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Significance

Forest ecosystems have the 
potential to provide crucial 
carbon sinks contributing to 
national carbon neutrality 
initiatives. However, the policy 
relevance of existing evaluations 
on the biophysical potential of 
forest carbon sink was greatly 
limited because they ignored 
near-term to mid-term decadal 
carbon uptake dynamics and the 
suitable forest species for 
forestation. This study addressed 
these issues by answering the 
three key questions of potential 
forestation in China: where, with 
what species, and when to 
afforest. Progressive forestation 
of an additional 78 Mha with the 
right species up to the 2060s will 
provide a persistent biophysical 
carbon sink potential, effectively 
supporting China’s carbon 
neutrality strategy. Our research 
hence provides an example of 
building a forestation roadmap 
to support climate mitigation 
policies.
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Previous evaluations on the biophysical potential of forest carbon sink have focused on 
forestation area distribution and the associated carbon stock for equilibrium-state for-
ests after centuries-long growth. These approaches, however, have limited relevance for 
climate policies because they ignore the near-term and mid-term decadal carbon uptake 
dynamics and suitable forest species for forestation. This study developed a forestation 
roadmap to support China’s “carbon neutrality” objective in 2060 by addressing three 
key questions of forestation: where, with what forest species, and when to afforest. The 
results yielded a high-confidence potential forestation map for China at a resolution 
of 1 km with the identified optimal native forest type or species. Our analysis revealed 
an additional 78 Mha suitable for forestation up to the 2060s, a 43% increase on the 
current forest area. Selecting forest species for maximal carbon stock in addition to max-
imizing local environmental suitability enabled almost a doubling in forest carbon sink 
potential. Progressive forestation of this area can fix a considerable amount of CO2 and 
compensate for the carbon sink decline in existing forests. Altogether, the entire forest 
ecosystem can support a persistent biophysical carbon sink potential of 0.4 Pg C y−1 by 
2060 and 0.2 Pg C y−1 by 2100, offsetting 7 to 14% of the current national fossil CO2 
emissions. Our research provides an example of building a forestation roadmap toward 
a sustained forest carbon sink, which creates a critical time window for the emission 
cuts required by the goal of carbon neutrality.

carbon sequestration | progressive forestation | carbon neutrality

China is committed to reaching “carbon neutrality,” i.e., net-zero carbon emissions by 
2060 (1). Given that it is currently the world’s largest carbon dioxide (CO2) emitter, 
safeguarding the success of China’s ambitious climate goal is crucial for global efforts to 
slow down and ultimately halt the atmospheric CO2 increase (2, 3). Achieving this goal, 
however, requires extensive efforts on both emission reduction and atmospheric CO2 
removal (4–6). Forestation has a large potential to absorb atmospheric CO2 by fixing it 
in plant biomass and soil organic matter (7–9), and hence, it is a key component in the 
climate mitigation strategies of many nations (10).

Expanding forest area and enhancing the forest carbon sink has been identified as an 
important strategy in the national climate mitigation plans of China (9, 11–13), with 
several milestone forest cover targets having been announced by the government (14). 
However, the spatial distribution of areas climatically suitable for forestation in China is 
uncertain (9), raising feasibility concerns about the government targets and milestones. 
Recent research progresses have provided methods for enhancing our confidence in quan­
tifying potential forestation opportunities using a range of approaches, including ecozoning 
(15), machine learning–based prediction (8), and simulations by dynamic global vegetation 
models (16). These advances allowed us to integrate multiple approaches in a comprehen­
sive assessment of forestation opportunities in China—to address the primary question 
of where to afforest when the country moves toward implementation of its carbon-neutrality 
strategy.

Careful and effective planning of the carbon-neutrality strategy requires not only infor­
mation on the size of forest carbon sink potential but also on its temporal evolution, which 
calls for research into the questions of with what and when to afforest. These issues are 
no less important than quantifying the area potentially suitable for forestation but have 
been largely ignored in previous analyses (7, 8, 17). Forestation projects with maladapted 
species have been reported to risk a low survival rate and have caused soil water depletion, 
which in turn threatens the stability of forest carbon stock (18), highlighting the need to 
select appropriate forest types or forest species in forestation projects (18, 19). Moreover, 
forestation species selection needs to further account for the differences in carbon seques­
tration capacities of different forest species (20), but to the best of our knowledge, forest 
species distribution maximizing carbon sequestration is not yet available over China. At 
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a regional or national scale, forest carbon sequestration is also 
highly influenced by forest age structure (21, 22), which further 
depends on the temporal planning of nationwide forestation (i.e., 
when to afforest). However, the temporal planning of the forest­
ation area has been unclear in China, preventing a practical and 
realistic evaluation of future carbon sink potential in the 
country.

This study aimed to develop an illustrative roadmap for 
China's forestation strategy to support its carbon neutrality goal 
by addressing the three key questions described above: “where 
to afforest,” “with what forest species to afforest,” and “when to 
afforest” (Materials and Methods). Here, we use “afforest(ation)” 
to broadly refer to the fact of forest expansion, including both 
afforestation (i.e., establishing forest in areas that have not been 
forested before) and/or reforestation (i.e., restoring forest in areas 
that used to be forested) by either active human management or 
natural forest restoration. The exact way to implement the broad, 
illustrative forestation roadmap outlined here needs to incorpo­
rate local context. To answer the question of “where to afforest,” 
we generated a potential forestation map at a high resolution of 
1 km across China through harmonizing different potential for­
est distributions. To answer the question “with what forest spe­
cies to afforest,” we combined species distribution and forest 
growth models to search for optimal forest species which are 
compatible with the local environment and at the same time 
provide maximum biomass stock. Finally, to address the question 
of “when to afforest,” we integrated government milestone tar­
gets and the climatically determined potential forestation area 
to develop a practical and progressive forestation scenario 
(SI Appendix, Fig. S1).

Results along these three axes were then incorporated into an 
empirical modeling framework of forest biomass growth, which 
accounts for the effects of forest type, forest age, climate, and CO2 
fertilization, to evaluate the biophysical potential of China’s forest 
biomass carbon sink until the end of this century. Note that the 
biophysical potential reported here refers to the accumulation of 
carbon in forest ecosystems under given climate, topographic, and 
soil edaphic conditions and atmospheric CO2 concentration without 
a full consideration of the associated ecological, hydrological, or 
socioeconomic impacts of the proposed afforestation plan. We 
acknowledge that a significant extension of forested land, as proposed 
in this study, will have environmental (23, 24) and socioeconomic 
impacts (25, 26). Some of these impacts can be positive (e.g., surface 
cooling) (27), but more importantly, some can be unintendedly 
negative, such as declines in runoff potentially affecting water avail­
ability for human society (23), or reductions in household income 
(25). Local-scale implementation of the proposed afforestation 
roadmap while avoiding or mitigating potential negative impacts 
will probably lead to a carbon sink lower than its biophysical poten­
tial, the quantification of which on a national level is our key focus.

Results

Where to Afforest: Mapping the Potential Forestation Opportunity. 
Potential forest distribution represents a hypothetical description of 
where forests would grow under given climate conditions and with 
minimal human intervention. We integrated three independent 
approaches to enhance the confidence in potential forest distribution 
mapping (Materials and Methods). The three methods produced 
similar spatial patterns (Fig. 1 B–D) of potential forestation land 
in China, with the main locations being in southern, southwestern, 
and northeastern China, along with the Tianshan Mountains region 
in northwestern China, where annual precipitation typically exceeds 
400 mm. The smallest total potential forest area was predicted by 

the random forest modeling approach (386 Mha), with the biome 
mapping approach being the next largest (458 Mha). The largest area 
(482 Mha) was given by the ORCHIDEE model. We considered the 
potential forest distribution with a high level of confidence (high-
confidence) to be the areas agreed upon by all three approaches, which 
resulted in 338 Mha of potential area (Fig. 1A), lower than any one 
of the individual approaches (Fig. 1E).

The environmental sustainability of forestation projects 
demands that social objectives, other than carbon sequestration, 
such as food safety and human settlement, should not be neglected. 
We therefore defined “the potential forestation opportunity” as 
areas of high-confidence potential forest distribution not collo­
cated with existing forest, agricultural land, or human settlements. 
The spatial distributions of existing forest, cropland, and urban land 
were determined from seven different land-cover datasets and 
defined as places where more than half of the datasets agreed on the 
land-cover mapping (Materials and Methods). The high-resolution 
(1-km) map of potential forestation opportunity obtained from this 
process (Fig. 1A) reveals that about 8.1% of the terrestrial area of 
China, or 78 Mha, was available for future forestation. The poten­
tial forestation areas were predominantly located in the South of 
China, especially southwestern China, and parts of northwestern 
and central China. Large parts of northeastern China, the North 
China Plain, and the Sichuan Basin show great potential for forest 
distribution but are mostly occupied by agricultural land, preclud­
ing their use for forestation (Fig. 1A).

The majority (79%) of the high-confidence potential forest­
ation areas (Fig. 1A) already have partial tree cover but have not 
yet reached a forest state (SI Appendix, Fig. S3A). This includes 
open forest or shrub land, lands with mixed tree cover and grass­
land, as well as lands that are being or planned to be afforested 
(e.g., lands afforested but not yet reaching a forest state, har­
vested forest area, burned forest area by wildfire, nursery land, 
lands suitable for plantation but not yet forested). These lands 
are often prioritized in forestry practices or forestation plans 
given their suitable environmental conditions for forestation 
(28, 29). The successful large-scale forest expansion that China 
has achieved on these regions over the past decades also confirms 
their suitability for sustainable afforestation (11, 18). In con­
trast, the dominant present land-cover type (66%) in the 
medium-confidence potential forestation areas is grassland 
(SI Appendix, Fig. S3B), while the low-confidence potential 
forestation areas are further dominated by grassland (78%) and 
by bare soil (15%) (SI Appendix, Fig. S3C). These land-cover 
types hold relatively poorer climatic or soil conditions to support 
forest growth, hence successful afforestation on these lands 
requires high economic, labor, water, or nutrient inputs. More­
over, parts of the medium- and low-confidence potential forest­
ation areas are located in arid and semiarid regions (Fig. 1A), 
where cases of afforestation failure have been reported due to 
depletion of groundwater or overreliance on irrigation (18), 
implying a high chance that forests established in these areas 
may not sustain till the end of this century. Based on these 
results, low- and medium-confidence potential forestation areas 
in Fig. 1A are omitted in subsequent analysis.

The potential forestation area reported above has an uncertainty 
of 61 to 98 Mha (as measured by the lower and upper quantiles) 
(Fig. 1F), obtained from 48 maps of potential forestation oppor­
tunities by combining the high-confidence potential forest distri­
butions with various existing forest maps (SI Appendix, Fig. S4) 
and cropland and urban land maps (SI Appendix, Fig. S5). The 
major source of uncertainty arises from the inconsistent definitions 
of “forest” and “cropland” applied in different datasets (SI Appendix, 
Table S3). This result emphasizes that using consistent definitions 
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for land-cover types in both field inventory and satellite-based 
land-cover mapping will help increase the accuracy of land use 
dynamics monitoring and confidence in land-management 
policymaking.

With What to Afforest: Forest Type Selection to Maximize Local 
Adaptation and Carbon Uptake. Past experience suggests that 
establishing tree species which are ecologically adapted to the local 
environment is crucial to ensuring the success of forestation projects 
(18). We applied a widely used species distribution model (i.e., the 
Maximum Entropy model or MaxEnt), which has been tested 
against national forest inventory data, to identify a number of major 
forest types (by dominant tree species) that are suitable for each 1-km 
potential forestation pixel in China (Materials and Methods). For the 
convenience of analyses, forest types with small areas were integrated 
into those which have closely related dominant species and/or share 
similar vegetation characteristics (22). The results revealed diverse 
environmental tolerances for different forest types (Fig. 2), with the 
spatial suitability distribution for each of the 15 forest types shown 
in SI Appendix, Fig. S6. At the large scale, the distribution of optimal 

forest types for future forestation basically followed their climatic 
zoning patterns. Temperate forest species, especially coniferous 
ones, were mostly suitable for northern China, whereas subtropical 
and tropical forest species, which were dominated by broad-leaved 
trees and warm conifers, were more apt for southern China. Some 
widely distributed species, such as Betula-Populus, can tolerate the 
diverse range of climatic conditions found across the country and 
are even suitable for the arid or semiarid climate of northwest China 
(SI Appendix, Fig. S6).

For carbon sequestration, maximizing biomass carbon storage 
is an additional consideration to be taken into account when look­
ing for optimal forest types for future forestation. Within each 
pixel, we pared down the list of suitable forest types to the single 
forest type predicted to deliver the highest biomass at the mature 
stage (see Materials and Methods, Fig. 2B). This forestation species 
selection for maximum biomass almost doubles (13.9 Pg C vs. 
8.1 Pg C until 2100) the carbon sequestration capacity compared 
to an alternative scenario (Fig. 2C) in which the forest type with 
the highest habitat suitability was selected, under the same pro­
gressive forestation scenario (Fig. 2D).

Fig. 1. Potential forestation opportunity in China. All maps are based on 1-km spatial resolution data. (A) Combined spatial pattern of the potential forestation 
opportunity (pink), created by harmonizing multiple potential forest distribution datasets: existing forests (green) and cropland and urban land (gray). High-
confidence or medium-confidence forestation indicates places where all three or two of the three potential forest distributions (B–D) agree, while low-confidence 
indicates places where only one map shows potential forest distribution. The blue line is the 400-mm annual precipitation contour. (B–D), Potential forest 
distributions predicted by the random-forest modeling approach (B), potential map from World Resources Institute (C), and the dynamic global vegetation 
model OCHIDEE (D). (E) Areas of potential forests, existing forests, and cropland and urban land derived from multiple datasets (see Materials and Methods and 
SI Appendix, Figs. S4 and S5). (F) The box plot shows the distribution of 48 estimates for the potential forestation opportunity obtained by combining the high-
confidence potential forest map with different existing forest, cropland, and urban land datasets, with the lower and upper box limits indicating the 25th and 
75th percentiles, respectively. The red pentagram represents the high-confidence potential forestation opportunity shown in (A).
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When to Afforest: Progressive Forestation for Sustained Carbon 
Sequestration. The magnitude and temporal patterns of the 
CO2 removal potential of China’s forests are determined by both 
contributions from new forests, which depend on the temporal 
planning of forestation, and those from existing forests, which 
depend on their age structure. We generated an up-to-date forest 
age map of China for 2019 at a high resolution of 1 km using 
the most recently available datasets of forest canopy height and 
inventory-based provincial forest age class information, following 
the approach of Zhang et  al. (31) (see Materials and Methods, 
Fig. 3A). Most of the forests in China are still very young, with 
an average forest age of 41.2 y and 60% of the forests younger 
than 40 y. Young forests are prevalent in southern China, due to 
several major forestation projects since 1998, such as the Grain for 
Green Program (32). The generally young age of China’s existing 
forests suggests that they are likely to continue functioning as a 
carbon sink in the near future. In the next section, we estimate 
the size of that sink.

Future, large-scale forestation across the nation will not be 
achieved overnight. Instead, the forest plans of the Chinese for­
estry departments suggest a gradual and sustained expansion in 
the forest area (SI Appendix, Table S6). The publicly announced 

milestones in the forest area in China fit a linear increasing rela­
tionship with time (Fig. 3B), suggesting a progressive forestation 
strategy. Such a strategy, with a constant forestation rate of 1.8 
Mha y−1, is expected to exhaust the national potential forestation 
area by 2062. This rate is lower than the average forest expansion 
rate of 2.4 Mha y−1 achieved in China from 1994 to 2018 
(Fig. 3B). The fact that the historical changes in national forest 
area show a linear increase over time convinces us that the pro­
gressive forestation scenario in China is consistent with govern­
ment planning and highly plausible, since it has been well 
implemented and adhered to over the past two decades.

Projected Forest Biomass Carbon Sequestration. Empirical 
forest biomass growth models for different forest types (22) 
were combined with the age structure of existing forests and the 
future progressive forestation scenario to estimate biomass carbon 
sequestration until 2100 under different future climate scenarios. 
The newly established forests of 1.8 Mha for each year were 
assumed to be distributed randomly over the available forestation 
space until all potential forestation areas were exhausted in 2062. 
The biomass growth models accounted for the individual effects of 
forest age and climate (22), with the effects of CO2 concentration 

Fig. 2. Dominant forest type of existing forests and their optimal distribution for potential forestation in China. (A) Spatial distribution of the 15 dominant forest 
types from the 2013–2017 China Forest Vegetation Survey project (30). The optimal distribution of forest types for potential forestation in China determined 
through optimizing carbon sequestration (B) or local environmental suitability (C). The biomass carbon storage (D) of the largest biomass forest species vs. the 
highest suitability forest species under the same progressive forestation as in Fig. 3B. Only the effects of forest age were considered here.

http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials


PNAS  2023  Vol. 120  No. 41  e2304988120� https://doi.org/10.1073/pnas.2304988120   5 of 11

change being derived from simulations of Earth System Models 
(ESMs) taking part in the sixth phase of the Coupled Model 
Intercomparison Project (CMIP6) (33). The results reported 
here focus on the sustainable scenario, SSP1-2.6, as it is the most 
consistent with the progressive forestation scenario in support 
of China’s carbon-neutrality strategy, which along with other 
international commitments, if all fully delivered, will keep global 
warming below 2 °C (3).

Existing forests were projected to provide a still considerable 
carbon sink under the SSP1-2.6 scenario, accumulating 14.6 Pg 
C up to the end of this century through doubling their biomass 
(Fig. 4A). This carbon sink is dominated by the forest age effect, 
with climate change and CO2 fertilization contributing 4.7% and 
10.4% of the carbon gains in 2100, respectively. Under the 
higher-emission scenarios of SSP2-4.5 and SSP5-8.5, climate 
change effects were projected to be similar to those of SSP1-2.6 
(SI Appendix, Figs. S8 and S9), when only changes in average cli­
mate conditions of mean annual temperature (MAT) and mean 
annual precipitation (MAP) are considered while neglecting 
potential changes in climate extremes and their carbon effects. 
Both MAT and MAP tend to increase under SSP2-4.5 and 
SSP5-8.5 scenarios compared to present, which will increase the 
equilibrium biomass carbon stock for most of the species 
(SI Appendix, Table S7). The CO2 fertilization effects under 
SSP2-4.5 and SSP5-8.5 scenarios were, however, amplified by two 
and five times in comparison to the SSP1-2.6 scenario, respec­
tively, although with a larger uncertainty among the models 
(SI Appendix, Figs. S8 and S9). Nonetheless, the carbon sink of 
the existing forests will diminish over time, reducing from 0.38 
Pg C y−1 in 2020 to 0.13 Pg C y−1 in 2060, and eventually, due 
to the inevitable maturation and growth saturation, falling to a 
very weak sink of 0.03 Pg C y−1 in 2100 (Fig. 4C). Such dramatic 
reductions of the biomass carbon sink will exacerbate the pressure 
of emissions reduction in the postcarbon neutrality period, which 
confirms the necessity of our progressive forestation beyond the 
preservation of existing forests.

The newly established forests under the progressive forestation 
scenario can supply a cumulative biophysical carbon sink potential 

of 14.3 Pg C between 2020 and 2100 under the SSP1-2.6 scenario 
(Fig. 4B), after deducting the original biomass carbon stock of 1.7 
Pg C prior to forestation (SI Appendix, Fig. S7). The size of this 
carbon sink from future forestation is comparable to the size of 
that from existing forests. Climate change and CO2 fertilization 
were projected to contribute 4.5% and 12.5%, respectively, of the 
carbon gains in 2100 (Fig. 4B). Under the higher-emission sce­
narios of SSP2-4.5 and SSP5-8.5, the effects of changes in average 
climate conditions turned neutral or negative (+0.9% and −4.5%, 
respectively), whereas the CO2 fertilization effects were amplified 
by three and six times, respectively, compared to the SSP1-2.6 
scenario (SI Appendix, Figs. S8 and S9). Although the projected 
carbon sink from existing forests will decline with time, the pro­
jected biophysical potential of carbon sink in the newly established 
forests will continue to increase as their area expands, rising from 
0.05 Pg C y−1 during the 2020 s to a maximum value of 0.27 Pg 
C y−1 during the 2060s, when all potential forestation is completed 
(Fig. 4D). Subsequently, this carbon sink potential will decline, 
falling to 0.13 Pg C y−1 in 2100 but remaining substantial.

The additional carbon sink created by a progressive forestation 
scenario can compensate for the declining sink of the existing 
forests (Fig. 4), thus maintaining relatively stable carbon seques­
tration over time for the forest ecosystem as a whole (SI Appendix, 
Fig. S10). Altogether, the entire forest ecosystem in China can be 
expected to provide a stable biophysical sink potential of around 
0.4 Pg C y−1 to 2060 (SI Appendix, Fig. S10), roughly equivalent 
to 13.8% of the national fossil CO2 emissions of China in 2020 
(34). Subsequently, the carbon sink will decline but can still be 
maintained at 0.18 Pg C y−1 by the end of this century (SI Appendix, 
Fig. S10).

Discussion

Our analysis demonstrated the large biophysical potential of cli­
mate mitigation by nationwide progressive forestation. We 
acknowledge, however, that in practice, multiple effects and poten­
tial trade-offs must be considered within the ecological, climatic, 
social, and economic contexts of forestation. For example, trees 
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Fig. 3. Forest age of existing forests and the progressive forestation scenario. (A) The forest stand age map of existing forests at 1-km resolution updated 
to 2019 by integrating inventory-based forest age class information and satellite-derived distribution of forest height. The bar plot indicates the frequency of 
each forest age class. (B) The progressive forestation scenario constrained by government milestone targets (for details refer to SI Appendix, Table S6). The 
black dots indicate arbor forest areas reported in the 5th to 9th national forest inventories fitted by a linear increasing relationship with time (the orange line). 
The red triangles indicate the four government milestone targets on the forest area. The dashed green line represents a linear regression of areas of existing 
forests and government targets against time, which extends to the year of 2062, corresponding to the forest area when all high-confidence potential forestation 
opportunities across the country are 100% fulfilled (the black asterisk).
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store and transpire more water than herbaceous vegetation, mak­
ing afforestation potentially conflicting with agricultural, indus­
trial, and household water demands (35, 36), especially in arid 
and semiarid regions. The reduction of albedo caused by affores­
tation in drylands or high latitudes would partially offset its cli­
mate cooling effect (37, 38). On the other hand, surface climate 
cooling and enhanced precipitation resulting from forest biogeo­
physical processes may further facilitate local climate change mit­
igation (24, 27). Forestation can also have positive (39) or negative 
(40) effects on local biodiversity. In addition, forestation also has 
to be balanced with socioeconomic considerations. For instance, 
forestation potential quantified in this study is greatly limited in 
southern and eastern China due to land competition from agri­
culture and human settlement (Fig. 1). Financial investments or 
policy incentives will also affect the incomes of local people (32, 
41). It is reported in northern China that afforestation has reduced 
local household income (25). More importantly, there are huge 
divergences in these trade-offs described above across different 
regions (24, 42). Therefore, we should emphasize again that our 
proposed afforestation roadmap and estimated carbon sink reflect 
a “biophysical potential” and that accounting for various trade-off 
effects might render the actually realized forestation area and 

carbon sink below such a potential. Local knowledge, more holistic 
impact assessment, and careful planning are hence needed to tailor 
our proposed forestation roadmap to the local socioecological 
context and balance potential trade-offs (26, 41, 42).

We identified the forest types for potential forestation based on 
their potential feasibility for establishing under current local envi­
ronmental conditions as demonstrated in the national forest 
inventory, with the hope of minimizing unanticipated failures 
while maximizing carbon sequestration benefits. Recent meta- 
analyses based on global-scale paired-site observations have reported 
higher forest productivity in multispecies plantations than in mon­
oculture ones (43). Enhanced cobenefits of biodiversity conserva­
tion, soil erosion control, and water yield have also been reported 
in native old-growth forests or restored native forests compared 
to plantations (39, 43). These results suggest that mixed species 
or native species from natural restoration should be preferred over 
monoculture plantations in afforestation or reforestation efforts 
(42). In our analysis, the proposed 15 dominant forest types for 
forestation are all native and they should be best understood as 
being the dominant species of a forest community rather than 
monoculture plantations. Our approach has the advantage of 
using the proven species distribution information and field-based 
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Fig. 4. Dynamics of biomass carbon storage and carbon sink of existing and newly established forests under the progressive forestation scenario for 2020 to 
2100. The area of the newly established forests was assumed to expand according to the progressive forestation scenario shown in Fig. 3B. (A and B) show the 
total forest biomass carbon storage (Pg C) attributed to the effects of forest age, climate change, and rising atmospheric CO2 concentration under the SSP1-2.6 
scenario for existing forests (A) and newly established forests (B). The gray bars indicate changes of the biomass carbon stock over the land areas prior to 
forestation. The error bars show the range of values obtained from the different ESMs participating in CMIP6. (C and D) Projected carbon sequestration rates for 
each decade between 2020 and 2100 for existing forests (C) and the newly established forests (D). The green lines denote the projected carbon sinks obtained 
by integrating the effects of forest age, climate, and CO2, whereas the black lines account for the forest age effect only. The error bars show SDs.
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biomass growth models to derive robust estimates of the future 
carbon sink potential, and hence, the roadmap proposed merits 
serious consideration. Nonetheless, stresses have to be made that 
the optimal tree species selection proposed in this study (Fig. 2B) 
is based on the context of maximizing carbon sequestration and 
is not necessarily the best option for biodiversity conservation, 
soil erosion control, and water yield. Forestation is a context- 
dependent activity with a single approach barely suited to all areas. 
Our study aimed for a broad illustrative roadmap rather than 
providing direct, readily implementable solutions at a local scale. 
Expertise from local foresters or forest management agencies is 
still needed to determine the optimal forest species depending on 
its specific end goals.

We omitted changes in soil organic carbon (SOC) stock following 
afforestation due to its great uncertainties. Although afforestation- 
induced SOC reduction has occasionally been reported over north­
eastern China (44), nationwide meta-analyses have shown that the 
initial drop in SOC following afforestation could be largely reversed 
at a later stage with forest growth (45). Moreover, significant carbon 
accumulations have also been reported in surface litter and dead 
wood along with forest growth on a national scale (46). Hence, 
neglecting carbon accumulation in soil organic matter (including 
surface litter, dead wood, and SOC) may lead to an underestimation 
of the biophysical carbon sink potential (47). But on the other hand, 
ignoring negative effects of climate extremes (drought, heat waves, 
snow storms, etc) and forest disturbances (fire, wind, insects, etc.) 
on forest carbon accumulation may lead to an overestimation of the 
carbon sink potential (48, 49). This is particularly true under the 
high-emission scenarios of SSP2-4.5 and SSP5-8.5 as the frequencies 
of climate extremes and forest disturbances were projected to increase 
under these scenarios (50, 51). Unfortunately, great uncertainties 
exist in our current predictions of the frequency and extent of future 
climate extreme events (50, 51) and in our knowledge to predict 
how forest carbon cycle responds to climate extremes, in particular, 
in the nonlinearity nature of such responses and the associated tip­
ping points (48, 52). These shortcomings hinder us from making 
accurate predictions on how changes in climate extremes and forest 
disturbance will impact future carbon sequestration in China’s for­
ests. Without accounting for the effects of climate extremes, forest 
disturbances, or wood harvest, forest ecosystems can provide a sus­
tained biophysical carbon sink potential of around 0.4 Pg C y−1 well 
before and after the official carbon-neutrality target year of 2060. 
Such nature-based CO2 removals will not replace vital emission cuts, 
but they can help to offset the residual emissions that cannot be 
entirely eliminated, hence enabling the country to effectively reach—
and remain at—a state of net-zero emissions.

Nonetheless, warnings must be made that forestation, or forest 
restoration, should not be oversold as a panacea to mitigate climate 
change. Forest carbon removals should never overshadow other cru­
cial mitigation actions such as preventing deforestation or drastically 
reducing fossil fuel emissions (26). As shown in Fig. 4, the enhance­
ment of carbon sequestration by expanding forest area is capped by 
the available area for forestation. Carbon sinks over both the existing 
and the newly established forests will inevitably diminish in the last 
few decades of this century when all forestation opportunities are 
exhausted. To maintain the net zero-carbon emissions state, further 
reduction of anthropogenic emissions must be required. In other 
words, our study does by no means preclude the urgent need to 
reduce greenhouse gas emissions (2, 8). Instead, the temporal path 
of forest carbon sink potential should be integrated with the plan­
ning of emissions reduction from the energy and industrial sectors, 
so that the successful implementation of the carbon-neutrality strat­
egy can be secured by respecting the potential boundaries of natural 
climate solutions.

Materials and Methods

Our study consisted of four main modules as shown in the research framework 
(SI Appendix, Fig. S1). The first three modules addressed the three key questions 
of “where?,” “when?,” and “with what?” to afforest (SI Appendix, Fig. S1). For the 
question of “where” to afforest, we synthesized multiple datasets of potential 
forest distribution, existing forest, cropland, and urban distributions to determine 
the places where forestation is appropriate, without curtailing the agricultural 
activity or human settlements. For the question of “when” to afforest, we inte-
grated the government's forest cover targets with the potential forestation area 
derived from addressing the question of “where” and developed a progressive 
forestation scenario to reach a feasible national forestation rate of 1.8 Mha y−1. 
The spatial distribution of forest age for existing forests was also estimated in this 
module in order to assess their future potential of carbon sequestration. For the 
question of “with what” to afforest, given that the species selection is influenced 
by “where” and “when” to afforest, we used a species distribution model to pre-
dict the environmentally suitable species or forest type out of a total of 15 forest 
types for places where potential forestation is needed and further combined the 
outcome with forest growth models to search for optimal forest species providing 
the maximum biomass carbon sequestration potential.

The fourth and final module integrated the results of the previous three mod-
ules (as indicated by the gray annotations in SI Appendix, Fig. S1) into an empir-
ical, spatially explicit modeling framework of forest biomass growth to estimate 
the biophysical potentials of forest biomass carbon storage and the corresponding 
carbon sequestration rates of both existing forest and newly established forest. 
Specifically, the outcome of “where” to afforest determines the location of forest-
ation and its climate and environmental conditions, the outcome of “when” to 
afforest determines forest age, and the outcome of “with what” to afforest deter-
mines the forest species or forest type and the resulting forest biomass growth 
model being used to predict the biophysical potential of carbon sequestration. 
Descriptions of our methods are provided below, with detailed information being 
further provided in SI Appendix.

Potential Forest Distributions and Forestation Opportunity. We defined 
“the potential forestation opportunity” as areas of potential forest distribution 
unoccupied by existing forest, agricultural land, or human settlements (Fig. 1A). 
The derivation of potential forest distributions is described in this section, while 
the derivation of the spatial distribution of existing forest, agricultural land, or 
human settlements is provided in the next section.

We integrated three different methods/datasets to predict the potential forest 
distribution across China (for details see SI Appendix). The first of these is the 
potential tree cover distribution predicted by random-forest modeling, following 
a similar approach to Bastin et al. (8). In that study, direct tree cover (0 to 100%) 
measurements were made using direct photo interpretation for protected regions 
across the world, and the results used as a measure of the natural tree cover distri-
bution without human intervention. We fitted a random forest model using their 
observations in China and predicted the potential tree cover distribution across 
China at a spatial resolution of 30 arcsec (~1 km). Grid cells (1 km resolution) 
with a tree cover ≥20% were defined as “forest,” consistent with the definition 
used in Chinese National Forest Continues Inventory (28). We also generated a 
global 1-km map of potential forest coverage using the map of forest and land-
scape restoration opportunities from the World Resources Institute (15), which 
has been extensively used in previous studies on evaluating the potentials of 
forest restoration and the land carbon sink (7, 42). The main data source to define 
potential forest extent in this map was the Olson ecoregion map that based on 
the global climatic and topographic factors on nature (53). Here, three ecoregion 
types—dense forest, open forest, and woodland—were combined and considered 
as the potential forest extent.

Third, we employed the process-based dynamic global vegetation model 
ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) to sim-
ulate the potential forest distribution in China under current environmental 
conditions at a 0.5° resolution (see details in SI Appendix). We used version ORC-
HL-NVD (54) which has an improved parameterization for vegetation dynamics in 
northern temperate and boreal regions, including the processes of establishment, 
mortality, and species competition for different tree functional types. For integra-
tion with the other two 1-km distribution maps, potential forest coverage (%) as 
simulated by the ORCHIDEE model at a 0.5° spatial resolution was converted 
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to forest distribution at a 1-km resolution. This was done by first ranking the 
underlying 1-km pixels within each 0.5° grid cell by their respective tree cover 
as simulated by the random forest modeling approach. Then, an appropriate 
threshold was chosen such that the total area of the 1-km pixels with a predicted 
forest cover above the threshold was equal to the predicted forest coverage value 
derived for the 0.5° grid cell concerned by the ORCHIDEE model.

The random-forest modeling approach produced a more conservative poten-
tial forest distribution than the other two methods probably because it considered 
multiple environmental constraints (including climate, soil, and topography) at 
a native 1-km high resolution and/or because tree cover observations used to 
train the model tend to underestimate tree cover due to the inevitable legacy 
effects of human management (8) or disturbances (55). The ORCHIDEE model 
yielded the largest potential forest area, likely because the coarse spatial res-
olution (0.5° compared to the fine-resolution (1-km) data used by the other 
two approaches) smoothed out environmental heterogeneity within the grid. 
We divided these potential forest pixels into three classes (high, medium, and 
low confidence) based on the consistency of the three approaches. For a potential 
forested pixel, high confidence means that all three approaches agreed; medium 
confidence means that two of the three methods agreed, while low confidence 
means only one of the three methods indicated forestation (Fig. 1A). To maximize 
our confidence in the derived potential forest distribution used for future carbon 
sequestration prediction, only those 1-km pixels labeled as high confidence were 
considered to be a potential forestation area (Fig. 1A).

Existing Forest, Cropland, and Urban Distributions. To accurately identify the 
current distribution of forest, agricultural, and urban land, we harmonized multi-
ple sources of inventory data and high-resolution satellite images (SI Appendix, 
Table S3). First, we used a 1:1000000 vector map of forest type distribution from 
the forest inventory made during the period 2013 to 2017 (FI 2013 to 2017) by 
the China Forest Vegetation Survey project of the Chinese Academy of Forestry 
Sciences (30). The vector map was remapped to a 1-km grid under the WGS1984 
coordinate system. This map contains the forest type and species information 
needed to estimate forest biomass carbon, and, therefore, it served as the baseline 
distribution map for estimating existing forest biomass carbon. For the conveni-
ence of analyses, we grouped the 500 forest types (by dominant tree species) in 
FI 2013 to 2017 into 15 types (SI Appendix, Table S15). Forest types with small 
areas were integrated into those which have closely related dominant species 
and/or share similar vegetation characteristics (22).

Second, we employed the widely used global tree cover dataset of Hansen 
et al. (56), which provides global tree cover (0 to 100%) distribution in 2000, and 
forest loss and gain information for 2000 to 2019 at a spatial resolution of 30 m. 
These data were used to calculate tree cover in China for 2019, followed by further 
resampling to a 1-km grid by area-weighted averaging. We then defined those 
1-km grid cells with ≥20% tree cover as “forest,” consistent with the definition 
used in Chinese National Forest Continuous Inventory (28).

Third, we used another five satellite-based land-cover datasets: one Chinese 
regional database [CNLUCC (57)] and four global databases [MODIS (58), GLC-
FCS30 (59), Globeland30 (60), and ESA-CCI (61)]. The latest versions of all five 
datasets were used (SI Appendix, Table S3). Since these datasets were provided 
at a finer resolution (30 m or 500 m) than 1 km, we defined the land-cover type 
for each 1-km grid cell according to its dominant land-cover type, i.e., the land-
cover type occupying the largest area according to the fine-resolution distribution 
information.

We found that the major source of mismatches in forest and cropland distri-
bution between the different datasets arises from inconsistency in the definitions 
of “forest” or “cropland” (SI Appendix, Table S3). For forest distribution, the incon-
sistency resides in the different thresholds of canopy cover or tree cover used to 
define “forest.” “Forest” is defined as occupying an area of more than 0.0667 ha 
and with canopy coverage exceeding 20% in the national survey (28). However, 
some satellite-based land-cover datasets define forest as having canopy coverage 
more than 30% (e.g., CNLUCC and MODIS), whereas others define it as canopy 
coverage greater than 10% or 15%, and hence include part of the national survey 
woodland areas (areas having a canopy coverage of 10 to 20%) as “forest.” In 
addition, differences in forest distribution between the databases also depend on 
whether economic forests are included or not. For “cropland,” the differences were 
mainly due to inconsistent treatment of whether economic trees (i.e., orchard) or 
grasses were included (SI Appendix, Table S3).

In order to maximize the accuracy in the derived spatial distributions of exist-
ing forest, cropland, and urban land, we integrated the inventory-derived map 
and six satellite-based land-cover products (as described above) based on the 
consistency of the different datasets. We identified the land-cover type of a given 
grid cell as “forest” or “cropland” in Fig. 1A only when no less than half of the 
datasets (i.e., ≥4 for forest and ≥3 for cropland) agreed (SI Appendix, Table S3 
and Figs. S4 and S5). Note that forest type information, which is not available in 
our combined forest map, was required when determining the forest stand age 
and estimating the forest biomass carbon. Hence, we used the existing forest 
map from FI 2013 to 2017 instead of the combined forest map in subsequent 
analyses (Figs. 2–4) for existing forests. This alternative approach yielded quite 
similar areas of existing forest (181.2 Mha for the combined forest map vs. 179.4 
Mha for the FI 2013 to 2017 forest map), though there were slight differences in 
the spatial distribution (kappa coefficient = 0.71).

Additionally, we identified the current land-cover types of potential affores-
tation areas in Fig. 1A based on the five satellite-based land-cover datasets. 
Given the wide variation in land-cover classifications and definitions among 
the five datasets, we have grouped those numerous classifications into five 
main categories: 1) partial tree cover but not forested (tree cover mostly lower 
than 20%), which includes mosaic patches with tree covered, open forest land, 
shrub land, and unestablished forestry land (e.g., unestablished afforesta-
tion land, cut-over area, fired-over area, nursery land, forest suitable land) 
(12, 28); 2) grassland, which is dominated by herbaceous vegetation with 
barely tree distribution at present, including steppes, meadows, savannas, 
desert grasslands, and urban artificial grasslands; 3) wetland, which includes 
wetlands, swamps, mudflats, etc., with water cover; 4) bare soil or sparsely 
vegetated areas, which includes deserts, bare rock, permanent snow, and 
ice, etc., with less than 10% vegetation cover; 5) others. For each potential 
forestation pixel, we chose the land-cover type (excluding cropland and urban) 
which occurred most frequently among the five land-cover datasets as the 
final result. Statistics on the proportion of current land types in potential 
forestation areas with high, medium, and low confidence in Fig. 1A are pre-
sented in SI Appendix, Fig. S3.

Modeling the Species Suitability Distribution. Species distribution models, 
which predict a species’ probability of occurrence based on occurrence–envi-
ronment correlations, have become important tools for afforestation and forest 
restoration planning (18). In this study, we employed the Maximum Entropy 
model (MaxEnt v3.4.3) to predict species distribution for potential forestation in 
China. The MaxEnt model is one of the most widely used and robust modeling 
approaches (62, 63) especially for cases where only presence data are available 
and absence data are difficult to collect. Details of the process of building the 
species distribution prediction models are given in SI Appendix and summarized 
here. The key input of species occurrence observations was converted from the 
spatial distribution of existing forest species obtained from a recent nationwide 
field survey (Fig. 2A), with, when necessary, further spatially rarefication of the 
observations. The corresponding environmental variables (including climate, soil, 
and topography) of 1-km pixels were extracted and used together with the species 
presence data to build the prediction models. Model performance was assessed 
using 10-fold cross-validations, and the area under the curve (AUC) scores were 
used to evaluate model accuracy (62). The obtained MaxEnt models for the 15 
forest types all showed high accuracy (AUC ≥ 0.83, SI Appendix, Table S4), which 
confirmed the feasibility of using species distribution modeling to guide species 
selection for forestation.

The constructed species distribution models were then used to predict the 
distribution probability (i.e., suitability, 0 to 1) for different forest types using envi-
ronmental variables (SI Appendix, Fig. S6). The average value of the occurrence 
probabilities predicted by the 10 distribution models constructed in the cross-
validation process was used as the occurrence probability for each forest type. 
We converted the distribution probability into a binary map (i.e., suitable or not) 
applying the average of the maximum test sensitivity plus specificity threshold to 
minimize the false-positive and false-negative errors (64) (SI Appendix, Table S4). 
The outcome of this process was a number of forest species or groups of species 
which were considered suitable for each 1-km potential forestation pixel. On this 
basis, we proposed two solutions to determine the “optimal forest type” out of all 
the potentially suitable forest types. One was to select the forest species with the 
highest habitat suitability for each grid point as the optimum (Fig. 2C), while the 
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other was to select the forest type with the largest biomass carbon storage at a 
mature stage under current climate condition (Fig. 2B). The comparison between 
the two solutions can be used to indicate how much the selection to maximize 
carbon stock has increased the carbon sequestration (Fig. 2C).

Existing Forest Stand Age Distribution. Spatially explicit information on 
forest stand age was required for estimating the future forest biomass carbon 
sink capacity of existing forests. We developed a 1-km forest stand-age map 
for China by translating satellite-based forest height observations into stand-
age information using growth relationships between forest height and stand 
age, following the approach of Zhang et al. (31). The principle is to optimize 
the parameters in forest type–specific growth equations that link forest age 
to canopy height (SI Appendix, Table S5), so that fractions of different forest 
age classes for each forest type at provincial levels (that are inversed from a 
spatially explicit forest height map) would best match those reported by the 
national forest inventory. In the current study, the most recent versions of the 
key datasets were used. These include provincial statistics for areas of different 
forest age classes from the latest 9th national forest inventory (2014 to 2018) 
(28), the recently released 30-m spatial resolution global forest height map 
from the Global Ecosystem Dynamics Investigation (65) in 2019 (resampled to 
1-km resolution), and the most recent forest type distribution map from the FI 
2013 to 2017 (30). Due to the parameter optimization against the age structure 
data from the national forest inventory, it is believed that our growth models 
generate a more accurate forest age map of China, since it better depicts the 
regional heterogeneity compared to global datasets such as the MPI-BGI global 
forest age dataset, which only capture a homogeneous pattern of regional 
average age (66).

Progressive Forestation Scenario. The Chinese government has announced a 
series of national goals and ambitions on “total forest area” in recent years (14), 
which are a guide to building a practical and realistic forestation scenario. We 
synthesized these national-level forestation goals, from the near-term plan for 
2025 to the long-term 2050 target to “reach the world average level of forest 
coverage.” The forest cover or wood volume information was converted to “forest 
area” which better suits our research purpose (SI Appendix, Table S6). The extent 
of total forest area in government documents included not only the area of arbor 
forest (which is the forest area in our study) but also bamboo forest and special 
shrub forest (28). Hence, adjustments were made based on the proportion of 
arbor forest against the total forest area obtained from the latest 9th national 
forest inventory (28) to derive arbor forest area targets implied by these national 
plans (SI Appendix, Table S6).

We found that the forest areas targeted by different national goals over time 
can be well fitted by a linear relationship (Fig. 3B, R2 = 0.96), suggesting that 
a continuous and progressive forestation strategy was implied by government 
policies. We hence assumed a constant annual forestation area (1.8 Mha per 
year) over time, i.e., a constant number of potential forestation grid cells would 
be randomly selected and converted from nonforest to forest each year after 
2016, until all potential forestation spaces are exhausted at the end of 2062 
(Fig. 3B). Along with the conversion from nonforest to forest for the potential 
forestation grids, the associated living biomass C of the original land cover was 
assumed to be lost to the atmosphere and was therefore subtracted from the 
accumulation of the biomass C of the newly established forest (Fig. 4C). We 
calculated the living biomass C stored in the original land cover based on the 
carbon densities map of living biomass (both above- and below-ground) in 
2010 from Spawn et al. (67) (SI Appendix, Fig. S7). The amount of biomass in 
these areas was assumed to be static up to the occurrence of forestation, which 
we believe to be a reasonable assumption because the biomass of nonforest 
land, such as grassland and shrub land, has a good chance of being close 
to saturation. Moreover, the influence of this assumption on the estimated 
future carbon sink potential was considered small because the total biomass 
C over the nonforest pixels (~1.7 Pg C) was relatively small compared to the 
forest biomass that will establish and grow with time (Fig. 4B). Ultimately, 
we repeated the random sampling of forestation grids over space and time 
1,000 times and found a small variation of the estimated annual carbon sink 
(<0.005 Pg C y−1) caused by the random selection of forestation pixels in the 
progressive forestation scenario.

Age-Dependent Statistical Models for Estimating Forest Biomass C 
Storage. To estimate the forest biomass C sequestration in China driven by 
forest aging, climate change, and rising atmospheric CO2 concentration, we 
employed a set of statistical forest biomass growth models as established by Yao 
et al. (22) (SI Appendix, Table S7). These were further complemented by the CO2 
fertilization effects on biomass estimated by ESMs. The models employed, listed 
in SI Appendix, Table S7, integrated the individual effects of age-related forest 
regrowth, MAT and MAP on forest biomass accumulation in China by synthesizing 
in situ measurements (68). The CO2 fertilization effects on biomass were based 
on the results of model experiments (i.e., 1pctCO2 experiments) carried out as 
part of the CMIP6 (33).

During forest development, forest biomass increases with stand age, 
but the rate of increase gradually declines to zero until the old-growth stage 
when biomass growth saturation is reached. The relationships between forest 
biomass and stand age can be described by growth equations (SI  Appendix, 
Table S7) that include both stand age and climate factors as parameters. Climate 
factors were included by adding a linear combination of MAT and MAP (i.e., 
α×MAT+β×MAP+γ) into the model formulation. Previous studies have reported 
great variations in biomass–age relationships along environmental gradients and 
among different forest types (20), and these have been represented in this study 
by various forms of growth function (e.g., logarithmic, logistic, and theoretical 
growth). Nonlinear least square regressions were used to determine the optimal 
function and associated parameters for each of the 15 forest species groups. R2 
and root mean square error (RMSE) were used as criteria to determine the best 
function form. The function form with the highest R2 and the lowest RMSE is 
denoted as “Fitted function” in SI Appendix, Table S7.

To quantify the effect of changing forest age only on forest biomass C storage 
from 2016 to 2100, forest age was allowed to change annually, with the climate held 
constant at the average current period (2005 to 2015, i.e., t0 in Eq. 1) conditions. The 
MAP and MAT were extracted from a 1-km monthly climate dataset for China (69). 
This dataset was spatially downscaled from the 0.5° Climatic Research Unit climate 
dataset (CRU-TS-4.03) using the 1-km climate dataset of WorldClim2.1 and was 
validated using observations from 496 weather stations across China.

	 [1]B
age

t
= f

(

age
t
, MAPt0, MATt0

)

,

where B denotes forest biomass at a given year t between 2016 and 2100, with 
the subscript and superscript denoting the corresponding forest age and whether, 
and which, climate effects were considered, respectively. For instance, Bage

t
 repre-

sents forest biomass predicted based on the forest age at year t with fixed current 
climate conditions. f represents the biomass growth function listed in SI Appendix, 
Table S7. aget represents the forest age for year t. Biomass was converted into C 
content using a conversion factor of 0.5 (70).

Future Climate Bias Correction and its Effects On Biomass C. For the future 
period, climate-change effects on total forest biomass C storage were calculated by 
varying the values of MAP and MAT as simulated by climate models under the future 
Shared Socioeconomic Pathways (SSPs) which reflect different plausible projections of 
climate change mitigation (71). In the main text, we have focused on the sustainable 
scenario, SSP1-2.6, which was close to the future mitigation scenarios implied by the 
climate pledges, such as the Paris Agreement (3), made by various countries/regions. 
However, we also analyzed two further scenarios: the SSP2-4.5 scenario which has an 
intermediate level of carbon emissions (SI Appendix, Fig. S8) and the SSP5-8.5 scenario 
with its very high levels of carbon emissions (SI Appendix, Fig. S9). We used outputs 
from 31 ESMs (SI Appendix, Table S8) participating in CMIP6 to calculate the uncertainty 
of future climate change effects as represented by different model simulations. Since 
outputs of climate simulations from CMIP6 models are generally biased compared to 
observations and these outputs were provided at very coarse resolutions (0.8° to 2.8°), 
we applied both bias correction and spatial downscaling to generate high-resolution 
(i.e., 1-km), bias-corrected MAP and MAT data (for details refer to SI Appendix).

To estimate climate change–induced changes in total forest biomass C storage, 
both forest age and climate variables were allowed to change (Eq. 2):

	 [2]B
age & climate

t
= f

(

age
t
, MAPt , MATt

)

− B
age

t
,

http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304988120#supplementary-materials
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where Bage & climate
t

   represents the biomass predicted based on both the forest age 
and the climate conditions for a given year t. MAPt   and MATt   are the MAP and 
MAT for the year t, respectively. The effect of climate change on forest biomass C 
storage ( Bclimate

t
 ) was then obtained by subtracting the age-driven biomass Bage

t
 

from Bage & climate
t

 (Eq. 3):

	
[3]B

climate
t

= B
age & climate

t
− B

age

t
.

CO2 Fertilization Effects on Biomass C. To estimate the effect of increasing CO2 
concentration on forest biomass C storage, we used the results of the 1 pctCO2 
biogeochemical diagnostic experiment from CMIP6, in which 140-y simulations 
were performed assuming a 1% increase per year in CO2 concentration (72). In 
this experiment, it is only the CO2 concentration that was allowed to change 
with time, while other forcing variables such as climate were maintained at their 
preindustrial levels. The model outputs were first remapped onto a 1-km grid 
using the first-order conservative interpolation method. For each grid cell, we first 
determined the evolution of the CO2 concentration under different SSP scenarios 
and extracted the corresponding vegetation biomass C density (variable name: 
cVeg) from the 1% CO2 experiment results. Ratios ( F ) were calculated for the 
whole of China of the simulated forest biomass C densities under different CO2 
concentrations corresponding to a given year t in the future (i.e., 2020, …, 2090, 
2100) to that under the CO2 concentration of 1978 to 2008 (Eq. 4).

	

[4]F =
CCO2(t)

CCO2(t0 )
,

where CCO2(t)   denotes the simulated biomass C density corresponding to the 
mean CO2 concentration for a given year t, and t0 denotes the simulated biomass 
C density corresponding to the CO2 concentration of 1978 to 2008 (358.6 ppm). 
An upper bound of 10 was imposed on F to avoid unrealistically large CO2 fertili-
zation effects on biomass C in the model simulations.

The effect of increasing CO2 concentrations on the forest biomass C density in 
China was then calculated using the ratios derived above (Eq. 5):

	 [5]B
CO2
t

= (F − 1 ) × B
age

t
,

where Bage
t

 represents biomass C density driven by changing forest age only, and 
B
CO2
t

 represents the effect of increasing CO2 concentration that should be added 
on top of Bage

t
 . The uncertainty of the CO2 fertilization effects was characterized 

as the SD of BCO2
t

 calculated using different forest biomass ratios from 1pctCO2 
experiments of 22 ESMs participating in CMIP6 (SI Appendix, Table S8).

The predicted forest biomass C density for a given year t in the future, calcu-
lated by combining all three effects—forest age, climate change, and CO2 concen-
tration increase—can be expressed as

	
[6]B

ALL
t

= B
age

t
+ B

climate
t

+ B
CO2
t

,

where BALL
t

 represents the biomass C density for a given year t when all effects 
are included (Fig. 4). Finally, the average biomass C storage growth rate for each 

decadal interval (e.g., 2020s representing 2021 to 2030) was calculated as the 
change in biomass C stock during a given decade divided by the duration in years, 
to represent the predicted carbon sink (Fig. 4 C and D).

Data, Materials, and Software Availability. The WorldClim2.1 dataset is 
available at https://www.worldclim.com/version2 (73). The 1-km monthly pre-
cipitation and air temperature at 2-m datasets for China can be obtained from 
https://doi.org/10.5281/zenodo.3114194 (74) and https://doi.org/10.5281/
zenodo.3185722 (75), respectively. The China Meteorological Forcing Dataset 
is available at https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-
965612652c49/ (76). Soilgrid250m datasets are available at https://files.isric.
org/soilgrids/latest/ (77). The Global Multiresolution Terrain Elevation Data 2010 
is available at https://www.usgs.gov/coastal-changes-and-impacts/gmted2010 
(78). The 1:1000000 forest distribution map of China from the forest inventory 
during the period 2013 to 2017 (30) is available at http://www.doi.org/10.12041/
geodata.43370179401687.ver1.db. The tree cover of Global Forest Change 
2000–2019 (79) is available at http://earthenginepartners.appspot.com/
science-2013-global-forest/download_v1.7.html. The CNLUCC dataset (80) can 
be obtained from https://www.resdc.cn/DOI/DOI.aspx?DOIID=54. The GLC-FCS30  
global land-cover product (81) is available at https://data.casearth.cn/sdo/
detail/6123651428a58f70c2a51e49. The MODIS Land Cover Type (MCD12Q1) 
Version 6 data product (58) is available at https://lpdaac.usgs.gov/products/
mcd12q1v006/. The Globeland30 land-cover dataset (82) is available at https://
doi.org/10.5281/zenodo.8385299. ESA-CCI land-cover dataset (61) is availa-
ble at https://doi.org/10.24381/cds.006f2c9a. The 2019 global forest canopy 
height map is available at https://glad.umd.edu/dataset/gedi/ (83). The Global 
Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010 
(84) is available at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763. The 
outputs of ESMs participating in CMIP6 are available at https://esgf-node.llnl.
gov/search/cmip6/ (85). The forest inventory data for the 5th to 9th national forest 
inventories are available from https://doi.org/10.5281/zenodo.8297679 (86). The 
analyses and mapping were both performed using MATLAB (R2021b). In addition, 
ArcGIS 10.8 and MaxEnt v 3.4.3 were used to construct MaxEnt species distri-
bution models and predict species suitable. All computer codes for process and 
analysis of the data are available at https://doi.org/10.5281/zenodo.8297679. 
All other data are included in the manuscript and/or SI Appendix.
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