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Estimating waves via measured 
ship responses
Ulrik D. Nielsen 1*, Harry B. Bingham 1, Astrid H. Brodtkorb 2, Toshio Iseki 3, Jørgen J. Jensen 1, 
Malte Mittendorf 1, Raphaël E. G. Mounet 1, Yanlin Shao 1, Gaute Storhaug 4, 
Asgeir J. Sørensen 2 & Tomoki Takami 5

Optimisation of energy efficiency and operational performance as well as assessment of safety levels 
and emissions of marine operations require detailed information about the acting wave system. It 
is possible—with an analogy to classical wave buoys—to estimate the directional wave spectrum by 
processing sensor measurements of wave-induced responses (e.g., motions and structural responses) 
from a ship. Compared to other sources of wave data (e.g., buoys, satellites, third-generation wave 
models), estimation concepts using the ship itself as a buoy provide the wave spectrum at the 
exact spatio-temporal point, potentially increasing accuracy and with minimal associated cost. This 
paper gives an overview of the technology, discusses associated uncertainties, and highlights new 
developments made for estimating waves via measured ship responses.

Measuring ocean waves is of fundamental importance to shipmasters, naval architects, maritime engineers, and 
ocean scientists alike, since waves are the basic driver of most of the processes of their concern. Here, we note 
that measuring ocean waves is equivalent to measuring the directional wave spectrum, representing the energy 
density of the wave components forming the wave system1. Applications dependent on measurements and a 
characterisation of waves are, e.g.: (a) analysis of wave-structure interactions before/during/after operations, (b) 
collection of historical data for design and rule specification for offshore structures and ships, (c) preliminary 
evaluation of offshore sites for renewable energy potential and construction, and (d) assessment of mechanisms 
of surface-water mixing and air-sea fluxes for understanding weather and climate changes. Examples of use-cases 
are illustrated in Fig. 1, where the following additional remarks can be added: For the optimal operation of ships 
sailing in a seaway, real-time, onboard decision support systems can guide the crew to select speed and heading 
to ensure high levels of safety and performance. For instance, for vessels operating with wind-assisted propulsion, 
as illustrated in Fig. 1a, it is difficult to decide on a heading where the thrust from wind is maximised while, at 
the same time, keeping the added resistance from waves minimum. Such a heading selection can be guided by 
a decision support system if the directional wave spectrum is available. Similarly, decision support systems can 
warn against the risk of being in dangerous situations, where large motions or parametric roll can lead to loss 
or damage of cargo2, as illustrated in Fig. 1b. It may also be that an incident, having resulted in container dam-
ages and losses, needs further post-voyage investigations, e.g., for reasons of insurance, in which case the in-situ 
directional wave spectrum must be available. Thus, with the green transition and digitalisation period we are in, 
soon all vessels need some kind of wave estimation technology for reasons of safety, emission reductions, and 
inspection. Lastly, it is noted that the development of weather and storms is largely affected by the exchange of 
energy, momentum, and mass between the atmosphere and the sea, cf. Fig. 1c3. This exchange also influences 
the carbon budget of the ocean and atmosphere, and thus with a crucial importance to mechanisms related to 
climate change4,5. At a fundamental level, the exchange between air and sea takes place in the boundary layers 
over the sea surface, and variations of the surface, characterised by waves, should therefore be measured to enable 
understanding and modelling of weather and climate.

In practice, waves are typically estimated by a buoy, where the buoy’s translational and angular motions, result-
ing from waves, are the basis for the estimate. By analogy it is possible to use recorded wave-induced motions of 
a ship to estimate waves. This latter principle, referred to as the wave buoy analogy or ship-as-a-wave-buoy, has 
been investigated and developed over the past 2-3 decades with a handful of pioneering studies6–10. Generally, 
the concept is well-understood and produces fair to good results compared to real (“classic”) wave buoys, despite 
the complexities inherent due to a ship’s large size (length, breadth, draught), relative to the waves we are trying 
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to measure, making a ship behave as a low-pass filter, and since a ship typically advances in the propagating 
waves. On the other hand, compared to buoys - being deployed in fixed locations, and extremely scarcely located 
considering the coverage of the oceans - there is an obvious but unexploited potential in using ships as sailing 
wave buoys. Figure 2 highlights the potential by imagining any ship to be a sailing wave buoy. Hence, account-
ing for the sheer number (+300,000) of ships in operation, the spatial and temporal coverage considering wave 
estimation and other environmental data is significant, assuming mechanisms and routines for data sharing.

Scope and novelty
This paper gives an overview and presents new developments made at the Department of Civil and Mechanical 
Engineering, Technical University of Denmark, with selected partners for estimating waves via measured ship 
responses. Onward, we refer to wave-estimation technologies of this type under the umbrella term the Wave Buoy 
Analogy (WBA). In the paper, we present new results of a novel framework consisting of a hybrid method11 
combining physics-based and machine learning-based wave estimates. Specifically, we introduce an experimental 
dataset obtained under “controlled conditions” during sea trials, and we show that reasonable wave estimates can 
be expected using a physics-based method under such favourable conditions. In contrast, for a ship in service, 
the level of uncertainties associated with operational parameters such as speed and draft can be significant. 
This motivates the development of a hybrid method, being less sensitive to the aforementioned uncertainties 
and thus more robust. In concrete terms, the hybrid framework is realised by conditioning the physics-based 
method on results, i.e. wave estimates, from another source, practically achieved by running a machine learning 
model concurrently. The hybrid method, as a concept and with its theoretical derivations, has been presented in 
an earlier paper11 where the machine learning model was trained using data from a wave radar. In the present 
work, we introduce a new set of results, derived by training the machine learning model instead by the ERA5 
database12, to facilitate the conditioning. The advantage in training the machine learning model with ERA5 is 
that this approach does not require any (extra) hardware on the ship, which for instance is the case if a wave 
radar should be installed.

The Wave buoy analogy in a nutshell
Fundamentally, the WBA relies on measuring wave-induced ship responses; say, heave (z), roll ( φ ), and pitch 
( θ ). The principle is sketched in Fig. 3. Introducing the linear time-invariant (LTI) assumption facilitates the 
use of wave-to-motion transfer functions which leads to what will be referred to as physics-based methods 
with formulations in both the frequency domain and the time domain. In contrast thereto, purely data-driven 
approaches exist, relying on machine learning. The main advantage of physics-based methods is that they can 

Figure 1.   Measuring ocean waves. Information about waves is of crucial importance in many applications 
considered by engineers and ocean scientists.
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Figure 2.   Snapshot of vessel positions, as of 27-06-2023 UTC 10:30, from AIS data with colour codes for 
identification of ship type, noticing that more than 300,000 ships appear. With permission by MarineTraffic 
(www.​marin​etraf​fi c.​com).

Figure 3.   Sketch of the wave buoy analogy (WBA), alluding to frequency-domain frameworks.

http://www.marinetraffic.com
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provide estimates of the complete directional wave spectrum, where different mathematical strategies13–26 are 
applied for solving the highly underdetermined equation system describing the physical relationship between 
the energy densities of waves and the corresponding responses. In machine learning methods27–36, the general 
relationship between wave parameters and induced responses of a particular ship is learned by comprehensive 
training with large datasets of measured responses against available sea state information, e.g. from hindcast wave 
databases. The main advantage of machine learning methods is that transfer functions are not needed, and all 
uncertainties associated with transfer functions are thus removed. On the other hand, the need for high-quality 
sensor measurements is emphasised and so is the importance of having accurate (“external”) data used as a 
proxy for the true wave parameters at the exact spatio-temporal position of the ship. Besides, machine learning 
methods offer, presently, only wave parameters (not the detailed wave spectrum), although research has been 
initiated by the international community to relax this restriction, as discussed later.

Hybrid framework
The state of the art literature, as introduced above, demonstrates that machine learning methods, in fact, tend to 
give better estimates of the wave parameters compared to physics-based methods, when full-scale, operational 
data from in-service ships is considered. It is thus interesting to compose a hybrid framework, combining 
results from a machine learning method with the capability of a physics-based method, providing the detailed 
directional wave spectrum. Such a framework has recently been developed by establishing an algorithm11 that 
outputs a directional wave spectrum which is conditioned on results from a machine learning method. More 
specifically, the hybrid framework takes estimated wave parameters from a convolutional neural network32 and 
uses them as constraints on the directional wave spectrum subsequently computed by a physics-based method8,13. 
It is noteworthy that the specific physics-based method relies on Bayes’ theorem37, and, in the following, we will 
refer to it as the Bayesian method.

Results
The potential of a ship as a wave buoy has been confirmed in past studies, as already introduced. However, in 
the Bayesian method, the motion transfer functions are needed which, in turn, means that the detailed hull 
geometry as well as knowledge about the exact operational condition (e.g., speed and loading condition) of the 
ship must be available; otherwise, reliable and accurate motion transfer functions cannot be computed resulting 
in compromised wave spectrum estimates. Initially, we will therefore introduce two sets of results for underscor-
ing the motivation and relevance of a hybrid framework of the WBA, emphasising that we consider exclusively 
unconditioned wave spectrum estimates of the Bayesian method in this preliminary assessment. Afterwards, the 
hybrid framework will itself be assessed using in-service data from a container ship.

Preliminary assessment (unconditioned wave spectrum estimates)
In the preliminary assessment, the first set of results is produced by analysis of dedicated full-scale experimental 
data obtained during a sea trial campaign using a research vessel of the Norwegian University of Science and 
Technology (NTNU). The second set of results originates from a container ship which had its wave-induced 
motions measured during nearly two years of service on a North Atlantic route between Europe and Canada.

Sea trial experiments
Full-scale motion measurements have been collected during sea trials in 2013 with R/V Gunnerus, see Fig. 4. 
Originally, the sea trials were made to document the effect of a thruster retrofit38, and, as part of this, seakeeping 
runs were made, where one set of run paths, as illustrated in Fig. 4b, is studied herein. The input to the estimation 
algorithm, i.e. the Bayesian method, is the measured motion components heave, roll, and pitch, as well as the cor-
responding transfer functions. The transfer functions have been computed with a 2D strip theory code, ShipX39, 

Figure 4.   The research vessel Gunnerus is owned and operated by NTNU. Data from a test campaign is studied 
in the preliminary assessment of the WBA.
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using the exact hull geometry and the precise loading condition and speed of the ship during the trial. On each 
run path, indicated by IDs 03-06, course and engine power were held constant to ensure stationary conditions, 
and the durations of the single straight-line runs were 25–30 min, meaning that any involved stochastic process, 
in these periods, is assumed to have a probability distribution that does not change when shifted in time. During 
the seakeeping tests, the wave spectrum was measured continuously by a free-floating wave buoy (Datawell BV, 
Waverider SG) deployed in the test area; but without information about the exact distance between the buoy 
and the individual run path.

Figure 5 compares wave spectrum estimates by the Bayesian method and corresponding estimates by the wave 
buoy, noticing that the comparison is made for the point spectra which are integrated versions of the directional 
wave spectra. The caption of each subplot contains information about the mean wave direction Dm , which indi-
cates the compass direction where the waves come from following the meteorological convention, refer also to 
Fig. 4b. Moreover, the significant wave height Hs appears in the legend of each subplot.

Overall, good agreements can be observed from the comparisons in Fig. 5, although Case ID06 stands slightly 
out compared to the other three cases. In this sense, the main take-away from this initial assessment is that good 
wave spectrum estimates can be expected, when the WBA is applied under “controlled” conditions. In fact, similar 
observations have been made in several other studies, where (fully) dedicated experimental datasets, including 
model tests, are analysed16,18,24,40–43. Note that by controlled conditions should be understood that the detailed 
hull geometry is available for computation of the transfer functions, and, furthermore, that the uncertainties in 
operational parameters (i.e., ship speed and loading condition) are small. This means that the computed transfer 
functions are reliable and (should) provide a realistic match to the real ship’s motion dynamics in waves, within 
the implicit assumptions (small-amplitude waves) for using transfer functions computed by linear, potential 
flow strip theory. Nevertheless, roll is a response dominated by nonlinear effects that cannot be captured using 
transfer functions, where a linear theory is assumed44,45. In this respect, it is noteworthy that the literature7,8 
includes discussions about replacing roll with sway in the WBA.

As a final comment, it is important to stress that uncertainties are associated not only with the wave spectra 
of the WBA but also with those of the wave buoy, although the comparison in Fig. 5 indicates a fair agreement. 
Furthermore, the inherent randomness, in time and space, of ocean waves means that one never truly compares 
apples with apples, since the ship and buoy are not exactly at the same position. In other words, speaking about 
a ground truth makes little sense in this context.

In‑service data
The second analysis of this preliminary assessment is made with a dataset from the container ship shown in 
Fig. 6a, noticing that the analysis considers nearly two years of operational data from service on the North 

Figure 5.   Unconditioned Bayesian wave spectrum estimates obtained by analysis of dedicated sea trial 
experiments with a research vessel, cf. Fig. 4.
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Atlantic, see Fig. 6b. The ship and the complete dataset are thoroughly described in the literature46. For the present 
study, it suffices to note that the wave-induced accelerations of one angular motion (pitch) and two translational 
motions (sway, heave), respectively, are simultaneously used as input to the Bayesian estimation method. The 
particular dataset does not contain information about the ship’s loading condition (i.e., draught and trim) on the 
voyages, and, due to the nature of the measurements (in-service data), neither has it been attempted to ensure 
that the vessel’s speed and course are constant during the data recordings used for wave estimation. Yet, transfer 
functions are needed for the Bayesian method, and a simple solution to account for the missing information 
with respect to the exact draught is simply to assume a “typical transit draught”46 when computing the transfer 
functions; even though the ship’s real draught and trim may have been (very) different on many of the studied 
voyages. Thus, it is appreciated that the transfer functions have been computed from the detailed hull geometry, 
made available to the authors for the particular purpose, and using a commercial software47. However, the lack of 
exact knowledge about the operational parameters (draught, trim, speed, course) and their possible fluctuating 
behavior, at times, clearly introduce large uncertainties in the computed transfer functions.

Based on the vessel’s GPS history, reanalysis data (hindcast) of integral wave parameters has been obtained 
from the ERA5 database12,48. Specifically, ERA5 estimates of significant wave height ( Hs ), zero-upcrossing period 
( Tz ), and mean wave direction ( Dm ) are studied and used as a means for comparing estimates of the WBA using 
the Bayesian method, repeating that, initially, unconditioned results are considered.

Figure 7 presents the comparison of estimates by the Bayesian method (’WBA’) against the corresponding 
estimates from ERA5; in the scatter plots, any perfect agreement is reflected by points located on the line of 
identity (full red line). To assess quantitatively the deviation between corresponding pairs of estimates, root-
mean-squared-errors (RMSE), in dimensional form, are also computed and included for {Hs,Tz} , while the 
minimum-absolute-error (MAE) is included for Dm , accounting for the directional ambiguity. In short, it is 
evident from the comparison that significant scatter appears, although the markers for each of the three param-
eters { Hs , Tz , Dm } to some degree distribute around the line of identity.

Figure 6.   In-service data from a container ship has been analysed. In total, 7644 time series samples of 25 
minutes duration have been studied.

Figure 7.   Comparison of integral wave parameters ( Hs , Tz , and Dm ) from the ERA5 database and 
corresponding parameters derived from the unconditioned wave spectrum estimates by the WBA. The legends 
inform about the root-mean-squared error (RMSE) for Hs and Tz , respectively, and the minimum-absolute error 
(MAE) for Dm.
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Wave spectrum estimates from a hybrid framework
In the hybrid approach, outcomes of a convolutional neural network (CNN) act as constraints on the directional 
wave spectrum produced by the Bayesian method. The assessment of the hybrid approach is made with the same 
dataset as presented in the previous subsection focused on in-service data from a container ship. The training of 
the CNN is based on 80% of the total (filtered) dataset and comprises Kt = 3823 samples32, while the validation 
set makes up the remaining 20% of the data, which means that Kv = 956 samples are left as unseen data. The 
reader is reminded that a sample in this context consists of a 25-minute set of MRU (motion response unit) time 
series and the corresponding ERA5 wave parameters in terms of { Hs , Tz , Dm}.

Figure 8 shows the improvement in accuracy by applying the hybrid framework. In the figure, the three top-
plots (unconditioned WBA) should be compared against the three bottom-plots (hybrid WBA); noticing that 
each sub-plot presents the comparison between estimates of ERA5 and the WBA, similar to Fig. 7, in all cases 
considering samples of the validation data exclusively. The improvements in estimates of significant wave height 
( Hs ) and wave direction ( Dm ) are evident. On the other hand, no notable effect appears on the zero-upcrossing 
period ( Tz ). The explanation for this observation is that the conditioning of the WBA wave spectrum estimates, 
using the hybrid framework, is introduced solely through constraints on Hs and Dm , as a deliberate choice for the 
reason discussed further below. It is important to emphasise that the conditioning of the wave spectrum estimates 
is made using outcomes of a machine learning method (i.e. the CNN) and not directly the ERA5 parameters 
themselves. The reason is that for the hybrid framework to be applicable in real-time, the “constraining param-
eters” must be immediately available, for instance through a pre-trained machine learning method which itself 
can be formed by earlier offline training with a proxy for the ground truth, like the ERA5 database.

While the assessment of the hybrid framework is made entirely through wave parameters, it is important to 
stress that many problems of wave-structure interaction require the directional wave spectrum as the funda-
mental input, not just the wave parameters. Indeed, the proposed hybrid (“machine learning-informed physics-
based”) method provides this, as can be seen from two arbitrarily selected samples in Fig. 9. In fact, in the given 
cases, the WBA spectra are compared with corresponding directional spectra estimated by a wave radar system; 
noticing that the ship, in the past, was used as a test platform in a research project about hull structure integrity 
and, for this reason, the ship was also equipped with a wave radar (Wavex� by Miros), capable of providing 
estimates of the onsite directional wave spectrum. In this context, to repeat the general message, it is underlined 
that wave radars come with uncertainties in their estimates as well. Detailed discussions are beyond the present 
scope, but particular concerns of wave radars relate to, e.g., the accurate estimation of the significant wave height49 
and the effect of rain clutter50.

Figure 8.   Integral wave parameters from the ERA5 database against corresponding parameters derived from, 
respectively, the unconditioned wave spectrum estimates by the WBA (top row) and the conditioned estimates 
using the hybrid framework of the WBA (bottom row). Left-side plots: Hs , middle plots: Tz , right-side plots: Dm.
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Discussion
Inherently, the use of transfer functions, as in the physics-based variants of the WBA, is associated with several 
uncertainties. It can be difficult to assign single and general causes for the uncertainties, however, the lack of 
detailed and exact information with regard to operational conditions (draught, trim, speed, etc.) is a primary 
source when in-service data is studied. In addition, the complex geometry of a ship hull can lead to difficulties 
in correctly modelling the physics of the motion dynamics of a ship in waves; especially considering higher 
and steeper waves. What is more, sometimes the hull geometry is not available to the ship operator, in which 
case so-called closed-form expressions51,52 can be used as an approximate alternative for the transfer functions. 
Nevertheless, transfer functions presumably yield a qualitatively correct picture of a ship’s response in waves. 
A machine learning model, on the other hand, can infer nonlinearities and other unseen tendencies in the data 
not captured by transfer functions. By forming a hybrid framework, we have therefore tried to include the best 
from two fundamentally different methods to reach an approach with the potential to emphasise the pros and 
minimise the cons of the two respective frameworks being merged.

In the assessment using in-service data, wave parameter estimates from the ERA5 database were considered; 
both for the direct comparison with output of the WBA and for the training of a convolutional neural network, 
where the ERA5 parameters acted as a proxy for the ground truth. In this sense, the particular database, or a 
similar database produced by third-generation spectral wave models, can itself be used for making assessments 
of ship operations, considering aspects of safety as well as performance (fuel consumption analysis, etc.). One 
disadvantage, however, is that such databases cannot be used for on-board, real-time assessments in the guidance 
of the shipmaster, since the database is the result of reanalyses made by assimilating the spectral wave model 
with measured data in offline post-processing. Moreover, reanalysis data will practically never be truly applicable 
to the exact spatio-temporal position of the ship, due to the fixed resolution of the grid in the reanalysis data. 
On the other hand, the advantage in training the machine learning model with ERA5 is that this approach does 
not require additional/extra hardware, noticing that a wave radar system needs a dedicated X-band radar for its 
functional mode of operation.

In connection with the preceding and with a remark about the practical application, it is imagined that the 
hybrid method could run by introducing an initial ’training phase’. As an example: At day 0 until, say, day 100, 
wave spectrum estimates are produced by only the Bayesian method (being solely physics-based). From day 101, 
enough training data (i.e., recorded motions plus ERA5) has presumably been collected for the machine learning 
model to produce reliable output, and the hybrid method could start producing results, though with continued 
training of the machine learning model. On the same note, it is important to mention that a new training phase is 
needed when/if a new ship is considered. That is, results from one ship cannot be transferred directly to another 
ship; unless the two ships are identical in their design and with similar operational profiles.

In the hybrid approach, the conditioning of the wave spectrum estimates was made by imposing constraints 
on Hs and Dm , but not Tz . This is a choice made since the (low-pass) filtering effect of a ship generally implies 

Figure 9.   Directional wave spectra by the WBA and a wave radar system (Wavex), and with the corresponding 
point spectra below. In subplots (a) and (b), different time stamps (UTC) are considered (a: 24-09-2007 00:00; b: 
06-03-2008 19:00), and the respective sub-captions inform about the corresponding ERA5 wave parameters for 
the given cases, including the wave encounter angle β.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17342  | https://doi.org/10.1038/s41598-023-44552-2

www.nature.com/scientificreports/

that high-frequency wave components are not “sensed”, resulting in lost information about the tail of the wave 
spectrum; with a deteriorating tendency the larger the ship relative to wave length. Consequently, it is thought 
that it potentially will harm more than it will do good to impose (also) a constraint on Tz , since the estimated 
conditioned wave spectrum may end up being distorted, or in other ways nonphysical. In fact, the hypothesis was 
tested and confirmed on a few samples, although not shown herein, but it will take more thorough investigations 
to make definitive conclusions.

Somewhat related to the previous point, it should be noted that different types of responses exhibit different 
(low-pass) frequency characteristics. For instance, in relative terms, motion components like heave, roll, and 
pitch are typically less excited compared to structural hull girder responses such as bending and twisting, when 
the ship operates in short waves. In other words, the negative effects of a ship’s low-pass filtering characteristics 
can be diminished by introducing responses not affected by the low-pass behaviour to the same degree as motion 
components10,19,25. Consequently, designing or selecting the right measurements for improved estimation capa-
bilities would be nice to have as a standard approach, thinking in the direction of a dynamical and automatic 
selection53,54.

As pointed out earlier, it has little meaning to speak about a ground truth when measuring ocean waves. 
Nevertheless, in machine learning, a proxy thereof is needed. In this paper, the ERA5 database has been used, 
without touching the fact that the database represents estimates and is associated with uncertainties itself. In 
fact, it is possible to include uncertainties in the database from observations, sea surface temperature, and from 
model-physical parameterisations55. Clearly, it could be interesting to consider this kind of uncertainty in the 
hybrid method, in an extended and future work, as such an extension could make the WBA even more appealing 
from a practical-application point of view. In this context, it should be noted that how accurate the wave height, 
for instance, needs to be, depends on the use-case; in some cases a low accuracy is fine, while in other cases we 
would like high accuracy. On the same note, it is also interesting to mention that a physics-based version of the 
WBA, making it possible to include the uncertainty in the transfer functions of the ship, has been developed26. In 
the future, it appears interesting to investigate possible combinations of that version with the hybrid framework 
discussed in the present paper.

It is possible to obtain the detailed directional wave spectrum from the ERA5 database. As already noted, 
research30,33,34 has been initiated for the development of machine learning models capable of reconstructing 
actual (directional) wave spectra from measured ship responses. The challenge, however, is that wave spectra 
can be considered as sparse matrices and their prediction is difficult and inefficient. Additionally, larger input/
output dimensions lead to a high number of trainable parameters, which makes the models fragile and suscep-
tible to overfitting. Hence, a dimensionality reduction procedure56,57 as pre-processing could be a work-around 
for increasing model efficiency as well as accuracy, like discussed by one study58. Although the existing studies 
aimed at predicting the full wave spectrum appear yet as immature, since they consider simulated data only and/
or do not assess the model performance on out-of-sample data and thus reflect reduced credibility, it is believed 
that successful developments will be presented, sooner or later.

For about two decades, we have investigated concepts for estimating waves via measured ship responses, 
and the technology provides good estimates of the directional wave spectrum compared to other means. Wave 
spectra are fundamental inputs to the assessment of many wave-structure interaction problems. However, certain 
types of problems are dominated by nonlinearities, like the prediction of ship rolling and whipping-induced hull 
girder vibrations, and, in such cases, actual time series sequences of the surface (wave) elevation are needed. 
Recently, a method for reconstructing the incident wave profile has been proposed25,43, and, using this method, 
a framework for nonlinear roll damping identification has been developed59. So far, the framework has been 
assessed with simulated and model-test data only, see Fig. 10, and further validations with in-service data are 
thus needed. Another important work for the future will be to investigate the simultaneous use of multiple ships, 
in a network-based approach, for improved wave estimation and forecasting capabilities over larger geographic 
regions, with repeated reference to Fig. 2 highlighting the potential in using ships as sailing wave buoys. Initial 
studies in this direction have commenced60, including related work focused on deriving spatial wave data from 
a network of buoys and ships61.

Figure 10.   Measured and estimated roll motions in long-crested irregular waves based on model-tests carried 
out by National Maritime Research Institute (Japan)59. The time axis is in the scale of the model (1:72).
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Theory and methods
Wave parameters and statistical metrics
Wave parameters characterising a directional wave spectrum can be derived by integration62. Thus, significant 
wave height Hs , zero-upcrossing period Tz , and mean wave direction Dm are all derived from the directional 
wave spectrum E(ω,µ),

where

with ω as the circular frequency in [rad/s] along the wave direction µ . Note that the wave encounter angle β , 
providing the wave direction relative to the ship, is directly derived from the mean wave direction Dm and the 
course of the ship χ,

following the convention that head waves is β = 180◦ and waves approaching from starboard side and port side, 
respectively, are indicated by ’+’ and ’ − ’, while following waves is β = 0◦.

To assess quantitatively the deviation between corresponding pairs of wave parameter estimates, root-mean-
squared-errors (RMSE), in dimensional form, are computed for {Hs,Tz} , while the minimum-absolute-error 
(MAE) is computed for Dm , accounting for the directional ambiguity. The expressions follow from:

 where y indicates an estimate of the particular parameter in question, i.e. {Hs,Tz} , for sample k considering 
WBA or ERA5, indicated by indices.

Wave‑to‑motion transfer functions
In the most basic sense, transfer functions inform how a ship responds to regular (harmonic) waves of unit 
amplitude. The ship’s linear response in real (irregular) waves can be found by combination (i.e. multiplication) 
of the transfer functions and the wave spectrum describing the real waves. The interested reader will find several 
excellent textbooks on the topic44,45,62–64.

Computation of response spectra
To construct the cross spectra, needed as input to the WBA, FFT is performed using the Matlab function cpsd, 
which is based on Welch’s averaged, modified periodogram method applied on eight sections with 50% overlap, 
and with each section windowed with a Hamming window65.

(1)Hs =4
√
m0

(2)Tz =2π

√
m0

m2

(3)Dm =atan(d/c)

(4)mn =
∫ ∞

0

ωnF(ω)dω n = {0, 2}

(5)F(ω) =
∫ π

−π

E(ω,µ)dµ

(6)d =
∫ π

−π

∫ ∞

0

E(ω,µ) sin(µ)dωdµ

(7)c =
∫ π

−π

∫ ∞

0

E(ω,µ) cos(µ)dωdµ

(8)β = 180
◦ − (Dm − χ), if (β > 180,β = β − 360

◦)

(9)RMSE =

√√√√ 1

K

K∑

k=1

(yk,WBA − yk,ERA5)2

(10a)MAE =
1

K

K∑

k=1

min{εk , (360◦ − εk)}
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The wave buoy analogy (WBA)
Bayesian method
A thorough account of the Bayesian method is given in the literature37,66, and the particular implementation 
made in this paper considers ships with forward speed8,13. The following contains an introduction to only the 
most central aspects. From a measured set of responses, corresponding response spectra Si,j(ωe,l) , i, j = {z,φ, θ} , 
can be computed under the assumption of stationary and ergodic processes. Here, ωe,l defines the encounter 
frequency discretised by l = 1, 2, ..., L components. Formally, the directional wave spectrum E(ω,µ) can be 
determined from the spectral equation,

where the transfer function is �i(ω,β) , and the overline denotes the complex conjugate. The intrinsic frequency 
is ω [rad/s], and β = (180+ χ − µ ) [deg] is the wave encounter angle with waves propagating from the compass 
direction µ while the compass heading of the ship is χ . The triangular brackets �· · · �ωe,l

 , with ωe,l as index, are 
used to emphasise that evaluation happens for a given frequency of encounter. This requires consideration of 
the Doppler effect63,67, relating the intrinsic frequency to the encounter frequency (or vice versa) via the wave 
encounter angle and ship speed, respectively. The expression in the triangular brackets is thus the (theoretically) 
computed response spectrum converted to the encounter domain. While the formal notation in Eq. (11) excludes 
details about the actual implementation, the specific literature8,13 includes these, and can be accompanied by 
a pseudo-algorithm68 for ease of practical implementation. It is noteworthy that ship speed, for matters of fuel 
performance, will normally be held constant in service conditions, excluding all maneuvering operations, e.g., 
related to departures and arrivals in harbours. Thus, for most cases in service conditions, the variation in ship 
speed relative to the average value over, say, 25-30 minutes is insignificant. The Bayesian method solves for the 
unknown wave spectrum E(ω,µ) at all discrete pairs of (ω,µ) , necessitating regularisation for dealing with the 
highly under-determined equation system. As such, the method relies on the inclusion of prior information 
to regularise the solution of the governing equation, cf. equation (11). Specifically, constraints are set on the 
second order derivative, controlling the smoothness of the mathematical surface describing the directional 
wave spectrum. In summary, it can be said that the Bayesian method establishes a wave spectrum obtained as a 
compromise between the agreement between the data and the theoretical prediction, formally controlled by Eq. 
(11), and the smoothness of the wave spectrum. To “guide” the compromise, an objective criterion (referred to 
as ABIC) is introduced, as carefully explained in the specific literature8,13.

Convolutional neural network
Neural networks can produce a satisfactory mapping from measured vessel responses to wave parameters. In this 
paper, the sea state identification, to differentiate from wave spectrum estimation where the entire directional 
wave spectrum is obtained, builds on an implementation of an Inception model69. Specifically, the identification 
algorithm32 makes use of response spectra, applied in a multi-task learning (MTL) setting70, for identification of 
significant wave height, peak period, and wave direction. In MTL, each output is considered as a separate task 
with its own dedicated branch of fully connected hidden layers and corresponding output layers. Such an archi-
tecture is selected to favour physical interdependencies between the wave parameters and improve the model’s 
generalisation capability71. In the current work, the ship’s speed and draught were not fed into the model; draught 
was not measured, thus “unknown”, and the speed was relatively constant, varying in the range of 18-20 knots 
for the vast majority of the data32. In case of more varied operational conditions, however, it will be necessary 
to refine the neural network, for instance by considering a multi-modal convolutional neural network, which is 
characterised by several input branches and discussed in greater detail in the literature32.

Hybrid framework
In the hybrid framework11, output ( Hs and Dm ) from the convolutional neural network are considered as physi-
cal constraints on the directional wave spectrum to be estimated. This means that additional equations are 
concatenated to the governing equation system represented by Eq. (11). Specifically, the following equations 
are considered: 

 where Eqs. (12b) and (12c) in combination relate to the mean relative wave direction, cf. Eq. (3). It is understood 
that the wide-tilde, in Ẽ(ω,µ) , is used to indicate the directional wave spectrum to be estimated, whereas the 
hat-notation on the right-hand side of the equations is used to indicate that the parameters are known from 
another source; in this case, they are the output from the machine learning model, i.e. the convolutional neural 
network. Details of the hybrid framework are presented in11.

(11)min
∑

i,j

L∑

l=1
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∫ 2π

0
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dω

dωe

〉

ωe,l

dµ

∣∣∣∣∣

2

(12a)
∫ ∫

Ẽ(ω,µ)dωdµ =
1

16
Ĥ2
s

(12b)
∫ ∫

Ẽ(ω,µ) sinµ dωdµ = d̂

(12c)
∫ ∫

Ẽ(ω,µ) cosµ dωdµ = ĉ
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ERA5 database
Atmospheric reanalyses provide estimations of coherent records of global air-sea-land circulation72–74. Focus-
ing on sea surface conditions, the spatio-temporal development of ocean wave systems can be described by the 
energy balance equation75–78. Specifically, using third-generation spectral wave models, the time- and position-
dependent wave spectrum is computed by integration of the energy balance equation. In addition, observations 
of wind and waves are assimilated. The ERA5 database12,48 is the result of this type of modelling, and ECMWF 
(European Centre of Medium-Range Weather Forecasts) has made the reanalysis freely available through EU 
funding79. In the database, hourly ocean wave data on single levels is available on a regular latitude-longitude 
grid at 0.5◦ × 0.5◦ resolution, and interpolation to the exact ship position is made accordingly80.

Data availability
The dataset from R/V Gunnerus is not publicly available due to an agreement between NTNU and Rolls-Royce 
Marine but is available from the authors on reasonable request.
The in-service data that supports the findings of the hybrid method is available from DNV but restrictions apply 
to the availability of this data, which was used under license for the current study, and so is not publicly available. 
Data is however available from the authors upon reasonable request and with permission of DNV.
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