedure is similar to Case (a) except that we only perform the
second and third CET since, by Lemma 4.3, there is no tree vertex in N ′′

r that is not
in a cycle. To be precise, the second CET move deletes the edge (t ′j , u′

j ) instead
of the edge (t, u′

j ), which implies that this CET creates a pair of parallel edges
because t ′j is a vertex of a cycle of length three in N ′′

r . Furthermore, applying the
third CET as in Case (a) results in a rooted almost level-1 network with exactly
one pair of parallel edges and in which t ′′′j is a tree vertex that is not in a cycle.

Let K be the subsequence of (C ′
j+1,C

′
j+2, . . . ,C

′
k) that precisely contains each

element that is not a cycle of Hk′ . Since each of Cases (a) and (b) above results in a
rooted almost level-1 network with a tree vertex that is not in a cycle, we now apply
the sequence of three CETs as described in Case (a) to each cycle in K in order. It is
straightforward to check that, for k < |X |−1, no parallel edges are created throughout
the process, whereas for k = |X | − 1 one pair of parallel edges is created by deleting
(t ′j , u′

j ), but no more pairs of parallel edges arise when applying the CETs described
in Case (a) to the cycles in K . Moreover, the first CET as described in Case (a) ensures
that we can subsequently delete the edge directed into the source of a cycle in K since
this edge is not incident with a reticulation. Let N ′′′

r denote the rooted almost level-1
network obtained from N ′′

r by the process of moving all 3-cycles as described above.
Since each of Case (a) and (b) requires at most three CETs, it follows that N ′′′

r is
obtained from N ′′

r by a sequence of at most 3k CETs. Moreover, by construction, N ′′′
r

is such that the cycles C1,C2 . . . ,Ck form a chain of cycles of length k such that each
cycle has length three except for one cycle of length two if k = |X | − 1. If k > 0, we
may assume without loss of generality that the sink vk of Ck has no descendant that
is a sink. Otherwise, we set vk to be the root of N ′′′

r .
We now complete the transformation of N ′′′

r into a rooted level-1 network on X
of standard shape with precisely k reticulations. Let S be the rooted binary subtree
of N ′′′

r whose root is vk , and let XS be the leaf set of S. If S is not a caterpillar in
N ′′′
r , then we apply a sequence of at most |XS| CETs that each delete a cut edge that

is incident with an element in XS and that collectively transform N ′′′
r into a rooted

almost level-1 network on X such that vk is the root of a caterpillar with leaf set XS .
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Fig. 4 Sequence of three CETs as described in the proof of Lemma 4.4. Triangles can be single leaves,
tree-like structures, cycles, or combinations of all. Moreover, the edges connecting cycles in N ′′

r may be
paths with further branching structure, which are omitted for simplicity. The chain of 3-cycles (whose length
is increased by one as a result of the sequence of CETs) is depicted in bold

We next distinguish again two cases. First, if k < |X | − 1, we move each leaf x in
X \ XS that is not adjacent to any 3-cycle in N ′′′

r by deleting the edge that is directed
into x and subdividing the edge that is directed out of vk . This transformation requires
a single CET for each x . Second, if k = |X | − 1, then N ′′′

r contains precisely one
2-cycle. Furthermore, there is at most one leaf x in X \ XS that is not adjacent to
a 3-cycle. If no such x exists, then |XS| = 2 in which case we set x to be one of
these two leaves. Let e = (u, v) be an edge of the 2-cycle in N ′′′

r . We move x by
deleting the edge directed into x and subdividing e. This step requires a single CET
and results in a network whose cycles all have length three. Let N∗

r be the network
obtained from N ′′′

r as described. Then N∗
r is obtained from N ′′′

r by at most |X | − k
CETs. Furthermore, by construction, N∗

r is a rooted level-1 network with precisely k
reticulations of standard shape. It now follows that N∗

r can be obtained from Nr by a
sequence of at most |X | + 3k + |X | − k = 2|X | + 2k CETs and each intermediate
network is a rooted level-1 network with precisely k reticulations if k < |X | − 1, or
a rooted almost level-1 network with precisely k reticulations if k = |X | − 1. This
completes the proof. �	

The following lemma shows that a rooted level-1 network of standard shape can be
transformed into a rooted level-1 network in standard form using a sequence of CETs.

Lemma 4.5 Let Nr be a rooted level-1 network on X with precisely k reticulations
such that Nr is of standard shape. Then, there exists a CET sequence of length at most
3|X | that transforms Nr into the (unique) rooted level-1 network on X with precisely
k reticulations in standard form, whereby

(i) If k ≤ |X | − 2, every network in the sequence is a rooted level-1 network on X
with precisely k reticulations;

(ii) If k = |X | − 1, every network in the sequence is a rooted almost level-1 network
on X with precisely k reticulations.
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Proof Let X = {x1, x2, . . . , xn}. Furthermore, for some k ≥ 0, let C1,C2, . . . ,Ck

denote the 3-cycles of Nr where each cycle Ci with i ∈ {1, 2, . . . , k} has sink vi .
Since Nr is in standard shape and only differs from a network in standard form by a
permutation on the leaves, vi is an ancestor of each element in {vi+1, vi+2, . . . , vk}
for each i ∈ {1, 2, . . . , k − 1}. Similar to the proof of Lemma 4.4, we generate a
CET sequence of rooted almost level-1 networks on X whereby each network in
the sequence has precisely k cycles. Although the length of a cycle Ci may change
throughout the sequence, its sink remains vi . For each network in the sequence, we
therefore refer to the cycle with sink vi as cycle Ci and to the caterpillar with root vk
as T .

Intuitively, we turn Nr into the network of standard form by a sequence of CETs that
sequentially swap the positions of leaves until every leaf is in its correct position (see
Fig. 5 for an example). To this end, each CET deletes a cut edge that is incident with a
leaf xi and moves it to its correct position in the standard form, whereby we subdivide
either an edge of T or an edge of a cycle. The key idea is that if k ≤ |X | − 2, we can
guarantee that no parallel edges are created, whereas if |X | = k − 1, the creation of
one pair of parallel edges is unavoidable.

More formally, let N ′
r be a rooted level-1 network on X with precisely k reticulations

of standard shape. Suppose that N ′
r has been obtained from Nr by a sequence of CETs

such that the leaves x1, x2, . . . , xi−1 are already in their correct position in N ′
r for

some i < |X |, whereas xi is not in its correct position. If there is no such xi , then
all leaves are in their correct positions and N ′

r is already in standard form, in which
case there is nothing to show. We now distinguish the following cases to move xi to
its correct position via a sequence of CETs:

(a) If xi is a leaf of T and i > k, we apply one CET to move xi to its correct position
such that (xk+1, xk+2, . . . , xi ) is a caterpillar. Note that the resulting network is a
rooted level-1 network on X with precisely k reticulations of standard shape.

(b) If xi is a leaf of T and i ≤ k, we distinguish two cases:

(i) If k ≤ |X |−2, then T consists of at least two leaves. In this case, wemove xi to
its correct position using a single CET, i.e., we move xi to the cycle Ci whose
sink is vi . Note that this CET turns Ci into a cycle of length four since N ′

r is
of standard shape and all cycles of N ′

r have length exactly three. In particular,
there exists a leaf x j with j > i that is adjacent to a non-sink and non-source
vertex of Ci . We now apply a second CET to move x j to the edge of T that
xi had been incident with. Intuitively, this sequence of two CETs swaps the
positions of leaves xi and x j and the resulting network is again a rooted level-1
network with precisely k reticulations of standard shape.

(ii) If k = |X | − 1, then xi is the only leaf in T and its parent is vk . Thus we
cannot directly perform a CET that deletes (vk, xi ). In this case, we consider
the cycle Ci whose sink is vi . As Ci has length exactly three, there exists a leaf
x j with j > i adjacent to the non-sink non-source vertex of Ci . Note that x j
must exist since xi �= xn , as otherwise xi = xn would already be in its correct
position. We now first move leaf x j to the edge (vk, xi ) of T . Then, we move
xi to Ci . Intuitively, we again swap the positions of xi and x j using two CETs.
However, while the network resulting from the second CET is a rooted level-1
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network with precisely k reticulations of standard shape, the network resulting
from the first CET contains one pair of parallel edges and is therefore a rooted
almost level-1 network.

(c) If xi is adjacent to a non-source and non-sink of a cycle C of N ′
r .

(i) If k = |X | − 1 and i ≤ k, we directly move xi to its correct position, i.e.,
we move xi to cycle Ci . Since N ′

r is a rooted level-1 network with precisely
k reticulations of standard shape and all of its cycles are 3-cycles, this move
creates a pair of parallel edges and therefore a rooted almost level-1 network.
However, for analogous reasons as above, there exists a leaf x j with j > i
adjacent to a non-source and non-sink vertex ofCi , and we move x j toC . This
sequence of two CETs swaps the roles of xi and x j and results in a rooted
level-1 network with precisely k reticulations of standard shape.

(ii) If k = |X | − 1 and i > k, then i = n. In this case, xi is already in its
correct position, i.e., it is the single leaf of T adjacent to vk . This is due to the
assumption that leaves x1, x2, . . . , xi−1 = xn−1 are already in their correct
positions and N ′

r is a rooted level-1 network with precisely k reticulations of
standard shape. In this case, we perform no further CETs.

(iii) If k ≤ |X | − 2, the subtree T of N ′
r contains at least two leaves. Let x j with

j > i be one of these leaves (whichmust exist for similar reasons as in the cases
described above). Furthermore, if i ≤ k let x j ′ be the leaf that is adjacent to the
non-source and non-sink vertex ofCi . Since xi is not in its correct position, we
haveCi �= C and x j ′ �= xi We now first move x j toC , thereby turningC into a
4-cycle. Next, wemove xi to its correct position, i.e., wemove it either to cycle
Ci if i ≤ k, thereby turning Ci into a 4-cycle and C into a 3-cycle or to T if
i > k. If i ≤ k, we perform one more CET and move x j ′ to the edge of T that
x j had been incident with. Again, this sequence of at most three CETs swaps
the positions of leaves xi and x j , and possibly x j ′ , such that each network in
the sequence is a rooted level-1 network with precisely k reticulations and the
final network is additionally of standard shape.

In summary, if k ≤ |X |−2, we transform Nr into a rooted level-1 network of standard
form by a sequence of CETs, whereby every intermediate network is a rooted level-1
network with precisely k reticulations. If k = |X | − 1, a single pair of parallel edges
might be created during the transformation and, so, every intermediate network is a
rooted almost level-1 network. Moreover, since each of the cases requires at most
three CETs, it follows that the (unique) rooted level-1 network on X with precisely k
reticulations in standard form can be obtained from Nr by a sequence of at most 3|X |
CETs. This completes the proof. �	

We are now finally in the position to prove Theorem 4.1.

Proof of Theorem 4.1 Let Nr and N ′
r be two rooted level-1 networks on X with exactly

k reticulations. First, if k ≤ |X | − 2 then, by Lemmas 4.4 and 4.5, Nr (resp. N ′
r ) can

be transformed into the rooted level-1 network on X with precisely k reticulations
in standard form such that each intermediate network is level-1 and has exactly k
reticulations. Hence, if k ≤ |X | − 2, it follows from the reversibility of CET that the
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Fig. 5 Sequence of CETs transforming a rooted level-1 network of standard shape but not standard form
into a rooted level-1 network of standard form. The first two CETs swap leaves x1 and x2, thereby moving
x1 to its correct position. The next two CETs then move x2 to its correct position by swapping leaves x2
and x4. The resulting network is already of standard form, implying that no more CETs are required

space of rooted level-1 networks with exactly k reticulations is connected. Second, if
k = |X | − 1 then, again by Lemmas 4.4 and 4.5, Nr (resp. N ′

r ) can be transformed
into the rooted level-1 network on X with precisely k reticulations in standard form
such that each intermediate network is almost level-1 and has exactly k reticulations.
Hence, if k = |X | − 1, then the space of rooted level-1 networks with exactly k
reticulations is weakly connected. Moreover, applying Lemmas 4.4 and 4.5 one more
time, it requires at most 2|X | + 2k + 3|X | = 5|X | + 2k CETs to transform each of
Nr and N ′

r into the unique rooted level-1 network on X with exactly k reticulations
in standard form. Hence, if k = |X | − 1 (resp. k < |X | − 1), then there exists a CET
sequence of length at most 10|X | + 4k that connects Nr and N ′

r in the space of all
rooted level-1 networks on X with exactly k reticulations (resp. in the space of all
rooted almost level-1 networks on X with exactly k reticulations). In both cases, the
diameter is therefore O(|X | + k). �	
We remark in passing that Theorem 4.1 strengthens a previous result on the connect-
edness of the space of rooted level-1 networks on X with exactly k reticulations. In
particular, Klawitter (2020) showed that this space is connected if one allows for k
pairs of parallel edges, whereas our result requires at most one pair of parallel edges.

5 Connectedness of semi-directed level-1 networks

5.1 Connectedness for networks with a fixed number of reticulations

In this section, we use the results established in Sect. 4 to establish connectedness
results under CET for spaces of semi-directed level-1 networks with a fixed number
of reticulations.

The main result of this section is the following theorem.
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Theorem 5.1 Let k be a fixed non-negative integer. If k ≤ |X | − 2, then, the space all
of semi-directed level-1 networks on X with exactly k reticulations is connected under
CET. Otherwise, if k = |X | − 1, then the space of semi-directed level-1 networks
on X with exactly k reticulations is weakly connected under CET. Moreover, in both
cases, the diameter of the space of semi-directed level-1 networks on X with exactly
k reticulations is at most O(|X | + k) under CET.

To motivate the allowance of parallel edges in establishing connectedness results
for semi-directed level-1 networks, note that if k = |X |−1, the space of semi-directed
level-1 networks on X with precisely k reticulations is not necessarily connected. As
an example, consider the space of semi-directed level-1 networks with |X | = 2 and
k = 1. Let Ns be the semi-directed level-1 network depicted in Fig. 1b, and let N ′

s
be the semi-directed level-1 network obtained from N ′

s by interchanging x1 and x2.
Then, Ns � N ′

s and there exists no CET sequence that transforms Ns into N ′
s , whereby

every network in the sequence is a semi-directed level-1 network with one reticulation.
However, it is possible to transform Ns into N ′

s by a sequence of twoCETs,whereby the
network obtained from Ns by the first CET is a semi-directed almost level-1 network
with one reticulation.

Before proving Theorem 5.1, we establish a connection between a sequence of
CETs connecting two semi-directed almost level-1 networks and such a sequence
connecting their rooted partners that are almost level-1.

Lemma 5.2 Let N 1
s and N 2

s be two distinct semi-directed almost level-1 networks, and
let N 1

r and N 2
r be two almost level-1 rooted partners of N 1

s and N 2
s , respectively. If

N 2
r can be obtained from N 1

r by a single CET, then N 2
s can be obtained from N 1

s by
one CET.

Proof Suppose that N 2
r can be obtained from N 1

r by a single CET. Let e = (u, v) be
the cut edge of N 1

r that is deleted in obtaining N 2
r from N 1

r . Let M and M ′ be the
two connected subnetworks that result from deleting e and suppressing u, where M
contains ρ and M ′ contains v. Furthermore, let f be the edge of M that is subdivided
with a new vertex u′ in obtaining N 2

r from M and M ′ by adding the edge (u′, v).
Observe that f is also an edge of N 1

r . Moreover, by definition of a CET, u is not a
reticulation and u �= ρ. Now, let t be the unique child of ρ in N 1

r . Since N 1
r � N 2

r , it
follows that e and f cannot both be incident with t . To complete the proof, we consider
three cases.

First, assume that neither e nor f is incident with t . By Lemma 3.2, {u, v} is a cut
edge of N 1

s . Moreover, since N 1
s is obtained from N 1

r by applying one of the operations
(s1)–(s3), it is easily checked that f is also an edge of N 1

s . It now follows that N 2
s can

be obtained from N 1
s by the CET that deletes {u, v}, suppresses u, subdivides f with

a new vertex u′, and joins the two vertices u′ and v with a new edge.
Second, assume that e is incident with t . Then t = u and all three edges that are

incident with t are cut edges of N 1
r . Let w be the second child of t that is not v. It

follows from Lemma 3.2, that {v,w} is a cut edge of N 1
s . Furthermore, as f is not

incident with t , an argument analogous to that used in the first case implies that f
is also an edge of N 1

s . Hence, N
2
s can be obtained from N 1

s by the CET that deletes
{v,w}, suppresses w, subdivides f with a new vertex u′, and joins the two vertices u′
and v with a new edge.
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Third, assume that f is incident with t . As before, {u, v} is a cut edge of N 1
s by

Lemma 3.2. If t is not the source of a cycle, let w and w′ be the two children of t in
N 1
r , Then {w,w′} is an edge in N 1

s . Hence, N
2
s can be obtained from N 1

s by the CET
that deletes {u, v}, suppresses u, subdivides {w,w′} with a new vertex u′, and joins
the two vertices u′ and v with a new edge. On the other hand, if t is the source of a
cycle in N 1

r , let (t, w) and (t, w′) be the two edges that are directed out of t . It follows
that {w,w′}, (w,w′), or (w′, w) is an edge of N 1

s depending on whether or not one of
w and w′ is a reticulation in N 1

s . Since N 1
r is almost level-1, we may have w = w′,

in which case (w,w′) is a loop. Thus, N 2
s can be obtained from N 1

s by the CET that
deletes {u, v}, suppresses u, subdivides {w,w′} with a new vertex u′, and joins the
two vertices u′ and v with a new edge. Additionally, if {w,w′} is a loop in N 1

s , then
one of the two resulting parallel edges that each join u′ and w is initially undirected
and therefore directed into w in N 2

s .
It now follows that, for all three cases, N 2

s can be obtained from N 1
s by one CET;

thereby establishing the lemma. �	
We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1 Let Ns and N ′
s be two semi-directed level-1 networks on X that

each have exactly k reticulations. Furthermore, let Nr and N ′
r be a level-1 rooted

partner of Ns and N ′
s , respectively. By Theorem 4.1 and its proof, there exists a CET

sequence

Nr ∼= N 1
r , N 2

r , . . . , Nm−1
r , Nm

r
∼= N ′

r

withm ≤ 10|X |+4k that connects Nr and N ′
r such that each network in the sequence

is either a rooted almost level-1 network on X and with exactly k reticulations if
k = |X |−1 or a rooted level-1 network on X with exactly k reticulations if k < |X |−1.
For each i ∈ {2, 3, . . . ,m − 1}, let Ni

s be the semi-directed network on X that is
obtained from Ni

r by applying one of the operations (s1)–(s3). By construction, Ni
s

has exactly k reticulations and Ni
r is a rooted partner of Ni

s .
Set N 1

s = Ns and Nm
s = N ′

s . Then, for each i ∈ {1, 2, . . . ,m}, Ni
s is level-1 (resp.

almost level-1) if and only if Ni
r is level-1 (resp. almost level-1). Now consider Ni

s
and Ni+1

s for each i ∈ {1, 2, . . . ,m − 1}. We may have Ni
s

∼= Ni+1
s . It follows from

Lemma 5.2 that Ni+1
s can be obtained from Ni

s by atmost one CET. Hence, there exists
a sequence of at most m CETs that connects Ns and N ′

s such that each network in the
sequence is either a semi-directed almost level-1 network with exactly k reticulations
if k = |X | − 1 or a semi-directed level-1 network on X with exactly k reticulations if
k ≤ |X | − 2. The theorem now follows. �	

5.2 Connectedness for networks with a varying number of reticulations

In this section, we show that the space of semi-directed level-1 networks on a fixed leaf
set is connected under CET and two additional operations, which we now introduce.
Intuitively, these two operations change the number of reticulations in semi-directed
phylogenetic network by one.
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5.2.1 Definitions

Throughout this section, let Ns be a semi-directed phylogenetic network.

R− moves Let e = (u, v) be a reticulation edge of Ns such that, if u �= v, then u is
not a reticulation. If (u, v) is a loop, obtain a network N ′

s from Ns by deleting u and
suppressing the resulting degree-two vertex, say w. Observe that, if w is a vertex of
a 2-cycle in Ns , then this cylce becomes a loop in N ′

s . On the other hand, if (u, v) is
not a loop, obtain N ′

s from Ns by undirecting the edge that is directed into v and not
e, deleting e, and suppressing u and v.

If e is a loop, then Ns has a unique rooted partner and it follows that the neighbor
of u in Ns is not a reticulation. Hence, regardless of whether e is a loop in Ns or not,
N ′
s is a semi-directed phylogenetic network on X .

R+ moves Let e be an edge of Ns . Obtain a network N from Ns in one of the following
two ways: (i) Subdivide e with a new vertex v, add the edge {u, v}, where u is a new
vertex, and add the (directed) loop (u, u); or (ii) subdivide e with a new vertex v,
subdivide an edge in the resulting network with a new vertex u, add the new edge
(u, v), and direct one of the two other edges incident with v into v.

In contrast to R−, observe that R+ does not necessarily result in a semi-directed
phylogenetic network. For example, if Ns contains a loop and N is obtained from
Ns by a R+ as described in (i), then N contains two loops and is not a semi-directed
phylogenetic network.

Extended CET and extended CET distance Now let Ns and N ′
s be two semi-directed

phylogenetic networks on X . If N ′
s can be obtained from Ns by a single R+ (resp.

R−), then Ns can by obtained from N ′
s by a single R− (resp. R+). Furthermore, we

say that N ′
s can be obtained from Ns by a single extended CET if it can be obtained

by applying exactly one of CET, R−, and R+ to Ns . Similar to the CET distance, we
refer to the minimum number of extended CETs that are required to transform Ns into
N ′
s as the extended CET distance between Ns and N ′

s .

5.2.2 Results

Themain aim of this section is to establish two connectedness results for semi-directed
networks that do not have a fixed number of reticulations.

We start with an observation that we freely use throughout this section. For a semi-
directed phylogenetic network Ns with no reticulation, the definition of a CET on
Ns coincides with that of a subtree prune and regraft (SPR) operation for unrooted
phylogenetic trees. To be precise, an unrooted binary phylogenetic X -tree T is an
undirected tree whose leaves are bijectively labeled with X andwhose internal vertices
all have degree three. Under the subtree prune and regraft operation, it is well-known
that the space of all unrooted phylogenetic trees on a fixed leaf set is connected (Allen
and Steel 2001; Maddison 1991).

Theorem 5.3 The space of all semi-directed level-1 networks on X is connected under
extended CET.
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Proof Let Ns and N ′
s be two semi-directed level-1 networks on X , and let k = r(Ns)

and k′ = r(N ′
s). Furthermore, let (v1, v2, . . . , vk) be an ordering on the reticulations

of Ns and, similarly, let (v′
1, v

′
2, . . . , v

′
k′) be an ordering on the reticulations of N ′

s .
Now, setting N 0

s = Ns , repeat the following operation k times for each i ∈
{1, 2, . . . , k} in order. Obtain a network Ni

s from Ni−1
s by applying a R− to a reticu-

lation edge (ui , vi ) that is incident with vi . Since N 0
s is level-1, it follows that u1 is

not a reticulation. Thus N 1
s is a semi-directed level-1 network on X . Repeating this

argument, it follows that each Ni
s with i ∈ {0, 1, 2, . . . , k} is a semi-directed level-1

network on X and Nk
s is an unrooted phylogenetic tree on X . Let Ts = Nk

s , and let
T ′
s be an unrooted phylogenetic tree on X obtained from N ′

s by applying k′ R− in
an analogous way. Since T ′

s can be obtained from Ts by a sequence of subtree prune
and regraft operations, it follows that that T ′

s can be obtained from Ts by a sequence
of CETs and each tree in the sequence is an unrooted phylogenetic tree on X . The
theorem now follows from the reversibility of CET, R+, and R−. �	

The next theorem is similar to Theorem 5.3 and establishes connectedness for the
larger space of semi-directed phylogenetic networks on a fixed leaf set.

Theorem 5.4 The space of all semi-directed phylogenetic networks on X is connected
under extended CET.

Proof Let Ns and N ′
s be two semi-directed phylogenetic networks on X with k = r(Ns)

and k′ = r(N ′
s). Let Nr and N ′

r be a rooted partner of Ns and N ′
s , respectively.

Furthermore, let (v1, v2, . . . , vk) be an ordering on the reticulations of Ns such that,
for all i, j ∈ {1, 2, . . . , k} with i < j , vi is not a descendant of v j in Nr . Similarly,
let (v′

1, v
′
2, . . . , v

′
k′) be an ordering on the reticulations of N ′

s such that, for all distinct
i, j ∈ {1, 2, . . . , k′} with i < j , v′

i is not a descendant of v′
j in N ′

r . The theorem can
now be established analogously to Theorem 5.3. The more constrained ordering of
the reticulations of Ns and N ′

s in comparison to that used in the proof of Theorem 5.3
guarantees that each R− is applied to a reticulation edge (u, v) of a semi-directed
phylogenetic network on X such that u is not a reticulation. �	

The next corollary follows immediately from Theorems 5.3 and 5.4, and the fact
that each extended CET is reversible.

Corollary 5.5 The extended CET distance is a metric on the space of all semi-directed
phylogenetic networks as well as on all semi-directed level-1 networks on X.

5.3 Connectedness using CET1 moves

In the following, we consider CETs that operate “locally” in the sense that when
a cut edge {u, v} of a semi-directed phylogenetic network is deleted, the connected
component containing v is re-attached via the introduction of a new cut edge in close
proximity to its original position (see formal definitions below). We then show that
every CET that satisfies a mild constraint can be translated into a sequence of these
local CETs.
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5.3.1 Definitions

Using similar terminology as Gambette et al. (2017), we define the central concept of
this section, namely CET1 moves.

CET1 moves Let Ns be a semi-directed phylogenetic network on X . First, when a
CET deletes a cut edge {u, v}, we refer to the two edges incident with u in Ns that are
different from the edge {u, v} as the donor edges, and to the edge that is subdivided
by u′ in Ns prior to adjoining u′ and v with a new edge as the recipient edge. Then, a
CET1 is a CET applied to Ns such that the recipient edge is incident with one of the
two donor edges.

As an example, the CET depicted in Fig. 2 is a CET1 since the recipient edge,
i.e., the edge incident with leaf x5, is also incident with one of the two donor edges
incident with u. If we had instead subdivided the edge incident with leaf x3 by u′ and
then added the edge {u′, v}, the resulting CET would not have been a CET1.

Note that a CET1 move may be interpreted as an NNI move for semi-directed phy-
logenetic networks. In particular, a CET1 move on such a network with no reticulation
coincides with an NNI move on an unrooted phylogenetic tree.

Next, we consider two particular types of CET moves affecting loops and parallel
edges.

Changing the location of a pair of parallel edges and exchanging a loop for a pair of
parallel edges Again, let Ns be a semi-directed almost level-1 network that contains
at least one pair of parallel edges and at least one 3-cycle. We say that a CET applied
to Ns changes the location of a pair of parallel edges if it deletes a cut edge e whose
two donor edges are edges of a 3-cycle (turning this 3-cycle into a 2-cycle) and whose
recipient edge is an edge of a 2-cycle (turning this 2-cycle into a 3-cycle). Similarly, if
Ns contains (i) precisely one loop and at least one 3-cycle, or (ii) precisely two pairs
of parallel edges, we say that a CET applied to Ns exchanges a loop for two pairs of
parallel edges or vice versa if it (i) deletes a cut edge e whose two donor edges are
edges of a 3-cycle (turning this 3-cycle into a 2-cycle) and whose recipient edge is the
loop of Ns (turning the loop into a second 2-cycle), or (ii) deletes a cut edge e whose
two donor edges form a 2-cycle (turning this 2-cycle into a loop) and whose recipient
edge is an edge of a 2-cycle (turning this 2-cycle into a 3-cycle).

5.3.2 Results

In this section we show that if Ns and N ′
s are two semi-directed (almost) level-1

networks on X with exactly k reticulations that are one CET apart such that the CET
does not change the location of a pair of parallel edges, and does not exchange a
loop for two pairs of parallel edges or vice versa, then there is also a sequence of
CET1 moves connecting Ns and N ′

s , whereby every network in the sequence is a
semi-directed (almost) level-1 network with exactly k reticulations. The restriction of
not changing the location of a pair of parallel edges or exchanging a loop for a pair
of parallel edges is required to ensure that every network in the sequence is indeed an
(almost) level-1 network.
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Proposition 5.6 Let Ns and N ′
s be two semi-directed level-1 networks on X and with

exactly k reticulations if k < |X | − 1, respectively two semi-directed almost level-1
networks with exactly k reticulations if k = |X | − 1, such that N ′

s can be obtained
from Ns by a single CET that neither changes the location of a pair of parallel edges
nor exchanges a loop for two pairs of parallel edges or vice versa. Then, there exists
a CET1 sequence transforming Ns into N ′

s such that each network in the sequence is
level-1 and has exactly k reticulations if k < |X | − 1 or each network in the sequence
is almost level-1 and has exactly k reticulations if k = |X | − 1.

Proof We first show that there is a CET1 sequence connecting Ns and N ′
s , whereby

every network in the sequence is a semi-directed networkwith precisely k reticulations.
Let e = {u, v} be the edge of Ns that is deleted in obtaining N ′

s from Ns by a single
CET. Furthermore, let e′ = {p, q} (respectively, e′ = (p, q) if e′ is directed) denote the
recipient edge in Ns . If e′ is incident with one of the two donor edges incident with u in
Ns , the CET to obtain N ′

s from Ns is a CET1 and there is nothing to show. Thus, assume
that e′ is not incident with one of the two donor edges. As Ns is connected, there exists
an undirected path P between u and p. Let {u, u1}, {u1, u2}, . . . , {ul−1, ul}, {ul , ul+1}
be the sequence of edges of P with {ul , ul+1} = {p, q}. To ease reading, we view
all edges of P as being undirected regardless of whether they are tree or reticulation
edges of Ns . We now argue that the CET transforming Ns into N ′

s can also be real-
ized as a CET1 sequence along P . More precisely, the first CET1 consists of deleting
e = {u, v} and suppressing u, subdividing the edge {u1, u2} with a new vertex u1,
and introducing the edge {u1, v}. Because every CET1 is also a CET, this results in a
semi-directed phylogenetic network N 1

s with cut edge {u1, v} and precisely k reticu-
lations. Moreover, by construction, N 1

s has a rooted partner, N 1
r say, such that u1 is

the parent of v in N 1
r or there exist three cut edges (ρ, t), (t, u1), and (t, v) in N 1

r .
Lastly, observe that {u2, u3}, {u3, u4}, . . . , {ul , ul+1} is a path in N 1

s . We now perform
a second CET1, whereby we delete {u1, v} and suppress u1 in N 1

s , subdivide the edge
{u2, u3} with a new vertex u2, and introduce the edge {u2, v}. By construction, this
results in a semi-directed network N 2

s with cut edge {u2, v} and precisely k reticu-
lations, where u2 and v are again such that u2 is a parent of v in the rooted partner
N 2
r of N 2

s , or N
2
r contains the three cut edges (ρ, t), (t, u2), and (t, v). Furthermore,

{u3, u4}, {u4, u5}, . . . , {ul , ul+1} is a path in N 2
s . If l > 2, we next apply a CET1 to

{u2, v} in N 2
s with recipient edge {u3, u4} and repeat. As P consists of a finite num-

ber of edges, this process will eventually lead to a semi-directed network Nl
s obtained

from the semi-directed network Nl−1
s by deleting the edge {ul−1, v}, suppressing ul−1,

subdividing the edge {ul , ul+1} = {p, q} with a new vertex ul , and adding the edge
{ul , v}. Since all vertices ui with 1 ≤ i < l introduced during this process are imme-
diately suppressed in subsequent steps, clearly Nl

s
∼= N ′

s , which completes the first
part of the proof.

It remains to argue that every network in the sequence is level-1 if k < |X | − 1
and is almost level-1 if k = |X | − 1. We achieve this by showing that each network
in the sequence satisfies certain properties that imply that there exists a rooted partner
that is level-1, respectively almost level-1, allowing us to conclude that the semi-
directed network itself is level-1, respectively almost level-1. Consider the aboveCET1
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sequence Ns, N 1
s , N 2

s , . . . , Nl
s

∼= N ′
s transforming Ns into N ′

s . We first consider the
CET1 transforming Ns into N 1

s and distinguish two cases:

(i) If k < |X | − 1, Ns and N ′
s are semi-directed level-1 networks and contain at most

one pair of parallel edges each and no loop. First, suppose that Ns contains one
pair of parallel edges. Since the CET transforming Ns into N ′

s by assumption does
not change the location of a pair of parallel edges, this implies that the donor edges
of Ns cannot be part of a 3-cycle. Hence, when deleting e = {u, v} from Ns to
obtain N 1

s , no additional pair of parallel edges is created. Second, suppose that Ns

contains no pair of parallel edges. Then N 1
s contains at most one pair of parallel

edges. Thus, in both cases, N 1
s is also level-1. Indeed, N

1
r is a rooted level-1 partner

of N 1
s .

(ii) If k = |X | − 1, Ns and N ′
s are semi-directed almost level-1 networks and each

contain at most one loop and no pair of parallel edges, or at most two pairs of
parallel edges but no loop. Assume for the sake of a contradiction that deleting
e = {u, v} from Ns to obtain N 1

s results in N 1
s not being almost level-1, i.e.,

containing either three pairs of parallel edges, two loops, or one loop and a pair
of parallel edges, while deleting e = {u, v} from Ns to obtain N ′

s results in N ′
s

containing at most one loop and no pair of parallel edges, or at most two pairs of
parallel edges but no loop.

• If N 1
s contains three pairs of parallel edges, Ns contains two pairs of parallel

edges and the donor edges of Ns are edges of a 3-cycle. Since e = {u, v} is
also deleted when transforming Ns into N ′

s , either N
′
s also contains three pairs

of parallel edges, a contradiction to the fact that N ′
s is almost level-1, or the

recipient edge for the CET from Ns into N ′
s is an edge of a 2-cycle, which is

also a contradiction, since the CET by assumption does not change the location
of a pair of parallel edges.

• If N 1
s contains two loops, Ns contains at least one loop and at least one pair of

parallel edges. This contradicts the fact that Ns is an almost level-1 network.
• Finally, if N 1

s contains one loop and one pair of parallel edges, then either (a)
Ns contains one loop and the donor edges of Ns are edges of a 3-cycle, or (b)
Ns contains two pairs of parallel edges, and the donor edges of Ns are edges
of such a pair. Again, as e is also deleted to obtain N 1

s from Ns , either N ′
s also

contains one loop and one pair of parallel edges, contradicting the fact that N ′
s

is almost level-1, or the CET from Ns to N ′
s is such that (a) the loop of Ns is

exchanged for two pairs of parallel edges, or (b) the two pairs of parallel edges
of Ns are exchanged for a loop. Both cases contradict the fact that the CET
transforming Ns into N ′

s does not exchange a loop for two pairs of parallel
edges or vice versa.

As all three cases lead to a contradiction, N 1
s is an almost level-1 network.

Now, consider i ∈ {1, 2, . . . , l−1} and the CET1 transforming Ni
s into N

i+1
s . Suppose

that deleting the cut edge {ui , v} introduces an excessive loop or pair of parallel edges
such that Ni+1

s is not level-1 if k < |X | − 1 or is not almost level-1 if k = |X | − 1.
Since {ui , v} was newly introduced when transforming Ni−1

s into Ni
s , this new loop

or pair of parallel edges must have already existed in Ni−1
s and thus ultimately in Ns .

123



Exploring spaces of semi-directed... Page 27 of 30 70

Thus, it cannot be excessive and Ni+1
s is a level-1, respectively almost level-1 network.

This completes the proof. �	
Revisiting the CET sequences used in the proofs of Lemmas 4.4 and 4.5 to estab-

lish (weak) connectedness under CET for rooted level-1 networks with precisely k
reticulations and translating these sequences into their semi-directed counterparts to
establish (weak) connectedness under CET for semi-directed level-1 networks with
precisely k reticulations, we notice that no CET changes the location of a pair of par-
allel edges or exchanges a loop for two pairs of parallel edges (or vice versa). Thus,
the conditions of Proposition 5.6 are satisfied and the next corollary follows from
Theorem 5.1, where the definition of weakly connected under CET1 is analogous to
that of weakly connected under CET.

Corollary 5.7 Under CET1, the space of all semi-directed level-1 networks on X with
exactly k reticulations is connected if k ≤ |X | − 2 and is weakly connected if k =
|X | − 1.

As mentioned in the introduction, Solís-Lemus and Ané (2016) conjectured that
the five types of moves employed in SNaQ are sufficient to guarantee connectedness
of the space of semi-directed level-1 networks with a fixed leaf set. While one of
these five types increases the number of reticulations by one, no move decreases
this number. Hence, SNaQ must effectively guarantee connectedness of the space
of semi-directed level-1 networks with a fixed number of reticulations and leaf set,
because once a search through the space of semi-directed level-1 networks reaches
a network with k reticulations every network that is investigated later in the search
has at least k reticulations. Although a precise definition of SNaQ’s fourth move type,
called NNI move on a tree edge, is unfortunately missing in Solís-Lemus and Ané
(2016), Corollary 5.7 suggests that the space of level-1 networks with a fixed number
of reticulations and leaf set is connected under the five moves employed in SNaQ if
the authors additionally allow for NNI moves on a reticulation edge. Our results also
imply that, if k = |X | − 1, then semi-directed level-1 networks that allow for at most
two 2-cycles and a single loop need to be considered when searching for an optimal
network although, as noted in Solís-Lemus and Ané (2016), reticulations in a 2-cycle
and certain other types of short cycles with small adjacent subnetworks are either not
detectable or their parameters are not all identifiable.

6 Concluding remarks

In this paper, we have introduced a new rearrangement operation on semi-directed phy-
logenetic networks, called CET, that can transform any semi-directed level-1 network
with precisely k reticulations into any other such network with the same set of leaves.
Moreover, we have introduced two additional operations, R+ and R−, that allow to
move between semi-directed phylogenetic networks and between semi-directed level-
1 networks with a fixed leaf set and an arbitrary number of reticulations. While CET
moves have a similar flavor as SPR and rSPR moves on unrooted, respectively rooted
phylogenetic trees and networks (Allen and Steel 2001; Bordewich and Semple 2005;
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Bordewich et al. 2017; Gambette et al. 2017), we have also shown that any CET can be
translated into a sequence of more local CET1 moves, which are similar to NNI moves
studied on phylogenetic trees and networks (Gambette et al. 2017; Huber et al. 2015;
Janssen and Klawitter 2019; Robinson 1971). Such CET1 moves essentially coincide
with moves that are used in the popular network inference software PhyloNetworks
(Solís-Lemus and Ané 2016; Solís-Lemus et al. 2017) up to a slight relaxation of
one of their moves. Thus, our theoretical results on the connectedness of the space
of semi-directed level-1 networks provide some level of assurance that an optimal
semi-directed level-1 network can be reached from any such starting network.

While our main focus has been to establish connectedness and diameter results for
the space of semi-directed level-1 networks with a fixed number of reticulations and
leaf set, there are several open questions to explore in future research. For instance, it
would be interesting to analyze the computational complexity of determining the CET
distance between any two semi-directed level-1 networks. It would also be interesting
to analyze further properties of the space of semi-directed phylogenetic networks on
a fixed leaf set or subspaces of it such as the radius of the space. Finally, one could
ask which of the results presented in this paper carry over to unrooted phylogenetic
networks.
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