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Abstract

The auditory system relies on both local and summary representations; acoustic local features exceeding sys-
tem constraints are compacted into a set of summary statistics. Such compression is pivotal for sound-object
recognition. Here, we assessed whether computations subtending local and statistical representations of
sounds could be distinguished at the neural level. A computational auditory model was employed to extract
auditory statistics from natural sound textures (i.e., fire, rain) and to generate synthetic exemplars where local
and statistical properties were controlled. Twenty-four human participants were passively exposed to auditory
streams while the electroencephalography (EEG) was recorded. Each stream could consist of short, medium,
or long sounds to vary the amount of acoustic information. Short and long sounds were expected to engage
local or summary statistics representations, respectively. Data revealed a clear dissociation. Compared with
summary-based ones, auditory-evoked responses based on local information were selectively greater in mag-
nitude in short sounds. Opposite patterns emerged for longer sounds. Neural oscillations revealed that local
features and summary statistics rely on neural activity occurring at different temporal scales, faster (beta) or
slower (theta-alpha). These dissociations emerged automatically without explicit engagement in a discrimina-
tion task. Overall, this study demonstrates that the auditory system developed distinct coding mechanisms to
discriminate changes in the acoustic environment based on fine structure and summary representations.
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Significance Statement

Before this study, it was unknown whether we could measure auditory discrimination based on local tempo-
ral features or spectrotemporal statistics properties of sounds from brain responses. Results show that the
two auditory modes of sound discrimination (local and summary statistics) are automatically attuned to the
temporal resolution (high or low) at which a change has occurred. In line with the temporal resolutions of au-
ditory statistics, faster or slower neural oscillations (temporal scales) code sound changes based on local or
summary representations. These findings expand our knowledge of some fundamental mechanisms under-
lying the function of the auditory system.

Introduction
The human auditory system can discriminate sounds at

both high and low temporal resolutions (McAdams, 1993;

Griffiths, 2001). The processing of fine temporal details
relies on extracting and retaining local acoustic features
(on the order of a few milliseconds) to detect transient
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changes over time (Plomp, 1964; Dau et al., 1997; McDermott
et al., 2013). These temporal variations characterize differ-
ent sound objects and help the system discern among
acoustic sources. However, environmental inputs typi-
cally comprise long-lasting sounds in which the number
of local features to be retained exceeds the sensory stor-
age capacity. For this reason, the system may need to
condense information into more compact representa-
tions to discriminate sounds over more extended periods
(McDermott et al., 2013). As the duration of the entering
sounds increases, summary representations are built on
fine-grained acoustic features to condense information
into a more compact and retainable structure (Yabe et
al., 1998). The processing of summary representations al-
lows abstraction from local acoustic features and prompt
sound categorization (McDermott and Simoncelli, 2011;
McDermott et al., 2013).
For sounds characterized by a constant repetition of

similar events over time (such as sound textures, e.g.,
rain, fire, typewriting; Saint-Arnaud and Popat, 2021), this
form of compression consists of a set of auditory statis-
tics comprising averages over time of acoustic amplitude
modulations at different frequencies (McDermott and
Simoncelli, 2011; Fig. 1A).
Computational approaches in auditory neuroscience

allow the mathematical formalization of this set of auditory
statistics (Fig. 1A). The basic assumption is derived from
information theories (Barlow, 1961) and suggests that if
the brain represents sensory input with a set of measure-
ments (statistics), any signal containing values matching
those measurements will be perceived as the same.
Psychophysical experiments revealed that stimuli in-

cluding the same summary statistics, but different local
features, are easy to discriminate when they are short, but
that as duration increases and summary representation
takes over, they are progressively more challenging to tell
apart (McDermott et al., 2013; Berto et al., 2021). On the
other hand, when sounds comprise different statistics,
their perceived dissimilarity will increase with duration as
their summary representations diverge (McDermott et al.,
2013; Berto et al., 2021). While some evidence exists in
the animal model (for results in rabbits, see Zhai et al.,
2020), the neural activity underpinning local features
and summary statistics is unknown in humans. Moreover,
previous behavioral studies required participants to attend
to stimuli to perform a task actively. From this evidence
alone, it thus remains unanswered whether discrimination
based on local features and their summary statistics can

occur despite the lack of an active task and can therefore
occur automatically.
To fill these gaps, we used a validated computational

auditory model (McDermott and Simoncelli, 2011) to ex-
tract auditory summary statistics from natural sounds and
generate synthetic sounds that feature this same set of
measurements (see Materials and Methods; Fig. 1A,B).
With this approach, it is possible to impose the same set
of statistics on different white noise samples that initially
had different local structures (Fig. 1B,C). By employing
this synthesis approach, we could create sounds that dif-
fer at high temporal resolutions (e.g., local features) but
are perceptually indistinguishable at lower ones (summary
statistics) and vice versa (Fig. 1C). We acquired electroen-
cephalography (EEG) measurements in participants pas-
sively exposed to streams composed of triplets of sounds
presented at a fast stimulation rate (2Hz). To ensure gen-
eralizability, sounds were randomly drawn from a large
set of synthetic excerpts (see Materials and Methods).
Within each triplet, the first sound was repeated twice,
while the third one was novel. Two experiments were de-
signed (Fig. 2A): (1) in local features, the novel and re-
peated sounds differed only in their local structures, as
they were generated by imposing the same auditory sta-
tistics on different white noise samples; (2) in summary
statistics, the novel sound was generated from the same
white noise sample but differed from the repeated ones
as it comprised a different set of auditory statistics. As
summary statistics are expected to be relevant at increas-
ing sound duration (McDermott et al., 2013), sounds in-
cluding the same statistics but originating from different
input white noises will be easily distinguishable at short du-
ration but not at long ones (Fig. 1D). By contrast, sounds
derived from the same white noise sample but including
different summary statistics will have different statistical
values when measured at long durations but more similar
values when measured at short durations (Fig. 1D). In fact,
at short durations, statistics will be influenced by their simi-
lar temporal structure (Fig. 1F).
Thus, to manipulate the extent of temporal and statistical

similarity, we presented separate sound streams comprising
stimuli of different lengths (either 40, 209, or 478ms; Fig.
2A). First, we investigated auditory-evoked responses to un-
cover magnitude changes in neural activity associated with
the two modes of representation. We predicted that short
and long sounds would prompt larger auditory-dis-
criminative responses for local features and summary
statistics, respectively. Specifically, we hypothesized
that since the amount of information (e.g., sound dura-
tion) impacts the statistical similarity of sound excerpts,
distinct mechanisms are engaged in the processing of local
features compared with summary statistics emerging over
time. That is, in the case of short sounds, the brain may em-
phasize transient amplitude modulations (i.e., broadband
envelope changes), while spectrotemporal statistics will be-
come informative as sound size increases.
In line with this prediction, we expected brief local

information to be encoded at a faster timescale (Panzeri
et al., 2010) than summary statistics. That is, we ex-
pect the response pattern of the neuronal populations
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Figure 1. Experimental stimuli. A, Computational texture model to extract auditory statistics. An original recording of a natural
sound texture is passed through the auditory texture model (the list of presented sound textures is available as Extended Data Fig.
1-2). The model provides a mathematical formulation of the auditory system’s computations (auditory statistics) to represent the
sound object. The signal is filtered with 32 audio filters to extract analytic and envelope modulations for each cochlear sub-band.
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involved in processing local features to be encoded at
higher frequency ranges and earlier latencies of neural
oscillations compared with summary statistics. To this
end, we investigated neural oscillations and assessed
whether information measured at different temporal
scales in the oscillatory pattern revealed specific fin-
gerprints of discrimination based on local features and
summary statistics.

Materials and Methods
Participants
Twenty-four normal-hearing right-handed young adults

(12 of either sex; mean age ¼ 27.13 years, SD ¼ 2.83) par-
ticipated in the experiment. All participants were healthy;
they were fully informed of the scope of the experiment,
signed written informed consent before testing, and
received monetary compensation. The study was ap-
proved by the regional ethical committee, and the pro-
tocol adhered to the guidelines of the Declaration of
Helsinki (World Medical Association, 2013).

Sample size estimation
This sample size was estimated via simulations. We

used the procedure described in Wang and Zhang (2021)

and simulated a dataset with two conditions (local fea-
tures and summary statistics) of auditory evoked poten-
tials data. First, we selected three electrodes of interest at
central locations (E7, E65, E54). For the simulation, we
chose a time window between 0.1 and 0.3 s based on pre-
vious studies measuring the Mismatch negativity (MMN)
(for review, see Näätänen et al., 2007). The amplitude val-
ues at the electrodes of interest for the two conditions
were sampled from a bivariate normal distribution (within-
subject design) where mean and SD were chosen based
on results of four pilot datasets (mean local features ¼
0.16; mean summary statistics ¼ 0.56; SD local fea-
tures ¼ 0.52; SD summary statistics ¼ 0.54).
We then ran a cluster-based permutation on simulated

datasets to test whether any statistical cluster (t values)
exhibited a significant difference between the two condi-
tions with an a level of 0.05. The procedure started with a
sample size of 10 and increased in steps of one until it
reached a power of 0.80. We ran 1000 simulations for
each sample size and calculated the power as the propor-
tion of the number of times significant clusters were found
in these 1000 simulations. The simulation results showed
that to obtain power above 0.8, a sample size of N ¼ 24
was required.
The algorithm to perform such analyses can be down-

loaded from this link: https://osf.io/rmqhc/.

continued
Envelopes are downsampled and multiplied by a compression factor. From the compressed envelopes, a first set of statistics is
computed: marginal moments (including envelope mean, variance, and skewness), autocorrelation between temporal intervals, and
cross-band correlations. Compressed envelopes are then filtered with 20 modulation filters. The remaining statistics are extracted
from the filtered envelopes: modulation power and cross-band correlations between envelopes filtered with the same modulation fil-
ter (C1) and between the same envelope filtered through different filters (C2). B, Schematic of sound synthesis. The white-noise
sample is filtered through the auditory model (McDermott and Simoncelli, 2011) to extract its cochlear envelopes, which are then
subtracted from those obtained from the original sound texture. The average statistics from the original sound textures are then im-
posed on the subtracted white noise envelopes. The outcome is multiplied by the fine structure of the white noise sample to pre-
serve its local acoustic distribution (e.g., temporal structure). The result is recombined in the synthetic signal, reiterating the
procedure until a desired SNR of 20 dB is reached. C, Impact of white noise sample and imposed statistics on synthetic sounds.
Two different sets of statistics are extracted from two sound textures: “frogs” and “horse trotting.” Each set of values is imposed on
two different random white noise samples. When the same statistics are imposed on different white noise samples, the outcomes
are two synthetic exemplars of the same sound texture. These exemplars will have the same summary statistical representation but
will diverge in their local features as the original input sound will influence them. When different statistics are imposed on the same
white noise sample, the results are two synthetic exemplars that will diverge in their overall summary statistics and be perceptually
associated with different sound objects. The cochleograms of the 0.5-s synthetic exemplars are displayed. D, Similarity of statistics
between excerpt pairs. Couples of sound excerpts presented in the study (repeated and novel; see Fig. 2A for the experimental pro-
tocol) could be derived from different white noise samples to which we imposed the same statistics (in coral) or from the same
white noise sample with different statistics (in blue). The summary statistics similarity between these couples of synthetic excerpts
was computed by averaging the SNRs between statistics of repeated and novel sounds, measured separately for each statistical
class. Boxplots show the averaged SNRs at three sound durations of interest (short, 40ms; medium, 209ms; long, 478ms). When
sounds were short (40ms), statistical values were more similar for sounds derived from the same white noise samples (in blue) com-
pared with different ones (in coral), even when including different original statistics. As duration increased (209, 478ms), statistics
progressively converged to their original values and were more dissimilar for sounds with different generative statistics (blue) than
for sounds including the same statistics (coral), irrespectively of original white noise sample. ***p, 0.001. E, Comparing auditory
statistics of 478ms synthetic sounds. Envelope marginal moments (mean, skewness, and variance) of all sound textures are dis-
played, while highlighted are those from three sound excerpts selected randomly; two have the same imposed auditory statistics (in
red and yellow), and one has different statistics (in blue). In the bottom row, the remaining statistics are displayed (envelope correla-
tion, modulation power, C1, and C2). The similarity between statistical values is higher when the sounds come from the same origi-
nal texture. F, Similarity between envelope pairs of short sounds. In the top panel, boxplots represent the correlation coefficients (r)
measured between broadband envelopes for each pair of 40-ms sound excerpts (repeated and novel; n ¼ 6912) divided according
to experiment (local features or summary statistics). Amplitude modulations of brief excerpts are significantly more similar when
sound pairs originate from the same white noise sample (summary statistics experiment) than when they do not (as in the local fea-
tures experiment), disregarding their imposed generative statistics. ***p , 0.001. In the bottom panel are shown examples of the
40-ms broadband envelopes used for computing the correlation coefficients (r) above.
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Figure 2. Experimental procedure and results of time domain analysis. A, Experimental protocol for EEG. Triplets of sounds were
presented at a fast rate (one sound every 500ms). Two sounds were identical (repeated), while the third was different (novel) and
could vary in its local features (left) or summary statistics (right) depending on the experiment (local features or summary statistics).
Three sound durations, equally spaced logarithmically (short, medium, and long: 40, 209, and 478ms), were employed (in different
sound streams) to tap into each auditory mode separately (local features vs summary statistics processing). The list of presented
sound textures is available as Extended Data Figure 1-2. To ensure participants were attentive during the presentation, they per-
formed an orthogonal task, consisting of pressing a button when an infrequent target (beep) appears. Performance accuracy was
high in all experiments and durations and is displayed in Extended Data Figure 1-1. B, Grand average topographies of the differen-
tial response associated with the sound change (novel sound minus repeated sound) at significant latencies for each experiment
and duration. For each latency, electrodes associated with significant clusters are displayed above as red stars on the scalp.
*p,0.025. On the right side of the topographical maps, the boxplots represent objective differences between the novel and re-
peated sounds of all auditory statistics (averaged). The difference was computed between the statistics of sounds presented for
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Stimuli
Synthetic sounds were generated using a previously va-

lidated computational auditory model of the periphery.
The auditory model and synthesis toolbox are available
at: http://mcdermottlab.mit.edu/downloads.html.
This auditory model emulates basic computations oc-

curring in the cochlea and midbrain (McDermott and
Simoncelli, 2011).
The signal (7-s original recording of a sound texture,

N ¼ 54; see Extended Data Fig. 1-2) was decomposed
into 32 cochlear sub-bands using a set of gammatone fil-
ter banks with different central frequencies spaced on an
ERB scale. Absolute values of the Hilbert transform for each
sub-band were computed to extract the envelope modula-
tion of each cochlear channel over time. Envelopes were
then compressed to account for the nonlinear transfor-
mations performed by the cochlea. The first set of statis-
tics was measured from the transformed envelopes:
mean, skewness, variance, autocorrelation (within each
cochlear channel), and cross-correlation (between chan-
nels). Additional filtering was applied to the envelopes to
account for the modulatory response of the spectrotem-
poral receptive fields of neurons in the midbrain (Bacon
and Grantham, 1989; Dau et al., 1997). Three additional
statistics resulting from these operations could be de-
rived: modulation power, C1, and C2 (respectively, the
correlation between different envelopes filtered through
the same modulation filter and the correlation between
the same envelopes filtered by other modulation filters;
Fig. 1A). The resulting set of statistics extracted from the
original recording of sound textures was imposed on
four 5-s white noise samples (Fig. 1A–C). This allowed
the generation of four different sound exemplars for each
sound texture, which varied selectively in their local fea-
tures but included similar long-term summary represen-
tations (Fig. 1C). All synthetic exemplars featuring the
same auditory statistics were perceptually very similar to
the original sound texture from which they were derived,
even when their input sounds (white noise) varied (Fig.
1C–E). Synthetic sounds with the same imposed audi-
tory statistics represent different exemplars of the same
sound texture with the same summary statistics but a
different fine-grained structure. This is because, in the
synthesis procedure, the imposed statistics are com-
bined with the fine structure of the original white noise
sample (Fig. 1B).
Importantly, to create experimental stimuli, all four 5-s

synthetic exemplars were cut from the beginning to the
end into excerpts of different lengths, either short (40ms),
medium (209ms), or long (478ms). These lengths were

chosen based on results in previous behavioral investiga-
tions (Berto et al., 2021; McDermott et al., 2013). Excerpts
were equalized to the same root mean square amplitude
(RMS ¼ 0.1) and had a sampling rate of 20 kHz. A 20-ms
ramp (half-Hann window) was applied to each excerpt,
10ms at the beginning and 10ms at the end, to avoid
edge artifacts (McDermott et al., 2013). The stimuli used
here were validated in a previous study (Berto et al., 2021)
in which we replicated the original finding (McDermott et
al., 2013). The experimental stimuli presented for each run
were randomly drawn from all available excerpts accord-
ing to the experiment requests (see below).

Procedure
Participants were tested in a sound-isolation booth.

After reading instructions on a monitor, they listened to
the sounds in the absence of retinal input (participants
were blindfolded to prevent visual input).
For each run of the experimental session, a sound se-

quence lasting 108 s was presented. The series contained
triplets of sounds (n¼ 216) presented one after the other
to form an almost continuous sound stream, in which
sound onsets occurred every 500ms (Fig. 2A). Within
each sequence, all sounds had the same duration (either
40, 209, or 478ms).
Two experiments were implemented. (1) In local fea-

tures, two different 5-s synthetic exemplars of the same
sound texture were selected (out of the four we had cre-
ated); the combination of selected pair of exemplars vary
randomly across triplets (e.g., first and second; second
and fourth, and so on). These two exemplars were cut into
brief excerpts of either 40, 209, or 478ms. According to
the selected duration (which was different for each se-
quence), two excerpts (one for each exemplar) were
chosen from among the available ones. The two ex-
cerpts had the same starting point (in seconds) from
the onset of the 5-s exemplar. The first sound excerpt
was repeated twice, and afterward, the other was pre-
sented as the third element in the triplet.
Thus, two sounds within a triplet were identical (re-

peated), while the third one (novel) comprised different
local features but converging summary statistics; in
other words, repeated and novel sounds had the same
generative statistics (both could be, e.g., waterfall) but
different acoustic local features (Fig. 2A, left panel;
Extended Data Fig. 1-2, column 1). (2) In summary statis-
tics, sound textures were coupled according to their per-
ceived similarity (McDermott et al., 2013; see Extended
Data Fig. 1-2, columns 1 and 2). For the textures in column
1, one out of the four 5-s synthetic exemplars was selected

continued
each run, experiment, and duration and averaged across all participants. Within each duration, medians differed at the 5% signifi-
cance level between experiments. Local features . summary statistics at short (40) duration and summary statistics . local features
for medium (209) and long (478) durations. The evoked response in the EEG agrees with the objective statistical difference meas-
ured from the sound excerpts. C, Grand average electrical activity (negative values are plotted up) of the differential response (novel
minus repeated) at significant electrodes (in red) for both short and long durations. Shaded regions show interpolated standard
error of the mean (SE) at each time point. Positive values indicate that the novel sound elicited a greater response than the repeated
one. Results of cluster permutation are displayed as black bars extending through significant latencies. –p, 0.025. For visualizing
the ERPs before subtraction (novel-repeated), see Extended Data Figure 2-1.
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and cut into excerpts of the required duration (40, 209, or
478ms); one of such excerpts was picked randomly. The
same was done for the coupled texture, ensuring that both
were derived from the same white noise sample and that
both drawn excerpts had the same starting point in sec-
onds. Thus, we ensured that the sounds came from the
same segment of the original input noise sample and var-
ied only for their imposed statistics. Again, the first excerpt
was repeated twice, while the other was used as the last
sound in the triplet. The novel sound thus deviated from
the other two (repeated) in its auditory statistics, as it was a
segment of an exemplar of a different sound texture. This
means the novel sound was a different sound object (e.g.,
the repeated sounds might be waterfall excerpts and
the novel one air conditioner; see Fig. 2A, right panel).
However, since both originated from the same segment of
the same input white noise sample, their temporal structure
(i.e., broadband envelope) measured at high resolution
(that is, in brief excerpts) was expected to be more similar
in summary statistics than in the local features experiment.
This was indeed the case (Fig. 1F) and would affect the
similarity of statistics measured from short (but not long)
sound excerpts (Fig. 1D).
To ensure generalizability, the sound textures were dif-

ferent across triplets, so the statistical similarity between
repeated and novel sounds was kept constant within an
experiment while presenting different types of stationary
sound objects.
Discriminative responses emerging from the contrast

between the novel and repeated sounds did not depend
on specific properties (e.g., a change in frequency be-
tween a particular type of sound category) but only on
their local or statistical changes.
In both experiments, the order of the triplets was shuf-

fled for each participant and run. Moreover, excerpts
were selected randomly from among those that shared
the required characteristics, so not only the presentation
order but also stimuli per se were always different across
participants.
A total of six conditions were employed: two experi-

ments (local features and summary statistics) for three
sound durations (40, 209, 478ms). Note that for each
sound texture, we synthesized only four exemplars that
we cut into excerpts of different sound durations (short,
medium, or long). This means that within one experiment,
the presented excerpts belonged to the same pool of syn-
thetic sounds, and only their duration changed, not their
properties. Thus, any dissociation between experiments
(local features or summary statistics) according to sound
duration would indicate that the processing of either local
features or summary statistics strictly depends on the
amount of information presented.
Two sequences/runs per condition (Experiment * Duration)

were presented for a total of twelve runs. The order of
runs was randomized across participants, and short
breaks were taken between runs. In a sound stream, ex-
cerpts were presented in triplets, with the repeated one
presented twice, followed by the novel one. Keeping
the number of repeated sounds constant allowed to
control for the effects that differences in their number

could have on the brain response (e.g., standard forma-
tion, the effect by which the number of repeated stimuli
influence the response to the deviant element; see
Sussman and Gumenyuk, 2005); moreover, it allowed
to keep the duration of the streams constant while ma-
nipulating the amount of information they encompass
(e.g., the size of each sound excepts). On the other
hand, by keeping the novel position fixed (as the third
element of the triplet), we controlled for between-ex-
periment differences in expectancy effects (e.g., some
novel sounds could be more predictable than others at
specific durations or based on their intrinsic properties)
and, more importantly, we ensured that the novel sound
varied from the repeated ones only for its generative
statistics (same in local features and different in sum-
mary statistics) and original fine structure (different in
local features and same in summary statistics).
Since the interstimulus gap always depended on

sound duration (sound onset was kept constant at
every 500ms), comparisons were assessed between
experiments and within the duration.
Participants had to listen to the sound stream but were

asked to perform an orthogonal task consisting of press-
ing a button when a beep sound was heard. The beep
was a pure tone higher in pitch and intensity than the
sound-texture stream. The pure tone was 50ms in length,
had a frequency of 2200Hz, an amplitude of 50dB, a
sampling rate of 20 kHz, and an RMS of 5. The beeps ran-
domly occurred during the stimulation period. The num-
ber of beeps varied randomly across runs from 0 to 3.
Detection was considered valid when the participant
pressed the key within an arbitrary window of 3 s from
beep occurrence.

Similarity of summary statistics as a function of sound
duration
In order to assess the impact of sound duration on the

statistical similarity between pairs of excerpts, we ex-
tracted statistical values from all the pairs of excerpts (re-
peated and novel) presented in the experiment to all
participants and in all runs (n ¼ 20,736; note that stimuli
would appear more than once, as we adhered to the
exact sound sequences presented to participants). That
is, for each synthetic excerpt pair, we extracted the set
of summary statistics (envelope mean, skewness, var-
iance, and cross-band correlation; modulation power,
C1, and C2) through the auditory texture model (Fig.
1A; McDermott and Simoncelli, 2011). To assess simi-
larity between summary statistic of repeated and novel
sounds, we used a similar procedure to the one em-
ployed during sound synthesis to evaluates the quality
of the output. This procedure consists of computing the
signal-to-noise ratio (SNR) between statistic classes
measured from the synthetic signal and the original
sound texture (McDermott and Simoncelli, 2011).
First, we computed the total squared error « of statistics

measured from repeated sounds and the corresponding
novel sound at each cochlear channel k (n¼ 32) as
following:

Research Article: New Research 7 of 16

October 2023, 10(10) ENEURO.0026-23.2023 eNeuro.org



« k ¼ StatRep� StatNovð Þ2; k 2 ½1;2;3 :::; 32�
where StatRep is a statistic class (i.e., envelope mean,
variance, or modulation power) measured from a repeated
sound excerpt and StatNov is the same statistic class
measured from the corresponding novel sound in the tri-
plet. Note that for statistic classes that had more than the
one dimension k (i.e., modulation power and correlations)
the values across other dimensions (i.e., modulation bands)
were summed before compute the error, as in McDermott
and Simoncelli (2011).
Second, we calculated the SNR for each statistic class

by dividing the sum of the squared statistic values meas-
ured from the repeated sound by the squared error be-
tween repeated and novel sounds as following:

SNR ¼ 10log10

X
k
StatRep kð Þ2X

k
« kð Þ

0
@

1
A; k 2 ½1;2; 3 :::; 32�:

We computed one SNR for each statistic class (n¼ 7)
and then average their values to have one average SNR for
each excerpt pair presented in each experiment and duration.
Average SNRs are displayed in Figure 1D.
We then compared whether the average SNRs of sound

excerpts were significantly different between experiment
and within duration by performing nonparametric tests
(Wilcoxon rank-sum test). The results showed a clear dis-
sociation according to sound duration. When sounds
were short (40ms), the average SNR of statistics between
repeated and novel sounds was higher in the summary
statistics experiment (p, 0.001, mean¼ 9.94; SD¼ 2.4)
than in the local features one (mean ¼ 8.34; SD ¼ 1.24).
Namely, when sounds were short, statistical values were
influenced by the white noise sample, thus sounds origi-
nated from the same seed had more similar values com-
pared with when they originated from a different one,
disregarding the generative statistics that were imposed.
Thus, we expected larger neural discriminatory responses
in local features experiment compared with the summary
statistics one.
Conversely, at long duration (478ms), the average statis-

tic SNR between repeated and novel sounds was more
dissimilar in the summary statistics experiment (p, 0.001,
mean ¼ 6.73; SD ¼ 2.10) than in local features one
(mean¼ 9.31; SD¼ 1.23). At increasing sound dura-
tion, summary statistics were no longer influenced by
the temporal structure of the original white noise sam-
ple as they converged to their original values. Based
on this observation, we expected greater neural acti-
vation in response to summary statistics change com-
pared with local features when sounds were long. The
same pattern was observed for medium sound duration
(209ms; p, 0.001, mean summary statistics ¼ 8.00; SD ¼
2.21; mean local features¼ 9.19; SD¼ 1.30), although there
was a clear trend of decreasing average SNR with increasing
sound duration in the summary statistics experiment (Fig. 1D).
Overall, this analysis showed that the statistical similar-

ity measured from the presented sounds well predicted
the brain response observed in the EEG.

Similarity of temporal amplitudemodulation in brief
excerpts
The previous analysis showed higher statistical similar-

ity measured at high (but not low) temporal resolutions
from the excerpt pairs presented in the summary statistics
experiment. To test the hypothesis that this effect de-
pended on the original temporal structure of white noise
samples (which will be more similar in the summary statis-
tics experiment compared with the local features one), we
conducted a similar correlation analysis for brief excerpts,
but this time using as dependent variables the excerpts
broadband amplitude modulations and disregarding their
spectral density. Specifically, for every sound pair pre-
sented across participants, we used the auditory texture
model (Fig. 1A; McDermott and Simoncelli, 2011) to com-
pute the cochleograms of all the 40-ms excerpts pre-
sented in the study (n ¼ 6912) and averaged them across
frequency bands to extract their broadband envelopes.
We then computed Pearson’s correlations between the
envelopes of each excerpt pair (repeated and novel) to es-
timate their linear relationship (Fig. 1F). The correlation co-
efficients (r) were transformed into Fisher-z scores for
statistical comparison by t tests. The results showed that
the amplitude modulations over time between excerpt
pairs were more correlated in the summary statistics
experiment (mean¼ 2.35, SD¼ 0.71) than in the local
features experiment (mean¼ 1.63, std¼ 0.51, p-value ,
0.001). This result confirmed that regardless of their spec-
tral density, the repeated and novel sounds in the sum-
mary statistics experiment shared more comparable
temporal amplitude modulations than those in the local
features experiment.

EEG recording
Electroencephalography (EEG) was recorded from an

EGI HydroCel Geodesic Sensor Net with 65 EEG channels
and a Net Amps 400 amplifier [Electrical Geodesics (EGI)].
The acquisition was obtained via EGI’s Net Station 5 soft-
ware (EGI). Central electrode E65 (Cz) was used as a ref-
erence. Four electrodes were located above the eyes and
on the cheeks to capture eye movements. Electrode im-
pedances were kept below 30 kV. The continuous EEG
signal was recorded throughout the session with a sam-
pling rate of 500Hz.
Experiment sounds were played from a stereo speaker

(Bose Corporation) positioned in front of the participant
and at a 1m distance from the eyes; the sound level was
kept constant across participants and runs (70dB). The
experiment ran on MATLAB (R2018b; The MathWorks
Inc.); written instructions were displayed only at the begin-
ning of the experimental session, via Psychtoolbox version
3 (Brainard and Vision, 1997; PTB-3; http://psychtoolbox.
org/).

EEG data analysis
Preprocessing
Data were preprocessed with a semi-automatic pipeline

implemented in MATLAB (see Stropahl et al., 2018;
Bottari et al., 2020). Preprocessing was performed using
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EEGLAB (Delorme and Makeig, 2004; https://sccn.ucsd.
edu/eeglab/index.php). Data were loaded, excluding elec-
trode E65 (Cz), which was the reference channel of our
EEG setup (thus consisting only of zero values).
A high-pass filter (windowed sinc FIR filter, cutoff fre-

quency 0.1Hz, and filter order 10,000) was applied to the
continuous signal to remove slow drifts and DC offset.
A first segmentation in time was performed by epoching

the signal according to the event onset. To avoid bound-
ary artifacts, the signal was cut 2 s before its onset event
and until 2 s after the end of the presentation (thus, from
�2 to 1114 s) for each run. For each participant, epochs
were merged in a single file containing only the parts of
the signal referring to significant stimulation (thus exclud-
ing breaks between trials).
Independent Component Analysis (ICA; Bell and Sejnowski,

1995; Jung et al., 2000a, b) was used to identify stereo-
typical artifacts. To improve ICA decomposition and
reduce computational time, data were low-pass fil-
tered (windowed sinc FIR filter, cutoff frequency 40 Hz,
filter order 50), downsampled to 250 Hz, high-pass fil-
tered (windowed sinc FIR filter, cutoff frequency 1 Hz,
filter order 500), and segmented into consecutive
dummy epochs of 1 s to spot nonstereotypical arti-
facts. Epochs with joint probability larger than 3 SDs
were rejected (Bottari et al., 2020). PCA rank reduction
was not applied before ICA to avoid compromising its
quality and effectiveness (Artoni et al., 2018).
For each subject, ICA weights were computed using the

EEGLAB runica algorithm and then assigned to the corre-
sponding original raw (unfiltered) dataset. Topographies for
each component were plotted for visual inspection. Artifacts
associated with eye movements and blinks were expected,
and so a CORRMAP algorithm (Viola et al., 2009) was used
to remove components associated with such artifacts semi-
automatically. The automatic classification of components
was performed using the EEGLAB plugin ICLabel (Pion-
Tonachini et al., 2019). Components representing eye
movements and blinks were identified from their topographi-
cal map within the components ICLabel marked as “Eye”
with a percentage above 95%. Among these components,
those with the highest rankings were selected from a single
dataset and used as templates (one for eye movements and
one for blinks). CORRMAP algorithm clusters ICA compo-
nents with similar topography across all datasets to highlight
the similarity between the IC template and all the other ICs.
A correlation of the ICA inverse weights was computed, and
similarity was allocated with a threshold criterion of correla-
tion coefficient being �0.8 (default value of CORRMAP;
Viola et al., 2009). For all participants, on average, 1.92 com-
ponents were removed (SD¼ 0.88; range¼ 0–4).
Bad channels were interpolated after visually inspecting

the scroll of the entire signal and power spectral density
for each electrode. On average, 3.75 (range ¼ 1–8; SD ¼
2.21) channels were interpolated. The interpolation of
noisy channels was performed via spherical interpolation
implemented in EEGLAB.
Finally, the reference channel (Cz) was reintroduced in

the EEG data of each participant, and the datasets were
re-referenced to the average across all channels.

Time domain analysis
This analysis was performed to extract auditory evoked

potentials and uncover phase-locked magnitude changes
associated with the two modes of sound representation
(local features or summary statistics).
Preprocessed data were low-pass filtered (windowed

sinc FIR filter, cutoff frequency ¼ 40Hz, filter order ¼ 50).
Additionally, detrend was applied by filtering the data
above 0.5Hz (windowed sinc FIR filter, cutoff frequency ¼
0.5Hz, filter order ¼ 2000). Consecutive epochs (from
�0.1 to 0.5 s) were generated, including segments of ei-
ther the novel sounds or the repeated one (the second) of
the triplets for each participant and condition. Data were
baseline corrected using the �0.1- to 0-s prestimulus pe-
riod. Specifically, we averaged all the time points from
�100 to 0ms before the onset of each stimulus (either
novel or repeated) and subtracted that value from poststi-
mulus activity (Luck, 2014). Joint probability was used to
prune nonstereotypical artifacts (i.e., sudden increment of
muscular activation); the rejection threshold was 4 SDs
(Stropahl et al., 2018). For novel sounds, on average,
16.58 epochs per participant were removed (SD¼ 5.42;
range ¼ 5–30) out of the 144 concatenated epochs that
each Experiment * Duration comprised; for repeated sounds,
on average, 16.15 epochs were removed (SD¼ 5.11; range¼
5–29), again out of 144 trials per condition.
Data were converted from EEGLAB to FieldTrip

(Oostenveld, et al., 2011; http://fieldtriptoolbox.org).
Grand averages across participants were computed
for each experiment, duration, and stimulus type (re-
peated or novel). Data across trials were averaged,
generating auditory evoked potentials (Extended Data
Fig. 2-1).
For each triplet, we subtracted from the evoked re-

sponse to the novel sound the one to the preceding re-
peated one. Since all stimuli in the triplets (repeated and
novel) were never the same across runs and participants,
the subtraction was performed to ensure that neural re-
sponses were not driven by idiosyncratic differences in
the stimuli that were presented in that specific run, but by
the statistical difference between novel and repeated
ones. Moreover, subtracting the response to the repeated
sound from the one to the novel sound allowed us to iso-
late within-triplet differences from those between triplets.
That is, since the first sound is repeated twice, the re-
sponse to the second repetition is not independent of the
brain activity elicited by the first one and likely incorpo-
rates a suppression mechanism to being exposed to the
same stimulus twice. In the same vein, the subtraction
metrics represented the relative distance between being
exposed to the same sound as opposed to hearing a new
one. Finally, the fact that in the two experiments, novel
and repeated sounds varied for selective properties (ei-
ther local features or summary statistics) allowed us to
address how a deviation in fine temporal details or global
statistics altered the response to sound change.
A nonparametric permutation test was performed be-

tween experiments (local features vs summary statistics)
for each duration (short, medium, and long), employing
the subtracted auditory responses between the novel and
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repeated sounds. The permutation test was performed
under the null hypothesis that probability distributions
across condition-specific averages were identical across
experiments.
The cluster-based permutation approach is a nonpara-

metric test that has the advantage of solving the multiple
comparison problem of multidimensional data in which
you must control several variables, such as time, space,
frequencies, and experimental conditions (Maris and
Oostenveld, 2007).
Notably, statistical analyses between experiments were

performed only within each duration to avoid possible
confounds associated with refractoriness effects because
of different interstimulus intervals (ISI) at long and short
durations.
Thus, the contrasts of interest were: (1) local features

short versus summary statistics short; (2) local features
medium versus summary statistics medium; (3) local fea-
tures long versus summary statistics long.
A series of cluster-based permutation tests [Maris and

Oostenveld, 2007; cluster a threshold of 0.05 (two-tailed,
accounting for positive and negative clusters); 10,000
permutations; minimum neighboring channels¼ 2] was
performed. Cluster-based analyses were performed with-
in a pool of central channels (according to EGI system,
channels: E3, E4, E6, E7, E9, E16, E21, E41, E51, E54,
E65); we selected the channels that better characterized
the response to the second repeated sound, and which
corresponded to the 11 central channels we used in the
analysis (e.g., see the topography in Extended Data Fig.
2-1). By preselecting this smaller number of central chan-
nels (whose response likely originates from auditory sour-
ces), we avoided including noisy channels in the model.
Statistics were run for all samples from 0 to 0.5 s. We ex-
pected novel sounds to elicit larger responses than re-
peated sounds.

Time-frequency analysis
Following the differences in magnitude changes ob-

served between experiments for long and short durations,
we performed data decomposition in the time-frequency
domain to test whether sound changes at a high temporal
resolution (local features in short sounds) were encoded
at faster timescales compared with those occurring at
a low temporal resolution (summary statistics in long
sounds). We investigated frequencies below 40Hz, which
have been associated with auditory processing in stud-
ies including both humans and animals (for review, see
Gourévitch et al., 2020). Specifically, several studies
have marked the relevance of lower (theta, alpha) and
higher (beta) frequency bands concerning auditory fea-
ture integration (VanRullen, 2016; Teng et al., 2018) and
detection of deviant sounds (Snyder and Large, 2005;
Fujioka et al., 2012).
Preprocessed data were low-pass filtered to 100Hz

(windowed sinc FIR filter, cutoff frequency ¼ 100Hz, filter
order ¼ 20) to attenuate high frequencies and high-pass
filtered at 0.5Hz (as with time-domain data). Data were
epoched into segments from �0.5 to 1 s from stimulus
onset: the second repeated or the novel. Joint probability

was used to remove bad segments with a threshold of 4
SDs. On average, 11.96 epochs were removed for re-
peated sounds (range ¼ 4–25; SD ¼ 4.28) and 11.58 for
novel ones (range ¼ 4–26; SD ¼ 4.23). The resulting
epoched datasets were converted to Fieldtrip for time-fre-
quency analysis. We used complex Morlet wavelets to ex-
tract the power spectrum at each frequency of interest
and time point. The frequencies spanned from 4 to 40Hz
in steps of 2Hz; the time window for decomposition com-
prised latencies from �0.5 to 1 s, around stimulus onset
(either novel or repeated) in steps of 20ms. Finally, the
length of the wavelets (in cycles) increased linearly from 3 to
6.32 cycles with increasing frequency (depending on the
number of frequencies to estimate; N ¼ 19). The signal was
zero-padded at the beginning and end to ensure convolu-
tion with the central part of the window. The resulting power
spectrum for each participant was averaged across trials.
Then, we performed a baseline correction to account

for the power scaling (1/f). Unlike ERP analysis, baseline
selection is a more sensible choice in time-frequency.
Therefore, it was crucial to choose a baseline whose posi-
tion did not affect the results or over-boosted the effects.
By using a stimulus-specific baseline as in the ERPs, for
the novel sounds, we would be using as baseline the ac-
tivity from a condition that, at least in some frequency
ranges, is likely suppressed (the last 100ms of the re-
sponse to the second repeated sound), while for the sec-
ond repeated sound, we would be using as a baseline a
segment in which activity is likely enhanced (as the first re-
peated sound includes between-triplet changes). Because of
the nonlinearity of the baseline (to account for 1/f distribu-
tion), this will affect some frequencies more than others.
When subtracting the power to the second repeated sound
from the power measured for the novel sound, we would not
bemeasuring the real dissimilarity between these responses,
because the baseline correction would be unfair and so the
relative power change. To account for this, we selected
the same baseline for both the repeated and novel sounds,
corresponding to the activity from �100 to 0ms before the
second repeated sound. We decided to use a condition-
averaged baseline (Cohen and Cavanagh, 2011; Cohen and
Donner, 2013) to account for differences in the oscillatory
tonic response as compared with the phasic one; since we
are presenting a change always at the same rate, the activity
could be phase-locked in time in a similar way across all the
experiments, but the power at specific frequency bands
could be higher in one experiment as compared with the
other. If we used a condition-specific baseline, this effect
would be masked because the activity would be corrected
for the relative baseline measured during that stimulation
stream. Therefore, we took the activity from 100ms before
the onset of the second repeated sound for each experiment
(local features or summary statistics) and averaged their
power separately for each duration. As a baseline normaliza-
tion method, we selected the relative change:

pow tð Þ � bsl
� �

=bsl;

where pow is the total power at each sample (t) within the
latencies of interest for repeated and novel grand-aver-
aged trials, and bsl is the averaged baseline (across
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experiment and time). The grand average of baseline-cor-
rected power spectra of all participants was computed.
We investigated the neural activity underlying the dis-

crimination of novel and repeated sounds across ex-
periments for short and long durations. Thus, we first
subtracted the power at repeated trials from that at
novel trials and then used cluster-based permutation
(Maris and Oostenveld, 2007) to investigate differences
between neural responses to sound changes across ex-
periments (local features vs summary statistics) at each
of the selected durations (short or long), at any latency
(0 500ms) and across all (65) channels (minimum neigh-
boring channels¼ 1). Following the inspection of power
change between novel trials and repeated trials, oscilla-
tory activity above 30Hz was not considered. We used
the period of the oscillatory activity as an index of the
temporal scale of the discriminative auditory process-
ing, either slow, medium or fast. Since we did not have
any a priori hypothesis concerning the contribution spe-
cific bands or ranges (e.g., from 9.5 to 16Hz) might
have, we divided the power change into equally spaced
frequency bands (each including eight frequencies of
interest, spaced in steps of 2 Hz), creating a slow, me-
dium, and fast oscillation range between 4 and 30Hz.
These frequencies of interest included canonical theta,
alpha, and beta oscillations (theta and alpha: 4–12 Hz;
low beta: 12–20 Hz; high beta: 20–28 Hz) but were un-
biased by their canonical subdivision (for which theta
would be 4–7 Hz, alpha 8–12 Hz, beta 13–25 Hz, and
low gamma 25–40 Hz). We instead hypothesized that
the temporal scale of oscillation (from slower to higher)
would encode the type of change that had occurred
(local features vs summary statistics). That is, depend-
ing on sound duration, we expected to detect different
power modulations in response to changes in local fea-
tures as compared with summary statistics at different
timescales (frequency bands). Cluster permutation was
performed separately for each frequency range (10,000
permutations). The directionality of the test was based
on results in the auditory evoked responses (see Time-
domain results) and on the specific frequency ranges:
specifically, for a short duration, we expected power
changes in higher frequencies in local features as compared
with summary statistics. Conversely, at long duration, we
expected greater power changes in the lower-frequency
range in response to sound discrimination based on sum-
mary statistics compared with those based on local fea-
tures. For the short duration, we thus expected: local
features . summary statistics in the 4- to 12-Hz range and
local features , summary statistics in 12–20 and 20–28 Hz.
The opposite outcomewas anticipated for the long duration:
summary statistics. local features in the alpha-theta range;
summary statistics , local features for beta bands (given
the predefined directions of the effects, cluster alpha thresh-
old was 0.05, one-tailed).

Data availability
Raw EEG data, analysis scripts, participants’ informa-

tion, and sound excerpts employed in the experiment are
available in an online repository at this link: https://data.
mendeley.com/datasets/gx7cb7fnv4/1.

Results
Behavioral results
For each condition, the percentage of correct beep detec-

tions was above 90% (local features 40: mean ¼ 0.99, SD ¼
0.03; local features 209: mean ¼ 0.99, SD ¼ 0.05; local fea-
tures 478: mean ¼ 1, SD ¼ 0; summary statistics 40:
mean¼ 0.99, SD ¼ 0.05; summary statistics 209: mean ¼
0.97, SD¼ 0.08; summary statistics 478: mean ¼ 0.97, SD¼
0.11; Extended Data Fig. 1-1A). We ran a two-way ANOVA
for repeated measures with factors experiment (two levels,
local features vs summary statistics) and Duration (3 levels,
40, 209, and 478) to address whether experiment type and
stimulus length had any impact on beep detection and partic-
ipant attention to the task. No significant main effects were
observed (Experiment, F(1,23) ¼ 3.62, p ¼ 0.07, h2¼ 0.14;
Duration, F(2,46)¼ 0.58, p¼ 0.56, h2¼ 0.3) or their interaction
(Experiment * Duration, F(2,46)¼ 0.45, p¼ 0.64, h2¼ 0.2).
These behavioral results provide evidence that partici-

pants were attentive and responsive during sound pre-
sentation throughout the experiment and that attention to
this orthogonal task was not influenced by the duration of
the sound or experimental condition.

Time domain results
By comparing local features versus summary statistics

separately for each sound duration, cluster permutation
revealed a significant positive cluster, selectively for the
short sound duration 40 (p, 0.02), lasting from 188 to
220ms after stimulus onset. Following the prediction, re-
sults revealed a greater auditory potential of local features
compared with summary statistics for short duration. No
significant positive cluster was found for the medium (209)
and long (478) sound durations (all p. 0.39). Conversely, a
significant negative cluster was found selectively for the
long duration 478 (p, 0.001), lasting from 220 to 308ms
after stimulus onset. These results indicate a greater re-
sponse for summary statistics than local features at long du-
rations only. No differences emerged for short and medium
sound durations (all ps. 0.33).
Results clearly reveal double dissociations at the neural

level based on stimulus length and mode of representa-
tion (Fig. 2B,C). Findings support behavioral outcomes
for which the processing of local features is favored for brief
sound excerpts, while summary statistics are built at a slow-
er temporal rate as information is accumulated (McDermott
et al., 2013; Berto et al., 2021). Going beyond past behav-
ioral effects, our results clearly show that local and summary
representations can emerge automatically from exposure to
systematic sound changes. The neural response to an
acoustic change depends on the similarity between local
features and summary representations of sound excerpts.
Summary statistics similarity can be manipulated as a
function of sound duration, eliciting a dissociation in the
magnitude of brain response that matches behavioral
expectations.

Time-frequency results
Since summary statistics emerge over time, we ex-

pected statistical variations to be encoded by slower
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oscillations than local feature changes. For such encod-
ing, we expected power modulations at faster oscillations
in response to local feature changes in short sounds and
at slower oscillations in response to the emergence of a
different set of summary statistics in long acoustic ex-
cerpts. To test this, we separated the power between 4
and 30Hz into three ranges, equally spaced: slow, 4–12
Hz; medium, 16–20 Hz; and fast, 20–28 Hz. Then, we
used a nonparametric permutation approach to address
whether differences between local features and summary
statistics emerged according to sound duration (short or
long) within the three frequency ranges.
Results followed the predicted pattern. For the short

sound duration, the analysis revealed a significant cluster
between 100 and 220ms, in which sound change in local
features elicited a greater decrease of power in the fastest
oscillation range (20–28 Hz; p , 0.05) compared with
summary statistics (Fig. 3A, left panel). This significant effect
was located over left frontocentral and right posterior sen-
sors (Fig. 3A, left, grand-average topography). Conversely,
for the long sound duration, we found a greater increase of
power in the slow oscillation range for summary statistics
compared with local features (4–12 Hz; p, 0.03); the signifi-
cant cluster consisted mainly of left frontocentral channels
and bilateral posterior channels and spanned from 260 to
500ms (Fig. 3A, right panel). No differences in power were
found between local features and summary statistics for any
sound duration in the medium frequency range (12- to 20-
Hz ranges, at any latency; all ps. 0.24). Overall, results re-
vealed that when sound duration is short, neural oscillations
at higher frequency bands (canonically corresponding to
high beta band) desynchronize more when the acoustic dis-
crimination is driven solely by local features; vice-versa
when sound duration is long, i.e., higher low-frequency os-
cillations (alpha and theta bands) are associated with stimu-
lus changes based on different summary statistics (Fig. 3B).
Overall, these findings show that different temporal

scales at the neural level underpin the discrimination of
variant elements in the auditory environment based on the
amount of information available and the type of sound
change that has occurred.
Notably, beta desynchronization for local features (short

duration) peaks 100–150 ms after stimulus onset, while the
same effect in the time domain has a peak that builds up
around 200ms. The opposite was found for summary sta-
tistics (long duration), in which theta-alpha synchronization
starts ;40ms later than the effect observed in the time do-
main and is more sustained over time (i.e., it lasts the entire
time window). These differences are indicative that the two
measures capture at least partly different aspects of sound
discrimination.

Discussion
The auditory system extracts information at high (local)

and low (summary) temporal resolutions. Here, we as-
sessed whether discriminative responses to local or sum-
mary representations could be measured at the neural
level and whether they are encoded at different temporal
scales (Panzeri et al., 2010). We employed a computational
model (McDermott and Simoncelli, 2011) to synthetically

create stimuli with the same summary statistics but different
local features. We used these synthetic stimuli to present
streams of triplets containing repeated and novel sounds
that could vary in their local features or summary statistics.
Results in the time domain showed that when the sound

duration was short, the magnitude of auditory potentials in-
creased selectively for changes in local features. In contrast,
when the sound duration was long, changes in auditory sta-
tistics elicited a higher response compared with changes in
local features (Fig. 2B,C). Thus, according to sound dura-
tion, we observed an opposite trend in the magnitude
change of the evoked response. Note that for each sound
texture, we manipulated the duration of the excerpts, and
not their properties (we synthesized only four synthetic
exemplars per sound texture, that we cut into smaller ex-
cerpts either 40, 209, or 478ms which were then ran-
domly drawn in the experiments; see above, Materials
and Methods). The dissociation observed between ex-
periments according to sound duration is indicative that
the processing of local features or summary statistics is
strictly dependent on the amount of information pre-
sented. This trend perfectly matched expectations based
on previous psychophysics evaluations (McDermott et al.,
2013; Berto et al., 2021) despite the protocol was slightly
different from the behavioral implementation. In the psy-
chophysical version, the two experiments (local and sum-
mary) were substantially different from each other. One
experiment, called exemplar discrimination, was the
equivalent of the local features experiment in our pro-
tocol and contained two different sounds (since one
was repeated twice). However, the other experiment,
named Texture Discrimination, contained three different
sound excerpts (two derived from the same white noise
but with different imposed summary statistics; one derived
from a different white noise with the same statistics).
Different task demands justified this disparity. Specifically,
in the behavioral version, participants were given very clear
instructions on which sound properties to pay attention to
during each experiment (sound details or sound source, re-
spectively) and even which sound to use for comparison
(the middle one; McDermott et al., 2013). In this protocol,
the sequences had the same structure in both experiments
(two repeated sounds followed by a novel one), while the
only difference was the generative statistics imposed on
the novel sound compared with the repeated one (same in
local and different in summary) or the white noise sample
used to initialize the synthesis (different in local and same
in summary). This allowed us to test for the automaticity of
the processes and to measure distinct neural responses
when the system is exposed to a similar or different set of
statistics combined with the same or different local struc-
ture. Moreover, it permitted a fair comparison between ex-
periments. Nonetheless, results went in the same direction
in both the EEG and the behavioral evaluations, suggesting
similar mechanisms are in place despite the lack of an ex-
plicit request to pay attention to specific sound properties.
Finally, analysis in the time-frequency domain revealed

that neural activity at different temporal scales characterized
discriminative responses to local features or summary
statistics. Faster oscillations (in the beta range) were associ-
ated with discrimination based on local features, and slower
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Figure 3. Results of time-frequency analysis. A, Grand average difference (novel minus repeated) of total power for short and long sound
durations in both experiments (local features and summary statistics) at significant channels. Rectangular regions comprise the latencies
and frequency range in which power changes were significant between experiments after cluster-based permutation. Significant channels
are marked as red stars over the sketch of a scalp (*p, 0.05). In the left panel, results for the short duration are displayed and show higher-
power desynchronization in the 20- to 28-Hz frequency range (high beta) for local features as compared with summary statistics. In the right
panel, results for the long duration show higher 4- to 12-Hz (alpha-theta) power synchronization for summary statistics as compared with
local features. Grand-average topographical maps at significant latencies and frequency ranges are displayed next to the corresponding
power-spectrum plots. B, Average power difference between novel and repeated sounds for each range of frequency bands (slow, medium,
and fast), averaged across all significant channels, plotted at all latencies (from 0 to 0.5 s). Significant channels are marked as red stars over
the sketch of a scalp. Shaded regions show interpolated SE at each time point. *p, 0.05.
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oscillations (in the theta-alpha range) with changes based
on summary statistics.

Automaticity of local features and summary statistics
processing
Auditory responses to novel local features or summary

statistics were associated with differences in magnitude
that could be automatically detected. This finding confirms
that the auditory system can attune its response to specific
sound changes and expands seminal studies measuring
the mismatch negativity (MMN) response (Näätänen et al.,
1978; Tiitinen et al., 1994). MMN is the neural marker of a
process by which the system “scans” for regularities in en-
tering sounds and uses them as references to detect varia-
tions in the auditory scene (for review, see Näätänen et al.,
2001, 2010). In our study, expectations that a change
would occur in the third element of the triplet had a proba-
bility of 1 in each experiment (local features and summary
statistics; Fig. 2A). Thus, spurious expectancy or attentional
effects cannot explain results. Coherently, the MMN re-
sponse to a deviant sound is not affected by prior expecta-
tions that the novel element will occur (Rinne et al., 2001);
rather, the auditory system automatically orients attention
toward it. Here, we highlighted another ability of the system.
Beyond automatic orientation toward a relevant deviant
sound, our results show that it is possible to categorize the
acoustic change according to the representation (local or
summary) and temporal resolution (high or low) at which it
has occurred. Importantly, discriminative neural responses
could be detected even if the task per se did not involve any
discrimination or in-depth processing of either local features
or summary statistics. In other words, the sound changes
were processed even when irrelevant to the behavioral task
participants were attending (rare beep detection), strongly
suggesting that the entrainment to local or global acoustic
change emerges automatically from exposure to regular
changes in the environment and is strictly dependent on the
amount of information presented.
Furthermore, the double dissociation we observed based

on sound duration (with local features eliciting greater mag-
nitude change than summary statistics for short sounds and
vice-versa for long sounds) rules out the possibility of results
being explained by a mere saliency effect (i.e., the fact that,
in summary statistics, a different sound object was pre-
sented). Importantly, the main advantage of using synthetic
sounds instead of natural recordings was to be able to con-
trol the summary statistics embedded in the sounds. That is,
all sounds were random white noise samples to which we
imposed the same (or a different set) of summary statistics.
If the brain were not automatically encoding the summary
statistics, we would not have been able to distinguish be-
tween local features and summary statistics experiments,
especially at long duration, since all repeated and novel
sounds differed for their local structure. Nor would it have
been possible to detect a dissociation in the neural response
according to sound duration. This observation is further sup-
ported by the fact that results emerged despite sound ob-
jects between the triplets being continuously changing (the
only fixed parameter was the expected similarity in local fea-
tures or summary statistics between the novel and repeated
sounds).

These findings can be generalized to a variety of sound
textures (Fig. 2A; see also Extended Data Fig. 1-2) and the
exact moment in which the summary percepts emerge likely
depends on specific comparisons across sound objects (re-
peated and novel). In line with this, using many different
sounds to create sound streams led to grand averaged sig-
nals associated with discrimination based on summary sta-
tistics with a rather spread-out shape (Fig. 2C, right).
Finally, it is important to notice that imposing different

statistics on the same white noise leads to sounds with
different long-term average spectra. Therefore, it is possi-
ble that magnitude differences in response to the sum-
mary statistics experiment, compared with local features,
were driven by low-level spectrotemporal modulations
rather than changes in higher-order statistics. However, if
that was the case, we might have expected an effect al-
ready at medium duration (209ms), which was instead
not present. Additional experiments may be required to
fully rule out this possible confound.

Local features changes are encoded by fast
oscillations
By comparing the difference in total power between

novel and repeated sounds in the two experiments, we
found that, for short sounds, the power between 20 and
28Hz decreased when a change in local features was
detected, as compared with when summary statistics
were changed. This desynchronization occurred be-
tween 80 and 200ms after stimulus onset (Fig. 3A,B,
left). Desynchronization of oscillatory activity is the de-
crease in power measured at specific frequency bands
(generally alpha and beta ranges), which generally
emerges following the onset of an event (Pfurtscheller
and da Silva, 1999). It results from increased cellular
excitability in thalamocortical circuits and generally reflects
cortical withdrawal from the resting state to engage in a
cognitive process (Pfurtscheller and da Silva, 1999).
The 20- to 28-Hz band includes frequencies that are

canonically attributed to high-beta oscillations. Changes
in power synchronization in the beta range have been cor-
related with performance in tasks involving the detection
of temporal or intensity deviations (Arnal et al., 2015;
Herrmann et al., 2016). Overall, these findings suggest
that, among other operations, brain activity in the high
beta range could be engaged in the processing of low-
level properties of a stimulus. Beta-band activity has also
been investigated in the context of rhythmic perception. A
disruption in beta power can be observed in nonrhythmic
sequences or when an attended tone is omitted from a reg-
ular series (Fujioka et al., 2012). Interestingly, beta synchro-
nization not only captures irregularities in a pattern but also
reflects the type of change that has occurred. For instance,
it has been shown that beta desynchronization was higher
before the occurrence of a deviant sound whose pitch var-
ied in a predictable way, as compared with an unpredictable
variation. Accordingly, beta desynchronization has been
proposed as a marker of predictive coding (Engel and Fries,
2010; Chang et al., 2018).
In our model, stimuli could be derived from the same

white noise sample or a different one (Fig. 1C). In local
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features, the novel sound is derived from another white
noise sample, as compared with the repeated sound on
which we imposed the same summary statistics. Thus,
with this synthesis approach, in terms of fine acoustic fea-
tures, when sounds were short, novel sounds had a more
different temporal structure (Fig. 1F) and were statistically
more dissimilar (Figs. 1D, 2B) than their paired repeated
one in the local features experiment as compared with
summary statistics. Overall, these results suggest that, in
the absence of enough information to build summary rep-
resentations, faster oscillations are in charge of small,
acoustic change detection to be used to discriminate
sound excerpts.

Slower oscillations are engaged in summary statistics
processing
By comparing local features with summary statistics at

long durations, we observed that the emergence of differ-
ent auditory statistics in the novel sound, as compared
with the previous, repeated one, elicited higher power at
slower frequencies, compatible with canonical alpha-theta
oscillations. This power synchronization emerged at rela-
tively late latencies from stimulus onset (between 240 and
500ms; Fig. 3A,B, right). and was not present when solely
local features were driving sound change (as in the local
features experiment). Provided that summary statistics can
primarily be measured at increasing sound duration, we ex-
pected differences between long-duration stimuli being
carried by relatively slower brain activity. However, statisti-
cal comparisons were performed within the sound duration;
thus, if this effect was simply driven by the sounds being
longer (478ms) rather than the processing of auditory sta-
tistics, we should not have observed a difference in alpha-
theta synchronization between experiments. Similarly, if the
effect were driven by simply presenting a “more different”
sound in the summary statistics experiment, as compared
with local features one, then we would have seen an effect
also for 209ms, which was not the case; similarly, we
would not have been able to dissociate the effects based
on sound duration. Finally, it is worth noting that the stimu-
lation rate was kept constant across all tested durations
(40, 209, and 478), meaning that we always presented one
sound every half a second. This means that, disregarding
the amount of information we presented, the change always
occurred in a window of 1.5 s (with novel sound always oc-
curring at a frequency of 0.667Hz). Therefore, the effect
strictly depends on the amount of information we presented
within this temporal window, rather than the time interval
between sound excerpts.
A previous study investigated the temporal window of

integration of sound textures, showing that it can ex-
tend for several seconds (McWalter and McDermott,
2018, 2019). In this study, we could not use stimuli lon-
ger than 500ms to maintain the 2Hz rhythmic stimula-
tion pattern in all experiments. Thus, we could not
address the integration effects of single sounds at lon-
ger durations. Interestingly, the integration window meas-
ured for sound textures is relatively long compared with the
receptive fields of auditory neurons, whose response has
been shown to be sustained for about a few hundred

milliseconds (Miller et al., 2002). Previous evidence suggested
the existence of an active chunking mechanism condensing
entering acoustic information within a much longer temporal
window,;150–300 ms (Riecke et al., 2015; VanRullen, 2016;
Teng et al., 2018). Such integration length would be related to
ongoing oscillatory cycles, specifically corresponding to the
theta range (4–7 Hz; Ghitza and Greenberg, 2009; Ghitza,
2012). Compatibly, a recent study showed that acoustic
changes occurring around 200ms could explain the modu-
lations of phase synchronization in theta (Teng et al., 2018).
Although there is no evidence that 200-ms windows

are relevant for texture perception (see McWalter and
McDermott, 2018, 2019), our data show that brain activity
already synchronizes 200ms after stimulus onset to the
emergence of a novel set of auditory statistics. The inte-
gration window of sound texture defined by previous
studies refers to the maximum duration within which the
averaging of local information into summary statistics can
occur (McWalter and McDermott, 2018). It is still unclear
how this relates to the emergence of relevant percepts in
the brain (i.e., sound object identity) in response to aver-
age statistics. The higher power synchronization in the
theta-alpha range observed in response to sensory statis-
tics might be interpreted as one of the possible neural
mechanisms underlying the development of such abstract
representations, which may lead to the perceptual under-
standing that a new sound object has occurred. This would
explain why it happens when a different set of statistics is
detected and not when only local features change while
sound identity remains unchanged.
In conclusion, combining a computational synthesis

approach with electrophysiology revealed distinct corti-
cal representations associated with local and summary
representations. We showed that different neural codes
at faster and slower temporal scales are entrained to
automatically detect changes in entering sounds based
on summary statistics similarity emerging as a function
of sound duration. These results promote using compu-
tational methods to appoint neural markers for basic
auditory computation in fundamental and applied re-
search. Furthermore, the automaticity of the protocol
and the fast implementation allow the testing of differ-
ent populations (including newborns, infants, children,
and clinical patients) that do not have the resources to
attend to complex tasks.
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