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Significance

We report a significant advance 
to one of the most important 
problems in astrobiology—the 
development of a simple, 
reliable, and practical method for 
determining the biogenicity of 
organic materials in planetary 
samples, both on other worlds 
and for the earliest traces of life 
on Earth. We have developed a 
robust method that combines 
pyrolysis GC-MS measurements 
of a wide variety of terrestrial 
and extraterrestrial 
carbonaceous materials with 
machine-learning-based 
classification to achieve ~90% 
accuracy in the differentiation 
between samples of abiotic 
origins vs. biotic specimens, 
including highly-degraded, 
ancient, biologically-derived 
samples. Such discrimination 
points to underlying “rules of 
biochemistry” that reflect the 
Darwinian imperative of 
biomolecular selection for 
function.
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The search for definitive biosignatures—unambiguous markers of past or present life—is 
a central goal of paleobiology and astrobiology. We used pyrolysis–gas chromatogra-
phy coupled to mass spectrometry to analyze chemically disparate samples, including 
living cells, geologically processed fossil organic material, carbon-rich meteorites, and 
laboratory-synthesized organic compounds and mixtures. Data from each sample were 
employed as training and test subsets for machine-learning methods, which resulted in 
a model that can identify the biogenicity of both contemporary and ancient geologically 
processed samples with ~90% accuracy. These machine-learning methods do not rely 
on precise compound identification: Rather, the relational aspects of chromatographic 
and mass peaks provide the needed information, which underscores this method’s utility 
for detecting alien biology.

biosignatures | organic chemistry | machine learning | taphonomy | carbonaceous meteorites

Is there something fundamentally different about the chemistry of life compared to the 
chemistry of the inanimate world? Are there “chemical rules of life” that influence the 
diversity and distribution of biomolecules? Can we deduce those rules and use them to 
guide our efforts to model life’s origins or to detect subtle signs of life on other worlds? 
Here, we report research predicated on the hypothesis that deeply rooted aspects of bio­
chemistry differ fundamentally from abiotic chemistry. Unlike molecules in nonliving 
systems, life’s organic molecular building blocks have been selected for their function, 
including their ability to store and replicate information, efficiently gather energy and 
material from the environment, build and maintain their own structures, control their 
environments, and more (1, 2). Synthesizing such biomolecules requires energy and infor­
mation—precious commodities in a competitive Darwinian world. The diversity and 
distribution of organic molecules in living systems are expected to be different (though 
perhaps subtly so) from organic molecular suites produced by abiotic processes. The 
evolutionary selection for function should lead to different frequency distributions of biotic 
molecules compared to what emerges from purely abiotic processes in which such entailed 
processes do not arise or operate.

This phenomenon is already evident: The sets of molecules found in carbonaceous 
meteorites, prebiotic simulation experiments, organic geopolymers (e.g., coal, oil, kero­
gen), and organisms themselves can all be distinguished in various ways, for example, via 
type, carbon isotope composition, and/or chirality of components such as amino acids 
(3). In terms of thermodynamics, the efficient coupling of physical processes to the per­
formance of work and energy dissipation, which also results in the construction of com­
pounds that spontaneously self-assemble to perform the same function, likely requires 
some structural cohesion, e.g., the formation of a manifold (like a steam or combustion 
engine, or a cell) that concertedly focuses the work in question (4). These coupling pro­
cesses connect planetary energy flow to the organic molecules it produces. Consequently, 
the resulting molecules retain information about the processes that made them.

Which suites of molecules enable open-ended evolution? Terrestrial biology has evolved 
several ways to couple work and system-produced structure, resulting in recognizable core 
cellular motifs, for example chemiosmosis coupled to ATP production (5), which is further 
coupled to cytosolic energy production. Such cellular reaction networks may thus be 
indicators of life in general, in that cells are the fundamental organizing aspects of physical 
material that enable work to be done in a heritable manner. Biological systems on other 
worlds might not produce identical, or even broadly similar, suites of organic molecules 
to those found in modern terrestrial biology. Rather, we suggest that even alien biochemical 
systems that might differ significantly from Earth’s biochemistry would still display molec­
ular frequency distributions that are distinct from those of background abiotic synthetic 
processes (6). For example, it is plausible that life on any world will display a systematic 
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skew toward producing greater quantities of a few highly func­
tional compounds compared to abiotic synthesis, which would 
represent a potentially universal feature of living systems generated 
by systemic feedback catalysis. We suggest that these types of dif­
ferences between biotic and abiotic molecular suites can be 
detected and quantified using our techniques.

We used a robust, space flight-ready analytical method—pyrol­
ysis gas chromatography coupled to electron impact ionization 
mass spectrometry (Pyr-GC-EI-MS)—for molecular analyses of 
varied complex organic mixtures (complex in terms of the number 
of components in the mixture, not necessarily in terms of the 
structural complexity of the individual molecules). We couple 
these measurements with mathematical modeling and machine 
learning to characterize the distribution of organic molecular mix­
tures from other worlds or early Earth, including molecules from 
carbonaceous meteorites, organic residues from paleozoic fossils, 
or carbon-bearing black cherts from Earth’s Archean Eon. This 
approach demonstrates robust, reproducible, and unambiguous 
differences in the distributions of organic molecules derived from 
living vs. nonliving systems. At a deeper level, we speculate that 
the evolution of biological mechanisms to manufacture functional 
molecules may be fundamentally different from undirected syn­
thesis in abiotic systems—a motivation for developing biosigna­
tures that might reveal underlying rules of biochemistry.

The Nature of Biosignatures

A biosignature in the context of astrobiology is any substance or 
phenomenon that provides diagnostic evidence of past or present 
life (7–12). Biosignatures can range across both temporal and spatial 
reference frames and may take the form of individual (bio)markers 
or relational aspects among multiple measurable phenomena. Of 
special importance in the context of the search for life on other 
worlds is the concept of “agnostic biosignatures,” which are attrib­
utes of a system that point to a biosphere, but that are not idiosyn­
cratic properties resulting from the biochemistry of familiar 
terrestrial organisms (8, 13).

Various biosignatures have been proposed (11). Easily recog­
nized biosignatures include body fossils and other biologically 
deposited objects at scales from microns to kilometers, such as 
shells, teeth, and bones, but also microbial mats, tracks and trails, 
colonial structures such as stromatolites and reefs, concretions, 
and cells preserved in fine-grained rock (14, 15). Chemical and 
isotopic biosignatures have been invoked in numerous terrestrial 
samples, with distinctive distributions of carbon, nitrogen, sulfur, 
and/or iron isotopes receiving special attention (e.g., refs. 16 and 
17). In this context, molecular biosignatures hold special promise. 
In some instances, prior researchers have proposed the presence 
of a specific molecule or group of molecules as a plausible biosig­
nature (18); for example, specific genetic polymers such as DNA 
(19), lipids (20), or certain collections of homochiral molecules 
(21). Similarly, various atmospheric molecules that purportedly 
result mainly from metabolic processes have also been cited as 
possible biosignatures (22, 23).

A complementary strategy for identifying agnostic biosignatures 
is to examine collective attributes of multiple sample components, 
including minerals and molecules. For example, distributions of 
minerals on Earth, as represented by network analysis (24) and 
statistical analyses of mineral diversity and distribution (25), have 
been suggested to reflect the influence of the biosphere. Likewise, 
Wong and coworkers (26) have applied network analysis to atmos­
pheric reaction networks to identify patterns that differentiate 
living and nonliving worlds. Recent efforts to identify collective 
molecular biosignatures have also focused on the distribution of 

monomer abundances (27), the topologies of organic molecular 
reaction networks (28), and relative distributions and abundances 
of unassigned features in complex mass spectra (29). Cronin and 
colleagues have also recently explored the molecular complexity 
of sample components as a potential biosignature (30, 31). We 
here propose a complementary strategy based on machine-learning 
analysis of the higher-dimensional relationships in suites of mol­
ecules as analyzed by Pyr-GC-EI-MS, which is currently deployed 
as an analytical technique on various Solar System exploration 
missions (32–38).

Abiotic/Biotic Discrimination

Our method for molecular biosignature detection involved three 
steps:

(1) � Collection of 134 diverse carbon-bearing samples (SI Appendix, 
Table S1). Abiotic samples include natural molecular suites 
from carbonaceous meteorites, as well as laboratory synthe­
sis experiments and a number of pure synthetic chemicals, 
which serve as an important baseline of molecular complexity. 
Modern biotic samples were obtained from varied organisms, 
and a range of taphonomic samples such as fossil leaves and 
wood, fossil fuels (coal, petroleum, asphaltum, and oil shales), 
and more ancient carbon-bearing sediments.

(2) � Subjecting each sample to Pyr-GC-EI-MS (SI  Appendix 
and Analytical Methods). Pyr-GC-EI-MS has already been 
adapted for spaceflight missions (32–38) and enables rapid 
organic sample introduction from mineral matrices directly to 
a GC instrument with little to no sample preparation. Because 
pyrolysis products rapidly combine to generate compounds not 
present in the original sample, the datasets generated are highly 
complex and do not map 1:1 to the original components of the 
sample. This aspect of Pyr-GC-EI-MS analysis motivates the 
machine learning approach that we employ below.

(3) � Training random forest machine-learning models using three-
dimensional chromatographic retention time/mass to charge 
ratio/intensity data from each sample analysis (SI Appendix 
and Machine-Learning Methods). In this work, chroma­
tographic retention time is also called scan number, as we 
measure when a particular feature arises in the analysis. In this 
Pyr-GC-EI-MS workflow, volatile compounds generated by 
pyrolysis are separated by GC and further subjected to EI-MS, 
which provides significant structural information based on 
fragmentation patterns (39), especially when these data can 
be compared with EI-MS libraries (40).

After evaluating Pyr-GC-EI-MS features in all 134 samples, the 
random forest model correctly predicted the biogenicity of samples 
with ~90% accuracy. Thus, the generalized testing error using 
nested cross-validation (CV) was 10.4% with an area under the 
receiver operating characteristic curve of 91.2%.

The 20 most important features were selected based on the Gini 
splitting index for Principal Component Analysis (PCA) plots—
an index that provides a measure of variance that highlights how 
often a randomly chosen element of a decision tree is misclassified 
(41). The highest scoring features on the Gini splitting index were 
the variables most relevant for predicting discrimination. While 
the influence of the selected set of attributes has yet to be fully 
elucidated, the extent to which molecular distributions in abiotic 
and biotic samples are demonstrably different is evident from 
summed three-dimensional representations of the data from sub­
sets of samples, for example, carbonaceous meteorite samples vs. 
microbial communities (Fig. 1 A and B, respectively). Fig. 2 shows 
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the PCA plot of the training data with the scores of the test data 
projected into the same PCA space as the scores of the training 
data. The scales of the test data were obtained from the mean and 
SD of the training data. The first two principal components 
explain ~ 54.9% of the variation in the training data (Fig. 2).

Discussion

We analyzed collective molecular distributions from varied abiotic, 
biological, and taphonomically altered biological mixtures of 
organic molecules to demonstrate clear differences between suites 
of organic molecules synthesized by life vs. those produced abiot­
ically. Importantly, we find that signs of biogenicity are preserved 
despite extensive organic maturation, in some instances over peri­
ods of hundreds of millions of years.

What molecular characteristics might contribute to the observed 
differences among abiotic, modern living, and taphonomically 
altered specimens? We explored the products of a variety of abiotic 
reactions that combine the diversity-generating properties of sugar 
degradation (e.g., the formose reaction) with the diversity- 
generating propensity of amines in combination with carbohy­
drates, such as Maillard reactions of diverse amino acids with 
glucose (42). Organic molecular suites derived from carbonaceous 
meteorites have been suggested to be derived from formose-like 
chemistry (43). Formose and Maillard reactions are known to 
produce significant amounts of diverse polar hetero-atom-containing 
products such as pyrazines, furans, and diketopiperazines (44)—
compounds that are not typically well preserved in the geological 
record (45). Their detection can thus be considered as a marker 
for the recent abundance of sugars and amines, which could  
be derived from formose-like chemistry or from biological 
processes.

Biochemistry also encompasses a wide variety of disparate 
chemistries in contemporary organisms (46). Regardless of the 
diversity of chemical processes that might enable life, the abundant 
coexistence of water-soluble and water-insoluble organic species 
appears to be one of life’s hallmarks. A significant fraction by dry 
weight of most terrestrial organisms is composed of sugar-derived 
compounds, including cellulose, glycogen, chitin, and ribose and 
deoxyribose in nucleic acids (47). These species produce charac­
teristic pyrolysis products (including furans and pyrans), plus a 
peptidic fraction that produces other distinctive pyrolysis products 
(including pyrazines and Maillard-like cross products with the 

sugar-derived pyrolysis product pool). Accordingly, we suggest 
that the coexistence of molecules of diverse polarity in detectable 
quantities points to the existence of recent life or more generally 
the functional structural organization of cells.

Most preserved biological geocarbon is composed of break­
down products of cell membrane and cell wall material, for 
example, in the form of petroleum and coal (48). Petroleum is 
generally thought to derive from thermal degradation of type I 
kerogen that arises from the algal biopolymers. Coal is mostly 
derived from the ligno-cellulosic biopolymers of plant vascular 
tissue; high-volatile bituminous coals have been transformed 
during diagenesis such that no molecular signatures of either 
lignin or cellulose remain. These degraded molecular suites tend 
to be derived from materials of lower water solubility—mole­
cules that point to cellular origins.

The systematic differences between abiotic and biologically 
derived materials suggest possible underlying reasons for the 
robust discriminators we find using Pyr-GC-EI-MS data. Chr­
omatographic retention time on any given solid GC support can 
be related via a Kovats index, which helps to normalize compound 
volatility and polarity with retention time (49). Thus, material 
derived from cells will have a nonpolar component derived from 
cell membrane/wall material that elutes late chromatographically, 
as well as a polar cytoplasmic component that elutes early (depend­
ing on the chromatographic matrix). Samples exhibiting both 
types of chromatographically-behaving materials are typically 
derived from cells, which produce both polar and nonpolar com­
pounds in a coordinated manner. In contrast, abiotic diversity- 
generating reactions that produce both polar and nonpolar com­
pounds do so in an uncoordinated fashion such that there will be 
a skewed balance between the two types of materials. It is unlikely 
that both polar and nonpolar compounds would occur in com­
parable ratios because no known abiotic processes produce bal­
anced amounts of nonpolar products in the absence of polar 
organics. As an example, while nonpolar, heteroatom-poor mate­
rial is a common convergence point for aged organic material from 
meteorites, such material is easily distinguishable from aged bio­
logical deposits such as coal and petroleum because these types of 
materials preserve observable polar molecular irregularities, such 
as even-odd disparities in fatty acids and other hydrocarbons. 
Even–odd disparities in alkanes and fatty acids tend to disappear 
as oil matures through diagenetic “smoothing.” Consequently, 
even–odd characteristics provide a measure of an oil sample’s age.

Fig. 1. Combined three-dimensional Pyr-GC-EI-MS data for complex organic mixtures in carbonaceous meteorites (A) and microbial samples (B). These graphs 
display peak intensities (vertical scale, normalized to the highest peak intensity) for 3,000 elution time bins (right-hand scale) and their mass spectra over 150 
m/z bins (left-hand scale). Green circles with vertical “stems” do not represent intensity values, but rather features the machine-learning algorithm recognizes 
as important discriminants among samples.
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Implications

Prospects for Analyzing Samples of Uncertain Biogenicity. Our 
method can potentially be used to resolve the biogenicity of data 
already in hand. An important example is the 3.5 Ga Apex chert 
from the Pilbara Craton in Western Australia, whose purported 
biogenicity has evoked significant debate (50, 51). In addition, 
samples measured by the Pyr-GC-MS instruments on the Mars 
Viking lander and the Curiosity rover (34, 43, 52) deserve new 

evaluation. While our method must first be calibrated to the 
specific thermal ramping and maximum temperature conditions 
of those instruments, these and other machine-learning methods 
hold promise for the evaluation of the biogenicity of samples of 
extraterrestrial provenance before they are returned to Earth (53). 
Of special interest in this regard is the possible role of environmental 
chemicals, such as perchlorate on Mars (54), as well as radiation-
altered molecular suites (55), which might significantly influence 
the properties of the resulting molecular mixtures.

Fig. 2. Grouping of samples according to the machine-learning methods explored here. Biologically derived samples (green/blue) are distinguished from abiotic 
samples (orange). Taphonomically altered biological samples (blue) lie along a trend distinct from that of contemporary biological samples (green).
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Rules of Biochemistry. The identified systematic differences among 
the molecular distributions in abiotic and biotic samples suggest 
that biochemistry is intrinsically different from abiotic organic 
chemistry. Our working hypothesis is that biomolecules, unlike 
those in abiotic molecular suites (for example in a carbonaceous 
meteorite), are selected for function. That difference results in 
biomolecules that are more limited in number, and perhaps in 
some instances more complex in structure (30, 31), than organic 
molecules in abiotic suites. A deeper examination of the specific 
constellation of attributes identified in this study is a next step in 
testing this hypothesis. Despite the observation that taphonomic 
processes inevitably lead to loss of information (56–58), our 
method is able to distinguish ancient, geologically processed 
biotic samples from abiotic organics, while possibly providing a 
qualitative metric for degree of taphonomic degradation. In this 
regard, it is important to note that abiotic molecular systems are not 
intrinsically simple. For example, the suites of molecules extracted 
from the Murchison carbonaceous chondrite are remarkably 
complex in both their structural diversity and numerosity (59). 
There likely exist aspects of molecular complexity that differentiate 
living and nonliving systems, as explored by Cronin and coworkers 
(30, 31). However, the diagnostic high-dimensional differences 
between abiotic and biotic molecular distributions we document 
here do not lie in the complexity or diversity of individual analytes 
but rather in their relational properties.

Our Proposed Biosignature is Agnostic. An important finding of 
this study is that abiotic, living, and taphonomic suites of organic 
molecules display well-defined clusters in their high-dimensional 
space, as illustrated in Fig. 2. At the same time, large “volumes” 
of this attribute space are unpopulated by either abiotic suites or 
terrestrial life. This topology suggests the possibility that an alien 
biochemistry might be recognized by forming its own attribute 
cluster in a different region of Fig. 2—a cluster that reflects the 
essential role in selection for function in biotic systems, albeit with 
potentially very different suites of functional molecules. Abiotic 
systems tend to cluster in a very narrow region of this phase space, 
which could in principle allow for easy identification of anomalous 
signals that are dissimilar to abiotic geochemical systems or known 
terrestrial life.

Methods

Sample Characterization. We assembled 134 carbon-bearing samples from 
varied abiotic and biotic, and sometimes ambiguous, sources. A list of these sam-
ples and their attributes is provided in SI Appendix, Table S1.

Analytical Methods. Pyr-GC-EI-MS analyses were performed with a CDS 1000 
pyroprobe (CDS Analytical, Inc., Oxford, PA) interfaced with a Hewlett-Packard 
6890 series gas chromatograph interfaced with an Agilent 5972 quadrupole mass 
spectrometer. An Agilent 30 M 5% phenyl polymethylsiloxane column was used 
for chromatographic separation. The GC oven temperature was programmed to 
hold at 50 °C for 1 min, then increase from 50 °C to 300 °C at a rate of 5 °C min−1, 
and then to remain at 300 °C for 15 min. Helium (UHP 5.5 grade) was used as 
the carrier gas, operating in constant flow mode. Approximately 1 mg samples 
were loaded into preashed quartz tubes (precombusted under air at 550 °C for 
3 h), which were then inserted into the platinum filament-coil of the pyroprobe. 
Subsequently, the pyroprobe was inserted into the helium-filled interface and 
flash pyrolyzed (ramp rate 500 °C s−1) to 610 °C and held for 10 s. The pyrolysates 
were immediately swept onto the GC column by the He gas and analyzed. The 
source was operated in electron ionization (EI) mode with 70 eV ionization energy 
at 250 °C. The mass selective detector scan rate was 0.80 s/decade over a range 
of m/z 50 to 700, with an interscan delay of 0.20 s.

In many Pyr-GC-EI-MS applications, the data output is compared to EI-MS 
libraries to identify specific molecular compounds. Available EI-MS libraries 

may comprehensively cover the compounds present in common terrestrial sam-
ples seeking to find “analytes of interest” (e.g., drugs, steroids, and pesticides). 
Estimates of organic isomerism, however, predict that the majority of possible 
stable low molecular weight organics are “as yet unknown or unsynthesized 
compounds” (60, 61). Using our methodology, precise compound identification 
is useful but not necessary: Rather, relational aspects of chromatographic and 
mass peaks are of interest. This approach underscores this method’s utility for 
detecting alien biology, which also aligns with earlier concepts of relational 
biology (32, 62).

We did not collect MS data for the first 2 min after injection to avoid over-
loading the detector with small volatiles such as CO2 and H2O. In addition, since 
many of the samples were curated independently and displayed signals from C16 
(palmitic) and C18 (stearic) fatty acids which are common components of finger-
prints and “slip agents” added to plastic sample bags to keep them from sticking 
together, we excluded the regions of the chromatograms after the region where 
these common contaminants elute. Note, however, there is still a contribution to 
the examined chromatographic complexity from derivatives of such compounds 
(for example, straight and branched long-chain alkanes, alkenes, and rearranged 
aldehyde and ketone derivatives of these species) that contribute to the precutoff 
region’s molecular complexity. We found that there was little signal beyond m/z 
200; thus, the region considered in the computational methods was limited from 
2 to 35 min and m/z 50 to 200. Each sample was reduced to a two-dimensional 
matrix with 489,240 elements representing signal intensities as a function of 
mass and retention time, although many of the intensity values were zero (Fig. 1).

Machine-Learning Analysis. We trained machine-learning models using three-
dimensional chromatographic retention time/mass-to-charge ratio/intensity data 
from each sample. The data generated and analyzed in this manuscript can be 
found on the Open Science Framework repository titled “A robust molecular 
biosignature based on machine learning” (https://doi.org/10.17605/OSF.IO/
EMBH8). The code for the paper can be found at https://github.com/ghystad/
Machine_learning_and_preprocessing_pyr_GSMS_data/tree/master. All data, 
code, and materials used in the analysis are available to any researcher for pur-
poses of reproducing or extending the analysis. Licenses for the data and code 
usage and relevant attribution information will be updated on the respective 
repositories.

Here, peak intensity was normalized on a scale from 0 to 1, while time and 
mass/charge were analyzed as collected in 3,240 scan time steps (with each scan 
representing 3 s) and one m/z increments over the range from m/z 50 to 200, 
respectively. Our machine-learning strategy allows identification of diagnostic 
sets of attributes of retention time and m/z values that highlight differences 
between abiotic and biotic samples. Our nested CV methods overcome the con-
cern of overfitting to the training data. We also plan to improve upon the gen-
eralization of our model in future work by focusing on Monte Carlo simulations, 
adding more samples to the training and test sets, and monitoring the change 
in test and training errors.

Preprocessing. The 134 analyzed samples included 59 of biotic origin and 75 of 
abiotic origin. Each sample was represented as a two-dimensional matrix, where 
the rows and columns represent the scan numbers and m/z ratios, respectively, 
and the entries are the corresponding intensities. For each sample and m/z value, 
we performed the preprocessing steps in the chromatographic direction, stabi-
lized the variance of the intensity values by taking the square root, smoothed the 
values by taking the moving average of its current and its immediate five nearest 
observations on each side, and subtracted the baseline, where the baseline esti-
mation was based on the Statistics-sensitive Non-linear Iterative Peak-clipping 
algorithm (63), using the R-library, MALDIquant (64).

Intensity values were normalized via min-max normalization (65), followed 
by peak detection in the chromatographic direction for each m/z ratio. Peaks 
were detected as local maxima above 4× signal to noise ratio, where the 
noise was estimated by calculating the median absolute deviation using the 
R-library, MALDIquant (64). After eliminating near-zero variance and strongly 
correlated features using the R-library caret (66), the data were reduced to 
8,149 features, which are the detected combination of scan number and m/z 
values. These 134 Pyr-GC-MS data files are available at https://osf.io/emb-
h8/?view_only=89695d38b8484af28dae80ce4de3b33c (DOI: 10.17605/
OSF.IO/EMBH8).
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Model Choice. Of the various classification methods we explored, the random 
forest method quickly yielded the best results in terms of accurately distinguish-
ing biotic from abiotic samples and thus was used to train the final model. The 
random forest method is an ensemble classification method that constructs a 
collection of decorrelated decision trees (67). There may be better methods and 
we are exploring the relative benefits of other methods for future publications. 
We used the random forest model from the R-library mlr3 (68).

Model Validation. We used two validation strategies for the trained machine-
learning model. First, the data were split into a training set of 95 samples and a 
test set of 39 samples using stratified random sampling, where the model was 
trained with parameter tuning on the training set using 10-fold CV. The final 
trained random forest model was subsequently applied to predict the biotic or 
abiotic origin of the test data. Second, we used nested CV (69) on all 134 sam-
ples to gain an unbiased estimate of the predictive performance of the machine 
learning method. The nested CV used 10-fold CV in the inner loop and five-fold 
CV in the outer loop. The algorithm was terminated after 20 evaluations using 
random search.

Data, Materials, and Software Availability. The data generated and analyzed in 
this manuscript [Pyr-GC-MS data files (134 files)] can be found on the Open Science 
Framework repository titled “A robust molecular biosignature based on machine 
learning” (70). The code for the paper can be found at  https://github.com/ghystad/

Machine_learning_and_preprocessing_pyr_GSMS_data/tree/master (71). All data, 
code, and materials used in the analysis are available to any researcher for purposes 
of reproducing or extending the analysis. Licenses for the data and code usage 
and relevant attribution information are available on the respective repositories.
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