TABLE 2.
Overview of the pleiotropic effects of rivaroxaban in endothelial cells (ECs) in vitro.
| Endothelial cell type | Rivaroxaban dose | Stimulation factor | Cellular effects of rivaroxaban | Biological/Pleiotropic effects | Reference |
|---|---|---|---|---|---|
| EA.hy926 | 500 nM | FXa | ↑ Tube formation | Angiogenic effects | Lange et al. (2014) |
| HUVECs | 10 μM | FXa (10 nM) | ↑ Proliferation | Proliferative action | Sanada et al. (2016) |
| ↑ Tubular length | Angiogenic effects | ||||
| ↓CDKN2A, CDKN1C, EGR1, IGFBP-5, IL-1β, IL-6, CCL2, ICAM1 expression | Anti-inflammatory effects | ||||
| HUVECs | 500 nM | FXa (50 and 100 nM) | ↓ ICAM1, CCL2, IL-8 expression | Anti-inflammatory effects | Seki et al. (2017) |
| ↓ CCL2 secretion | |||||
| HaECs | 1 μM | FXa (50 nM) | ↓ IL-1β, IL-6, IL-8, CCL2, ICAM1, VCAM1, MMP2 expression | Anti-inflammatory effects | Ding et al. (2021) |
| ↓ Monocytes adhesion to ECs | |||||
| HUVECs | 50 nM | FXa (9 nM) | ↑ Proliferation | Proliferative action | Álvarez et al. (2018) |
| ↑ Migration | Angiogenic effects | ||||
| ↓ EDN2, SELE, CCL5, VCAM1, MMP2, u-PA expression, platelet adhesion | Anti-inflammatory effects | ||||
| ↑ u-PA activity | |||||
| HCAECs and HDBECs | 137.9, 1379 nM | FXa (10 nM) | ↓ Endothelial permeability | Stabilizes endothelial integrity | Benelhaj et al. (2019) |
| HUVECs | 30 nM | AGEs + 3% citrated-plasma | ↓ MOK, CCL2, ICAM expression | Anti-inflammatory effects | Ishibashi et al. (2014) |
| ↓ ROS generation, THP-1 cell adhesion | Anti-oxidant effects | ||||
| HUVECs | 30 nM + Ang II | AGEs | ↑TFPI expression and activity | Angiotensin II-mediated anticoagulant effects | Yang et al. (2017) |
| HUVECs | 50, 500 nM | High glucose (22 mM) | ↓ Senescence, p53, p16 expression | Anti-senescence effects | Maeda et al. (2019) |
| ↑ Telomerase activity and telomere length | |||||
| ↑ NOx, NOS3 expression | Anti-atherosclerotic effects | ||||
| ↓ ROS generation, p22phox, ICAM1, VCAM1, PAR-1 expression | |||||
| HCAECs | 50 nM + Aspirin | D-Glucose (30 mM) | ↑ PRKN, PINK1 expression | Promote mitophagy | Zekri-Nechar et al. (2022a) |
| ↓ ROS generation | Anti-oxidant effects | ||||
| EPCs | 5, 10, 20 μM | High glucose (20 mM) | ↑ Proliferation, migration, tube formation, NOS3, AKT1, p-NOS3, VEGFA expression | Angiogenic effects on diabetes | Wu et al. (2015) |
| ↓ Senescence | |||||
| HCMECs | 1 μM | Hypoxia | ↓ PAR-2, MAPK1/2, NF-κB expression | Anti-fibrotic and anti-oxidant effects | Imano et al. (2018) |
| HCMECs | 1 μM | Hypoxia + sugen5416 | ↓ PAR-2, p-JNK, p-SMAD3, p-ERK-1/2, p-NF-kB expression | Anti-fibrotic effects | Imano et al. (2021) |
| HUVECs | 920 nM | Hypoxia-reoxygenation (H/R) | No effect on ICAM1 and VCAM1, THBD, and EPCR expression | No protective impact on H/R conditions | Guillou et al. (2020) |
| HUVECs | 229, 1150 nM | 25-hydroxycholesterol (25 μΜ) | ↓Endothelial permeability, TF, ICAM1, VEGFA, IL-33, CCL2, TNF expression | Stabilizes endothelial integrity, anti-inflammatory effects | Gorzelak-Pabis et al. (2021) |
| ↑ CDH5 expression | |||||
| HUVECs | 1 μM | FXa (10 nM) + LPS | ↓ PAR-2, NF-κB, IL-1b, TNF, IL-6, p-MAP3K7, p-P65 expression, apoptosis, migration, permeability | Anti-inflammatory effects on ALI | Shi et al. (2018) |
| ↑Viability | |||||
| HPMEC | 50 nM | LPS (1 μg/mL) + SARS-CoV-2 Subunits S1 and S2 (10 nM) | ↑ Mitochondrial membrane potential | Covid-19-induced mitochondrial shift prevention effects | Zekri-Nechar et al. (2022b) |
| ↓Cytochrome C oxidase activity, LDH activity, UCP2 expression | |||||
| HBEC-5i + Human Astrocytes | 10 μM | NA | P-gp and BRCA-mediated BBB transportation | ABC transportation | Puech et al. (2018) |
EA.hy926, Immortalized Human Umbilical Vein Endothelial Cell Line; HUVECs, Human Umbilical Vein Endothelial Cells; HaECs, Human Aortic Endothelial Cells; HCAECs, Human Coronary Artery Endothelial Cells; HDBECs, Human Dermal Blood Endothelial Cells; HCMECs, Human Cardiac Microvascular Endothelial Cells; EPCs, Endothelial Progenitor Cells; HPMEC, Human Pulmonary Microvascular Endothelial Cells; HBEC-5i, Human Brain Endothelial Cells-5 immortalized; FXa, Factor Xa; AGEs, Advanced Glycation End Products; LPS, Lipopolysaccharide; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; CDKN2A, Cyclin-Dependent Kinase Inhibitor 2A; CDKN1C, Cyclin-Dependent Kinase Inhibitor 1C; EGR1, Early Growth Response 1; IGFBP-5, Insulin-Like Growth Factor-Binding Protein 5; IL-1β, Interleukin-1 beta; CCL2, C-C Motif Chemokine Ligand 2; ICAM1, Intercellular Adhesion Molecule-1; VCAM1, Vascular Cell Adhesion Molecule-1; MMP2, Matrix Metalloproteinase-2; EDN2, Endothelin-2; SELE, Selectin E; u-PA, urokinase Plasminogen Activator; MOK, Mitogen-Activated Protein Kinase Kinase; ROS, Reactive Oxygen Species; THP-1, Human Monocytic Cell Line; TFPI, Tissue Factor Pathway Inhibitor; NOx, Nitrogen Oxides; NOS3, Nitric Oxide Synthase 3; PRKN, Parkin RBR E3 Ubiquitin Protein Ligase; PINK1, PTEN-Induced Kinase 1; AKT1, Protein Kinase B; VEGFA, Vascular Endothelial Growth Factor A; PAR, Proteinase-Activated Receptor; p-MAPK1/2, Phosphorylated Mitogen-Activated Protein Kinase 1/2; NF-κB, Nuclear Factor Kappa B; JNK, c-Jun N-Terminal Kinase; SMAD3, Mothers Against Decapentaplegic Homolog 3; ERK-1/2, Extracellular Signal-Regulated Kinase 1/2; EPCR, Endothelial Protein C Receptor; TF, Tissue Factor; TNF, Tumor Necrosis Factor; CDH5, Cadherin 5; LDH, Lactate Dehydrogenase; UCP2, Uncoupling Protein 2; P-gp, P-Glycoprotein; BRCA, Breast Cancer Resistance Protein; BBB, Blood-Brain Barrier; ALI, Acute Lung Injury; COVID-19, Coronavirus Disease 2019; ABC, ATP-Binding Cassette.