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Abstract
Motivation: The detection of homology through sequence comparison is a typical first step in the study of protein function and evolution. In this
work, we explore the applicability of protein language models to this task.

Results: We introduce pLM-BLAST, a tool inspired by BLAST, that detects distant homology by comparing single-sequence representations
(embeddings) derived from a protein language model, ProtT5. Our benchmarks reveal that pLM-BLAST maintains a level of accuracy on par with
HHsearch for both highly similar sequences (with >50% identity) and markedly divergent sequences (with <30% identity), while being signifi-
cantly faster. Additionally, pLM-BLAST stands out among other embedding-based tools due to its ability to compute local alignments. We show
that these local alignments, produced by pLM-BLAST, often connect highly divergent proteins, thereby highlighting its potential to uncover previ-
ously undiscovered homologous relationships and improve protein annotation.

Availability and implementation: pLM-BLAST is accessible via the MPI Bioinformatics Toolkit as a web server for searching precomputed data-
bases (https://toolkit.tuebingen.mpg.de/tools/plmblast). It is also available as a standalone tool for building custom databases and performing
batch searches (https://github.com/labstructbioinf/pLM-BLAST).

recent revolution in structure prediction (Jumper et al. 2021,
Lin et al. 2022, 2023), predicted structures are available for a
large proportion of known proteins, and structural similarity
is increasingly being used to infer homology. However, simi-
lar structures, particularly at the domain and subdomain lev-
els, may have evolved convergently due to the limited number
of structural solutions available to a folded polypeptide chain,
and thus structural similarity is often not conclusive evidence
of common ancestry. To address this issue, several deep

1. Introduction

Homology, i.e. descent from a common ancestor, and its infer-
ence are fundamental to comparative, evolutionary, and mo-
lecular biology. In the case of proteins, statistically significant
local or global sequence similarity is accepted as the primary
marker for inferring homology. When the similarity between
the protein sequences being compared is high (> 30%), homol-
ogy can be readily detected using methods based on sequence-
to-sequence and sequence-to-profile comparisons such as

BLAST or PSI-BLAST (Altschul et al. 1997). However, when
similarity is low (< 30%), methods based on profile HMMs,
such as HMMER and HHsearch, are currently our best tools
to infer homology (Eddy 2011, Steinegger et al. 2019).

In the case of highly distant evolutionary relationships,
sequences may have diverged to the point where we can no
longer detect their relatedness. Because structures diverge
much more slowly than sequences, their similarity is often
used to infer homology in such cases. In fact, owing to the

learning-based methods have sought to detect weak sequence
signals between highly divergent proteins in recent years (Li
et al. 2017, Zheng et al. 2019, Gao and Skolnick 2021). The
most promising of these methods, such as knnProtT5
(Schiitze et al. 2022), EBA (Pantolini et al. 2022), TM-Vec
(Hamamsy et al. 2022), DeepBLAST (Morton et al. 2023),
and DEDAL (Llinares-Lopez et al. 2023), rely on single-
sequence representations obtained from protein language
models (pLMs) (Bepler and Berger 2021). pLMs are neural
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Algorithm 1 outputs set P
Require: H
1 forne Ndo
2 Initialize p, with an empty list
3 Set (1, /') to n-th border coordinates
4: while/ > 1andj> 1do
5 (",)) = argmax; i {Hj-1-1,Hi-1j, Hij1}
6 if H,j < Othen
8: break
9: else
10: Append (/', /') to pp
11: Decrement /, jby one
12: end if
13: end while
14: end for

networks trained in a self-supervised manner on a large num-
ber of natural protein sequences, i.e. with tasks such as guess-
ing masked residues based on contextual information
(Elnaggar et al. 2022, Lin et al. 2023). Once trained, pLMs
can be used to rapidly compute the aforementioned represen-
tations (also referred to as embeddings), i.e. numerical
descriptors of protein sequences that place them in the context
of the total knowledge collected by the network. Because of
their high information content, sequence embeddings have
been successfully applied to many other tasks, including pre-
diction of tertiary structures (Lin et al. 2023), transmembrane
segments (Bernhofer and Rost 2022), and signal peptides
(Teufel et al. 2022).

In this article, we describe pLM-BLAST, a new tool for
detecting local homology between protein sequences that com-
bines pLM representations with a local similarity detection al-
gorithm inspired by BLAST (Altschul et al. 1997). In contrast
to TM-vec and DEDAL, pLM-BLAST is based on an unsuper-
vised approach that does not require training of a specialized
deep-learning model or defining positive labels based on struc-
turally similar or homologous protein pairs. Furthermore, un-
like methods such as TM-vec and EBA, which only provide
global alignments, pLM-BLAST has the ability to compute
both local and global alignments, which is essential for deter-
mining distant homology relationships that may depend on the
conservation of short subdomain fragments (Alva et al. 2015,
Kolodny ez al. 2021). pLM-BLAST is based on an implementa-
tion of a modified Smith-Waterman algorithm, in which the
substitution matrix is generated directly from the raw pLM
representations of the two sequences to be compared. In this
work, we used the pLM ProtTS5 (Elnaggar et al. 2022), but this
approach can be used in conjunction with other pLMs to gen-
erate local and global alignments. In benchmarks using domain
pairs from the ECOD protein classification database (Cheng
et al. 2014), pLM-BLAST demonstrated its suitability for fast
pairwise comparisons and database searches to detect distant
homology and produce highly precise alignments.

2. Materials and methods

pLM-BLAST extends the concept of BLAST by replacing in-
variant substitution matrices, such as BLOSUM62 (Henikoff
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and Henikoff 1992), with per-residue similarities between
protein embeddings. Consequently, the similarity between a
given pair of residues is entirely context-dependent. Such se-
quence context information has been shown to significantly
improve the sensitivity of sequence search methods and enable
the detection of nontrivial conserved patterns (Biegert and
Soding 2009, Remmert ef al. 2011). The workflow of the
method is shown subsequently and in Fig. 1.

2.1 Substitution matrix

The embedding of a sequence seq; is given by a matrix
E; 3 {ejj} of size n x m, where n and m denote the number of
residues and the size of the embedding, respectively. To obtain
standardized and comparable results, the values for each resi-
due embedding are normalized by dividing them by the
Euclidean norm of the row

€ = —F——="¢, (1)

where ¢;; denotes the E; matrix element in the i-th row and j-
th column, and T is the normalization operator. In pLM-
BLAST, a substitution matrix Sy, (Fig. 1A) for two sequences
seq; and seqy, is calculated as

Sk = E,"E,. 2)

The element s;; of the matrix Sy, is in the interval (—1,1)
and denotes the embedding similarity of the i-th residue of
seq; and the j-th residue of seqy. This is equivalent to calculat-
ing the cosine similarity of each pair of residues from seq; and
seq, placing them in a 2D array indexed by the residues of
each sequence.

2.2 Scoring matrix

To obtain local alignments, a scheme adapted from the Smith-
Waterman algorithm is used to create a scoring matrix
(Fig. 1B) Hrx>{h;} of size (|[L|+ 1) x (|K| + 1), where the
first row and column are filled with zeros and the rest of the
matrix is filled using the following procedure:

hi—1j-1 +sjj
hij = max{ max,{h;_p;}. (3)
maxs{/o,;;-_s}

Unlike the original Smith—Waterman algorithm, pLM-
BLAST does not use gap penalties because the s;; values for
dissimilar regions are negative or close to zero due to the co-
sine similarity property. In addition, the above equation does
not truncate the values to zero, which results in a more severe
penalty for dissimilar regions, thus reducing the total number
of potential alignments.

2.3 Traceback procedure

To identify possible matching regions for a given pair of
sequences, a traceback procedure is used to traverse the scor-
ing matrix (Fig. 1C). Unlike the SW algorithm, we do not start
with the highest value in the scoring matrix, but traverse from
all sequence boundaries. Thus, in our approach, the traceback
procedure does not produce a single alignment, but multiple
candidates for possible alignments. For this purpose, #
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Figure 1. (A) Embeddings for the two sequences to be aligned. The y-axis represents the sequence dimension from N- to C-terminus, and the x-axis
represents the embedding dimension (which is a 1024-element vector in the case of the ProtT5 protein language model). The substitution matrix is
computed by matrix multiplication of both embeddings, after each residue has been normalized. (B) The scoring matrix is computed to detect continuous
high-scoring regions in the substitution matrix. (C) A modified traceback procedure is used to traverse the scoring matrix to extract potentially matching
regions, called paths. (D) The possible paths are mapped back onto the substitution matrix, and a moving window of defined length is used to extract

high-scoring subpaths, i.e. local alignments.

possible paths P are constructed, starting from the right and
bottom edges of the matrix H. The path p,, is a set of coordi-
nates from the matrix Hrg, where n € N and N equals
|L] + |K].

2.4 Local alignment

Each path generated by the traceback algorithm is scanned
for the presence of high-scoring subpaths (i.e. local align-
ments) using the values of the corresponding region in the
substitution matrix. To this end, a moving average with a de-
fined fixed window length is applied to each path p,, and sub-
paths whose average score is above the sigma threshold are
captured. By default, the threshold is set to 2 sigmas, which is
defined as two times the average standard deviation of the
substitution matrix. Our tests showed that the standard devia-
tion of the substitution matrix tends to be ~0.075, while the
path score for meaningful alignments is an order of magni-
tude higher. However, increasing (> 2) or decreasing (< 2)
the standard deviation cutoff makes the algorithm more strict
or more permissive, respectively.

2.5 Global alignment

In addition to local alignments, pLM-BLAST can also per-
form global alignments using the Needleman—Wunsch algo-
rithm (Needleman and Wunsch 1970). The original algorithm
remains the same except that the similarity matrix is replaced
by the embedding-based substitution matrix S and the gap
penalty is set to zero.

2.6 Homology benchmark

To evaluate the ability of pLM-BLAST and other methods to
detect homology between protein sequences, we constructed
two benchmark sets based on the ECOD database (Cheng
et al. 2014): first, “hard,” which focuses on difficult cases
where the similarity between sequences does not exceed 30%;
and second, “easy,” where we test the methods in detecting
homology between sequences with 50%-70% similarity.

To construct the “hard” set, the sequences of all ECOD
domains (version 20220912), excluding nested domains, with
a length of 50-600 amino acids were obtained using the
localpdb ECOD plugin (Ludwiczak et al. 2022) and clustered
using MMSeqs2 with a sequence identity cutoff of 30%
(Steinegger and Soding 2017). The longest sequences were se-
lected as cluster representatives and those belonging to H-

groups with less than five members were removed. The final
benchmark set was created by randomly selecting five
domains from 300 H-groups, i.e. ECOD levels that group to-
gether homologous domains with common ancestry. This
procedure was designed to select domains from different T-
groups; a T-group is a sublevel that groups together homolo-
gous domains within an H-group that are topologically simi-
lar. As a result, we obtained a set of 1500 ECOD domains
from 300 H-groups, none of which shared >30% sequence
identity.

For each ECOD domain in the benchmark set, an HMM
profile and sequence embedding were calculated using three
iterations of HHblits over the UniRef30 database with default
settings (Steinegger et al. 2019) and ProtTS (prot_t5 x1 -
half uniref50-enc) (Elnaggar et al. 2022), respectively.
The embeddings were compared all-against-all with pLM-
BLAST (in local and global mode), TM-Vec, and EBA, while
the HMM profiles were compared with HHsearch. Matches
between domains of the same H-group were considered true
positives, matches between different H-groups belonging to
the same X-group (an ECOD classification level that groups
H-groups that may be homologous) were considered neutral,
and finally matches between different X-groups were consid-
ered false positives. For the calculation of precision-recall
curves (Fig. 2A), we filled missing data (i.e. pairs for which a
given method did not provide a score) with zeros, assuming
that the lack of prediction can be considered a negative pre-
diction. In Fig. 2A, the regions of the curves resulting from
such a completion procedure have been omitted for clarity
(the complete curves are available as Supplementary Fig. S1).
We used the HHsearch match probability, the EBA max
score, and the raw pLM-BLAST and TM-Vec scores to calcu-
late the plots.

A similar procedure was used to construct the “easy”
benchmark set. As with the “hard” set, the ECOD was first
clustered using MMSeqs2 with a 70% sequence identity cut-
off to remove redundancy. The resulting sequences were then
clustered again using a 50% sequence identity cutoff, and
those from clusters containing less than seven members or
containing members from more than one ECOD H-group
were removed. Finally, for each H-group, only the largest
MMSeqs2 cluster was retained. As a result, we obtained 1032
ECOD domains grouped into 103 clusters. In the “easy”
benchmark, we used a stricter definition of positives and
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Figure 2. Performance of pLM-BLAST and other methods in detecting homology and analogy between protein sequences. (A) Benchmark for the task of
reconstructing H-groups as defined in the ECOD database. The left panel shows the precision-recall curve and the right panel shows the number of true
and false positives. The false positives are plotted on a logarithmic scale. (B) A comparison of methods on a set of 89 analogous protein pairs. The
percentages denote the fraction of pairs for which a particular method yields a score. These cases are quantified in terms of the returned score (x-axis)
and the coverage of the analogous region shared by the pairs (y-axis). The red vertical dashed lines correspond to the average score for homologous pairs.

negatives, defining sequence pairs belonging to the same clus-
ter as positives and the rest as negatives.

2.7 Analogy benchmark

To assess the ability of the methods to distinguish homolo-
gous from analogous sequences, we used the MALISAM data-
base (Cheng et al. 2008), which collects examples of protein
pairs that share similar structural motifs that have evolved
convergently. Eighty-nine such cases were obtained from the
database website (http:/prodata.swmed.edu/malisam/) and
processed to define structurally alignable pairs of residues be-
longing to the analogous motifs. Each pair of sequences was
aligned using pLM-BLAST in local and global modes,
HHsearch, and EBA, and the resulting aligned pairs were
compared with those from the MALISAM database. Based on

these comparisons, the total coverage of the analogous motif
and the score of the respective alignment were defined for
each case (Fig. 2B).

2.8 Alignment quality benchmark

To evaluate the quality of the alignments generated by
HHsearch, pLM-BLAST, EBA, and BLAST, we followed a
procedure previously described in Remmert et al. (2011).
First, we extracted all pairs from the “hard” benchmark set
(see above) for which all methods produced an alignment.
Then, for each pair, we computed the structural alignment us-
ing the USalign tool (Zhang et al. 2022) and discarded those
for which the TM score was <0.3, resulting in 444 pairs. The
structure-based sequence alignments provided by USalign de-
fined the ground truth against which the alignments of each
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Figure 3. Alignment quality benchmark. Each point represents the
average per-residue sensitivity (y-axis) and per-residue precision (x-axis)
achieved in the reconstruction of 444 structure-based alignments by a
specific method.

method were compared. Specifically, we considered the preci-
sion, i.e. the fraction of correctly aligned pairs out of all
aligned pairs, and the sensitivity, i.e. the fraction of correctly
aligned pairs out of all structurally alignable pairs. The preci-
sion and sensitivity values were averaged for each method
and plotted (Fig. 3). We also attempted to evaluate TM-Vec
alignments, but for technical reasons were unable to run the
DeepBlast model (Morton et al. 2023) required for alignment
generation, but we expect it to perform with an accuracy
comparable to other global alignment methods.

2.9 Speed benchmark

To evaluate the speed of pLM-BLAST and other methods, we
performed a benchmark wusing five query sequences
(Supplementary File S1) of different lengths and folds to
search the ECOD70 database, i.e. the ECOD database filtered
to maximum 70% identity with MMseqs2. To generate the
HHsearch database, we used HHblits run with three itera-
tions on the UniRef30 database (UniRef database filtered to
maximum 30% sequence identity), version 2022_02. The
benchmark covered the time needed to prepare a given query
(embedding calculation or HHblits search) and to search the
database. pLM-BLAST was used with cosine similarity pre-
filtering (see the next subsection) with the cutoff set at the
90th percentile. All calculations were performed for a fixed
computer specification of a 6-core CPU and a single GPU.
The benchmark was run four times for each method and the
run times were averaged.

2.10 Cosine similarity prefiltering

Typically, when dealing with embeddings, protein similarity
is inferred as the cosine similarity between perprotein embed-
dings (global representations). This approach is very fast, but
suffers from the loss of information stored in the per-residue
embeddings (local representations) due to the averaging that
occurs when the representation is converted to a fixed-size
vector. This loss of information makes it impossible to

capture local similarities and significantly reduces the ability
to detect distant homology. With this in mind, we have devel-
oped a procedure that provides a tradeoff between the use of
global and local representations.

For a given pair of sequences (e.g. the query and one of the
database sequences), per-residue embeddings are taken and
treated as 2D images (Fig. 1A), where one dimension is the se-
quence length and the other is the embedding size (1024 for
ProtT5). We then convolve one embedding with another,
where the first dimension of each convolution window is
user-defined (30 by default) and the second dimension is fixed
and equal to the size of the embedding dimension (1024 for
ProtTS5). This approach produces a 2D matrix in which each
element represents the cosine similarity between each embed-
ding slice of the two sequences. Finally, only if the resulting
matrix has a value above the user-specified threshold, the cor-
responding sequences are passed to the actual pLM-BLAST
method.

3. Results and discussion
3.1 Homology detection

To assess the performance of pLM-BLAST in homology de-
tection, we conducted a comparison with state-of-the-art
methods such as BLAST and HHsearch, as well as other
embedding-based methods (TM-Vec and EBA), using the
Evolutionary Classification of Protein Domains (ECOD) data-
base as a reference (Cheng et al. 2014). The ECOD database
categorizes protein domains based on their evolutionary rela-
tionships and structural similarities and organizes them into
families, topologies, homologous groups (H-groups), possibly
homologous groups (X-groups), and architectures. To evalu-
ate the ability of each method to reconstruct 300 selected
ECOD H-groups, two metrics were used: the precision-recall
curve and the ratio of true positives to false positives (as
shown in Fig. 2). For this study, we specifically curated the
benchmark set to ensure that no pair of sequences exceeded
30% similarity, which led to a particularly challenging dataset
that we refer to as the “hard” set.

In the “hard” benchmark, EBA performed best, followed
by HHsearch and pLM-BLAST, both of which offer similar
levels of accuracy; meanwhile, TM-Vec and BLAST underper-
formed (Fig. 2). The unexpected discrepancy in performance
between EBA, TM-Vec, and pLM-BLAST is noteworthy,
given they all use the same representations derived from the
ProtT5 language model. Unlike the better-performing meth-
ods, pLM-BLAST and EBA, which rely solely on unsupervised
comparisons of raw representations, TM-Vec, the worst-
performing method, uses ProtT5 representations as input for
a specially trained end-to-end deep learning model to generate
structural alignments. This suggests that the raw embeddings
carry sufficient information for homology detection, whereas
the structural similarity predicted by TM-Vec serves as a
much less informative marker for homology.

The superior performance of EBA among ProtT5-based
methods can be attributed to its utilization of an efficient sig-
nal enhancement procedure, which facilitates a more effective
comparison of representations (Pantolini et al. 2022). It
should also be noted that EBA provides only global align-
ments, which are expected to perform better than local align-
ments on a benchmark set consisting of domains, rather than
full-length sequences. This relationship is evident in the per-
formance comparison between pLM-BLAST running in local
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and global modes, with the latter consistently outperforming
the former.

3.2 Analogy detection

Given the strong performance of pLM-BLAST and EBA in the
distant homology detection benchmark, where they achieved
accuracies comparable to HHsearch (Fig. 2A), we further
tested them for their ability to distinguish homology from
analogy (i.e. sequence similarity resulting from convergent
evolution rather than common ancestry). To do this, we used
89 cases from the MALISAM database (Cheng er al. 2008),
which collects examples of protein motifs that share similar
structures due to analogous origins. HHsearch and pLM-
BLAST’s local alignments covered the analogous regions in
only 2% and 3% of the test cases, respectively, all with scores
below those expected for clearly homologous pairs (Fig. 2B).
In contrast, pLM-BLAST and EBA global alignments covered
analogous regions in 31% and 33% of cases, respectively, but
also with scores below those expected for homologous
sequences. These results suggest that embedding-based meth-
ods, much like HHsearch, are not misled by analogous sig-
nals, especially when local alignments are used.

3.3 Alignment quality

The benchmarks described above focused on the detection of
homologous domain pairs based on the provided scores.
However, an equally important aspect is the extent to which
the generated alignments are correct at the per-residue level.
To evaluate this, we used structure-based sequence alignments
as a reference point against which the individual sequence-
based alignments were compared. For each method, we calcu-
lated per-residue precision and sensitivity coefficients (see
Section 2.8 for details). The results obtained indicate that
pLM-BLAST global, EBA global, and HHsearch all provided
very good alignments, with EBA global slightly less effective
in terms of precision (Fig. 3). The pLM-BLAST in local mode
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also provided good precision but lower sensitivity, indicating
that its alignments are as precise as those of HHsearch and
other embedding-based methods, which run in global mode
but shorter, thus not covering all structurally alignable pairs.
As we will illustrate later in the text, such short alignments
may correspond to ancestral fragments (Alva et al. 2015,
Kolodny et al. 2021) that are shared between different protein
folds.

3.4 Comparison of similar sequences

Above, we discussed pLM-BLAST and related methods in the
context of detecting homology between highly divergent
sequences that share <30% pairwise sequence identity.
However, sequences sharing >50% identity are also routinely
compared in bioinformatics tasks. Bearing this in mind, we
considered an additional “easy” benchmark set, where ho-
mologous sequences share between 50% and 70% identity
(see Section 2.6 for details). This benchmark was also based
on domain sequences from the ECOD database, but it aimed
to reconstruct clusters defined by MMsegs2 instead of ECOD
H-groups

The results obtained indicate that pLM-BLAST and all
other benchmarked methods perform almost perfectly in this
task (Fig. 4). Only at precision and recall rates >95% can mi-
nor differences be observed, with BLAST outperforming the
others and TM-Vec demonstrating the lowest accuracy. pLM-
BLAST and EBA in global alignment mode perform equally
well, closely followed by HHsearch and pLM-BLAST in local
mode. The strong performance of pLM-BLAST, EBA, and
TM-Vec in this test suggests that embedding-based methods
are a viable option for comparing similar sequences and
should be considered in the development of new tools for se-
quence searching and clustering, akin to DIAMOND
(Buchfink et al. 2021) or MMseqs2 (Steinegger and Soding
2017).

Homology detection benchmark (50%-70% sequence identity)
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Figure 4. Performance of pLM-BLAST and other methods in classifying sequences with 50%—70% identity. (A) Precision-recall curve. (B) The same
precision-recall curve as in (A) is shown, but it is limited to the precision and recall ranges that are >95%.
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Table 1. Speed comparison between pLM-BLAST and other methods.?

Method Query 1 (269) Query 2 (55) Query 3 (379) Query 4 (88) Query 5 (132)
pLM-BLAST local 2minSs 54s 2 min 30s 1 min 3s 1 min 27s
HHsearch Smin9s 38s 3min4s 4 min2s 2 min 57s
EBA 7 min 10s 3min1Ss 7 min 23 s 3min46s Smin0Os
TM-Vec 15s 15s 15s 15s 15s

* The runtimes are presented in seconds, and the length of each query sequence is provided in brackets.

3.5 Speed benchmark

A critical aspect of large-scale analyses is computational
speed. Bearing this in mind, we evaluated the speed of pLM-
BLAST, EBA, HHsearch, and TM-Vec while searching the
ECOD70 database (over 62 000 records) using five example
queries of varying lengths (Supplementary File S1).

The results reveal (Table 1) that TM-Vec is the fastest
method, despite being the worst performer in the homology
detection benchmark (Fig. 2). pPLM-BLAST, the second fastest
method, is on average twice as fast as HHsearch and three
times faster than EBA. The only case where HHsearch outper-
formed pLM-BLAST was a coiled-coil domain (query 2 in
Table 1), where only a few homologous sequences could be
detected. These results suggest that pLM-BLAST offers an op-
timal balance between accuracy and speed, with its perfor-
mance being comparable to HHsearch (see Figs. 2 and 3), yet
faster, and offering new insights into protein evolution, as dis-
cussed later. EBA, which delivered the best performance in
the homology detection benchmark, was also the slowest
method. This is probably because it lacks the pre-filtering step
employed by pLM-BLAST (see Section 2.10).

3.5 Potential to discover new homology
relationships

Given the ability of pLM-BLAST to detect homology
(Fig. 2A), distinguish between homology and analogy
(Fig. 2B), and provide high-precision alignments (Fig. 3), we
speculated that some of the high-scoring connections between
different H-groups of the same X-group, or even different X-
groups, could reflect true homology.

In the benchmark of pLM-BLAST run in the local mode,
the most number of connections between H-groups were
found in the Alpha-beta plaits and Flavodoxin-like X-groups
(see Supplementary File S2 for the full list of connected H-
groups). Most of these intra-X-group matches were not
detected by either HHsearch, which is expected since it was
used to define homologous relationships in the ECOD data-
base (Cheng et al. 2014), or EBA, which typically yielded low
scores. We also detected connections between domains of dif-
ferent X-groups, often hinged on the presence of a
subdomain-sized fragment (Alva et al. 2015, Kolodny et al.
20215 Supplementary File S3); for example, between the P-
loop, Rossmann, and Flavodoxin folds (Longo et al. 2020,
Kolodny 2021). Among these cases, we found a fragment con-
served between domains of two different sandwich folds,
namely cupredoxin (ECOD H-group 3156.1) and immuno-
globulin (11.1, 5 A). Despite a global structural similarity
(DALI Z-score=2.7), the sequences of these two proteins
could be aligned only over a short region corresponding to a
beta-hairpin motif. This motif may represent an ancestral
fragment that has been independently “decorated” with sec-
ondary structural elements, resulting in the two observed
structures. In such a scenario, only the two beta-hairpin

motifs would be truly homologous, while the overall struc-
tural similarity could be attributed to convergent evolution.
Moreover, a homologous relationship between these two
domains has been discussed previously (Gough and Chothia
2004, Stevens 2008), and a pLM-BLAST scan of the entire
ECOD database using a cupredoxin domain as a query
revealed additional connections to other Ig-like domains
(Fig. 5). Among them, we identified structures from different
ECOD H-groups of the immunoglobulin-like beta-sandwich
X-group (also see Supplementary File S3), suggesting homol-
ogy in the region of the beta-hairpin motif. Interestingly, the
matches also included a significantly different jelly-roll fold.
Although the structural similarity between cupredoxin and
jelly-roll folds is not as apparent as that of the of the cupre-
doxin and Ig-like folds, all share a Greek key motif in their
core, lending credence to a hypothesis of a common origin.

In our benchmark, we used HHsearch’s homology predic-
tions as a ground truth and reference point for pLM-BLAST
and other methods. However, it is important to note that ho-
mology cannot be definitively proven, and the benchmark is
essentially a comparison of one hypothesis against another.
While HHsearch is a well-established method, and its predic-
tions have provided crucial insights in numerous studies, our
results suggest that embedding-based methods such as pLM-
BLAST could potentially detect homology beyond the bound-
aries defined by HHsearch.

4 Conclusions

pLM-BLAST is a sensitive tool for remote homology detection
that is based on comparison of sequence representations
obtained from the pLM ProtT3. It provides both global and
local alignments, with the latter being crucial for detecting
distant evolutionary relationships (Fig. 5). Additionally, it is
efficient in database searching (Table 1) due to the use of a
prefiltering step. pLM-BLAST is available both as a stand-
alone package and as an easy-to-use web server within the
MPI Bioinformatics Toolkit (Zimmermann et al. 2018),
where it can be used to search precomputed databases.
Currently, the primary limitations of pLM-BLAST are the
maximum size of the target database (as searching enormous,
redundant databases containing millions of sequences would
be computationally costly), and the fact that in local mode, it
typically produces highly precise but shorter alignments than
HHsearch. However, as demonstrated in Fig. 5, these shorter
alignments can indeed be meaningful. The significance of
these alignments, often being subalignments of those provided
by HHsearch (if any are provided), from an evolutionary per-
spective remains to be explored. We anticipate that pLM-
BLAST will prove beneficial in studying protein function and
evolution, including in the cases of singletons/orphan sequen-
ces and taxonomically restricted genes (Barrera-Redondo
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Figure 5. pLM-BLAST scan of the ECOD database using the sequence of the cupredoxin domain. (A) A substitution matrix illustrating the similarity
between cupredoxin and immunoglobulin folds. The numbered axes indicate consecutive residues. The lighter the color, the higher the similarity
between the sequences in a given region. The best local alignment is indicated by a red line. (B) Structures of cupredoxin and immunoglobulin folds, with
the homologous region detected by pLM-BLAST highlighted in red. (C) Graphical representation of the scan results. Bars correspond to hits, color-coded

according to their ECOD X-group membership.

et al. 2022), for which deep HMM profiles cannot be
calculated.
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