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Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease bearing a severe social and economic 
impact. So far, there is no known disease modifying therapy and the current available treatments are symptom oriented. 
Deep Brain Stimulation (DBS) is established as an effective treatment for PD, however current systems lag behind today’s 
technological potential. Adaptive DBS, where stimulation parameters depend on the patient’s physiological state, emerges 
as an important step towards “smart” DBS, a strategy that enables adaptive stimulation and personalized therapy. This new 
strategy is facilitated by currently available neurotechnologies allowing the simultaneous monitoring of multiple signals, 
providing relevant physiological information. Advanced computational models and analytical methods are an important tool 
to explore the richness of the available data and identify signal properties to close the loop in DBS. To tackle this challenge, 
machine learning (ML) methods applied to DBS have gained popularity due to their ability to make good predictions in the 
presence of multiple variables and subtle patterns. ML based approaches are being explored at different fronts such as the 
identification of electrophysiological biomarkers and the development of personalized control systems, leading to effective 
symptom relief. In this review, we explore how ML can help overcome the challenges in the development of closed-loop DBS, 
particularly its role in the search for effective electrophysiology biomarkers. Promising results demonstrate ML potential for 
supporting a new generation of adaptive DBS, with better management of stimulation delivery, resulting in more efficient 
and patient-tailored treatments.
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Introduction

Deep brain stimulation (DBS) is a therapy applied in an 
increasing range of neurological disorders, including Par-
kinson’s disease (PD). Second to Alzheimer’s disease, PD 
is one of the most common neurodegenerative diseases 
worldwide, with tremendous impact in society [1]. Currently 
available pharmacological treatments for PD are symptom 
oriented and there are no disease modifying therapies. These 
treatments achieve symptomatic control in a considerable 
proportion of patients but there is still a significant number 
of patients for whom pharmacologic therapies are ineffective 
or insufficient, leaving DBS therapy as the remaining option.

For the implementation of DBS in PD patients, an elec-
trode is surgically placed in the brain, providing electrical 
stimulation patterns to a specific target area (the subthalamic 
nucleus (STN) or the globus pallidus pars interna (GPi)). 
In the initial setup after surgery, stimulation parameters 
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are explored by the clinician in search for the configuration 
achieving the proper symptomatic control. Each parameter 
is tuned within a range of values where the intervention is 
potentially beneficial to the patient (for a brief overview 
of the tuneable parameters and their known effects see 
Table S1). Outside these subjective and patient dependent 
window’s boundaries, the therapy is not as effective and 
adverse effects might occur. Information on the precise lead 
location, obtained via imaging techniques, is also often taken 
into account in this process. The stimulation parameters are 
adjusted by a trial-and-error approach, relying on qualitative 
evaluation of clinical responses [2, 3]. The parameters are 
then kept fixed for the time between consultations. Given the 
dynamic nature of PD symptoms, this canonical open-loop 
stimulation strategy is suboptimal, since the applied therapy 
does not automatically adapt to the patient’s state nor condi-
tion evolution. Furthermore, its adverse effects (generally 
caused by the continuous stimulation with constant ampli-
tude) are difficult to manage.

Progress towards optimized DBS (on both open and 
closed loop approaches) is challenged by the fact that there 
is still no clear understanding of its mechanisms of action 
on neuronal populations and circuits [4, 5]. While the 

exogenous electrical current applied by the electrode exerts 
direct effects on locally-residing cell bodies, which can be 
of inhibitory or excitatory nature, it also perturbs en pas-
sant axons, resulting in the modulation of complex neural 
networks [6–9]. Indeed, multiple mechanisms of action are 
likely to occur simultaneously. On one hand, this adds com-
plexity to our understanding of the modulation process but, 
on the other hand, it also opens alternative potential targets 
to explore as to improve the neuromodulation results. Possi-
ble therapeutic mechanisms involve the direct suppression of 
local pathological neuronal activity, masking of pathological 
activity, and interactions with re-entrant nonlinear oscilla-
tions [7, 10–15].

Adaptive DBS (aDBS) emerges as a promising paradigm 
to achieve “smart” DBS systems (Fig. 1). The principle 
behind this proposed approach is the optimization of stimu-
lation parameters in direct response to the patient’s electro-
physiological state, achievable in a closed-loop configura-
tion. Closed-loop control mechanisms are associated with 
algorithms capable of automatically regulating the system’s 
parameters in order to maintain a desired/predefined target 
state, without human interaction. For aDBS, this means 
that DBS stimulation parameters continuously adjust to the 

Fig. 1  A development framework for closed-loop control support-
ing adaptive Deep Brain Stimulation (aDBS). The closed-loop con-
trol integrates three key components or units. The sensing unit refers 
to the sensing lead and signal acquisition. The processing unit refers 
to the stimulation strategy and model, and the supporting hardware 

characteristics. The stimulation model can rely on advanced algo-
rithms based on machine learning (ML) methods. The stimulating 
unit refers to the stimulation parameters and the stimulating lead. For 
each unit, relevant associated parameters are presented



5315Journal of Neurology (2023) 270:5313–5326 

1 3

patient’s varying needs. Considering the different possible 
strategies to close the loop in aDBS, the feedback systems 
directly based in neuronal signals are of particular interest. 
These feedback control systems become possible with real-
time neuronal activity recordings obtained directly from the 
target region using dual function electrodes (providing con-
current stimulation and recording). Recent neurostimulators 
are modified to operate with these novel sensing electrodes 
capable of recording local field potentials (LFPs, extracellu-
lar potentials generated by the synchronized electrical activ-
ity of closely located neurons in the vicinity of an electrode 
[16]) together with the delivery of stimulation. This direct 
access to the neuronal activity domain enables the potential 
identification of electrophysiological biomarkers linked to 
pathological states of the disease (here “biomarkers” are 
not molecular in nature but represent instead specific sig-
nal patterns). Monitoring these biomarkers (which may be 
patient specific) and exploring their variability enables the 
adaptation of different stimulation parameters according to 
the needs of each patient and in response to the disease pro-
gression over time. This leads to a potential increase in the 
quality of life of the patient whilst lowering the cumulative 
effect of therapy. Unfortunately, there are still challenges that 
must be overcome for the successful development and imple-
mentation of electrophysiology-based closed-loop aDBS. A 
significant part of these challenges is related to the complex 
signal analysis and to the stimulation modulation.

Machine Learning (ML) methods are rapidly growing in 
popularity as powerful computational tools to deal with the 
complex data from DBS and pave the way to “smart” sys-
tems. These methods can give computers the ability to learn 
and improve from accumulated data (“experience”), with-
out the need to define algorithms or specific dependencies 
between variables. ML offers methods to explore complex 
structure and patterns in the data, that are not easily iden-
tifiable with traditional methods. Given its versatility, ML 
can be useful at different stages of the DBS therapy process 
such as patient selection [17, 18], electrode placement dur-
ing surgery [19–21], prediction of outcome [22–24], and 
management of stimulation [25]. The latter is linked to the 
identification of discriminatory electrophysiology biomark-
ers and associated modulation of stimulation parameters, 
crucial to the development of personalized and adaptive 
control systems for an effective symptoms relief.

The application of ML towards the development of com-
ponents of an aDBS system based on electrophysiology bio-
markers is the focus of this review. We discuss the current 
strategies and challenges towards these “smart” closed-loop 
aDBS technologies, and explore how ML can contribute to 
their development. In specific, we draw our attention to the 
use of ML for the identification and validation of biomark-
ers. PubMed was used for the literature analysis, focusing on 
publications with date ranging from 2015 to 2023. Further 

information regarding the included papers, such as the meth-
ods used and its contextualization in the DBS therapy, can be 
found in Tables S2–S6. In the next section, we start by pro-
viding the core concepts and terminology of ML. We then 
move on to exploring the search for effective biomarkers, 
providing fertile ground to discuss different aDBS strategies 
and technologies. We close the review with the discussion 
of the road ahead for achieving aDBS with the application 
of ML.

Core concepts in machine learning

Machine learning methods are a large family of data-driven 
algorithms capable of automatically improving their abil-
ity to make decisions/predictions through accumulated data 
exposure (“experience”). The application of a ML method 
often implies training a model with the available data, which 
is then tested and validated according to given performance 
criteria. Different metrics (defined according to the problem) 
are used to evaluate the performance of the model and select 
the most adequate for the task. There are three main types of 
methods used in machine learning. In supervised learning, 
the models are trained on annotated datasets (with labelled 
input–output correspondence). In unsupervised learning, 
methods look for hidden patterns or internal structures in 
the input, without pre-defined information about the output. 
Finally, in reinforcement learning a computational agent 
is trained based on policies (“rules”) that reward desired 
actions and punish unwanted ones. Whereas reinforcement 
learning methods yield a relevant potential for training neu-
romodulation systems, they have not yet been employed in 
the context of DBS for PD (but see [26]). As such, in this 
review we focus on unsupervised and supervised learning 
methods successfully used in DBS.

Unsupervised learning algorithms can help in dimension-
ality reduction (search for a reduced set of variables describ-
ing the data), feature extraction (identifying which variables 
can be helpful for discrimination and which are redundant), 
and clustering (grouping sets of data according to similari-
ties or goals). Such algorithms can be used per se, to sup-
port decisions or, in combination with data representation 
techniques, to gain new insights (e.g. the number of classes 
contained in the data, how the data is distributed, and what 
patterns exist within the data) leading to a better selection of 
models in a subsequent processing stage (Fig. S1).

Supervised learning algorithms require labelled data (for 
every input there must be a matching annotated output) and 
two data subsets should be defined: a training subset, for 
adjusting the model’s parameters; and a testing subset, for 
model evaluation with data that was unseen during training 
(a validation subset may also be considered for adjusting the 
model’s hyper-parameters). This division in training data 
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and testing data is fundamental and addresses the ability of 
the model to generalize, i.e. preserve adequate performance 
with new non-annotated data. As real-world data is noisy 
(from both instrumental and physiological sources), there is 
the risk of attaining high performance levels in the training 
data but low levels in the new data (a situation called over-
fitting). Concerning the outputs (predictions) in supervised 
learning, so called regression methods produce continuous 
values whereas classification methods are associated with 
categorical/discrete outputs (Fig. S1). A generic workflow 
to support the development of classification (and detection) 
methods in the context of data-driven stimulation is pre-
sented in Fig. 2.

A particular ML method called deep learning has gained 
considerable relevance, due to its ability to provide good 
estimates even when facing unstructured high dimensional 
data. This method is inspired by the dynamics of biological 
neurons and uses nodes (neuron analogues) which are com-
bined in large architectures with several sequential layers 
to provide the output. The number of elements per layer, 
the number of layers, and the behavior of each layer (e.g., 
fully connected, convolutional, recurrent) are some of the 
parameters that can be adjusted to fit the network to the data/

problem. Despite the widespread use of these techniques, 
the high amount of data that is required for training and the 
“black-box” model that is obtained in the end are strong 
caveats of deep neural networks. Nevertheless, visualization 
tools, data augmentation and transfer learning are techniques 
that can help solving these issues.

Both supervised and unsupervised ML methods, in a vari-
ety of different algorithms, have already been effectively 
used with DBS data (Table 1). In all these methods, the 
quality of the data deserves special attention: incorrect or 
poor-quality data (e.g., outliers, wrong labels, noise), if not 
properly cared for, will lead to under-optimized models and 
to unsatisfactory results. In the ML context, the discussion 
is often focused on the decision of the model and on the 
performance metrics to be considered during the develop-
ment phase. In a clinical setting, the relative impact between 
false positive predictions and false negative predictions is an 
important issue on the choice of performance metrics.

Since these approaches are "data-driven", it is essential 
to ensure the quality of the supporting data, used in the 
training phase, and to monitor the operation, in the deploy-
ment phase. Training datasets should be sufficiently diverse 
to guarantee that a wide range of operational situations 

Fig. 2  Generic workflow associated with the application of supervised learning methods to achieve data-driven stimulation. In light grey (top) is 
the development pipeline and in dark grey (below) is the deployment pipeline
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are anticipated. The amount of data should be sufficient to 
ensure a reasonable fit of the model parameters, and should 
be balanced across classes, so that trends or decision bias do 
not arise. Regarding the operational phase, it is important to 
guarantee that safety limits are established, and that regula-
tory and contingency mechanisms are foreseen.

The quest for effective biomarkers

The concept of biomarkers plays a central role in the devel-
opment of feedback control systems for aDBS. A biomarker 
refers to a characteristic in a physiological signal, such as a 
specific pattern or component, which correlates to a certain 
pathological state. Different motor or electrophysiological 
signals, such as electroencephalography (EEG) signals and 
LFPs, have shown potential for biomarker identification, and 
consequently closing the loop in aDBS [3, 27–34]. LFPs 
present interesting advantages over EEG due to the source 
location and data fidelity, a possibility given the now avail-
able electrodes with combined stimulation and sensing prop-
erties, and appropriate long-term stability at the electrode-
tissue interface [35]. Different neurological conditions have 

already been studied in the context of closed-loop DBS sys-
tems using LFPs as biomarkers (for an overview, see [36]).

Several aspects come into play in the identification of 
effective biomarkers and their selection is determined by the 
disease context and symptoms manifestation. Key features 
to consider during the selection of either single- or multi-
dimensional biomarkers are the high signal-to-noise ratio of 
the recordings and the stability in the presence of external 
artifacts. These artifacts can be caused by non-pathological 
functions, such as intentional movement. In fact, one issue 
with the use of beta-band subcortical oscillations as a bio-
marker in PD is that they are also involved in the modulation 
of voluntary movement [36]. Naturally, important features 
also include the sensitivity and the specificity of the bio-
markers, to ensure the correlation in time with the severity of 
the clinical symptoms [37, 38]. Independently of the source/
type of the physiological signal, the search for strong cor-
relations between signal features and pathological states is a 
challenging analytical task, in which ML methods can have 
an important contribution.

Table 1  Machine learning 
methods in DBS

The methods are organized according to the following categories: Clustering (Ct) and Dimensionality 
Reduction/Feature Selection (DR/FS) for unsupervised learning; Classification (Cf) and Regression/Time 
Series (R/TS) for supervised learning. It should be noticed that some methods can be adapted to operate 
with different purposes. For example, recurrent networks can be used either in a context of classification or 
regression

Type/purpose Method name

Unsupervised
 Clustering Gaussian mixture model

K-means
 Dimensionality reduction/feature 

selection
Linear discriminant analysis (LDA)
Principal component analysis (PCA): kernel PCA
t-distributed stochastic neighbour embedding (t-SNE)

Supervised
 Classification AdaBoost

Decision Tree (DT): Oblique DT
Gradient Boosting Machine: XGBM, Extreme gradient boosted 

trees
Hidden Markov Model (HMM)
K-nearest neighbor (KNN)
Logistic Regression (LR): L1 logistic / LASSO; L2 logistic/Ridge
Naïve Bayes (NB): Conditional model and Gaussian
Neural Networks (NN): Multilayer perceptron, Shallow NN, 

Convolutional NN (CNN), Deep NN, LAMSTAR NN, Recurrent 
Networks

Random Forest (RF): unsupervised RF
Support-vector machine (SVM): SVM based on linear and Radial 

Basis Function (RBF) kernels
 Regression/time series Granger causality

Linear regression
Kalman filters
Recurrent networks
Volterra kernels
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Motor biomarkers

With motor symptoms being a hallmark of PD, several stud-
ies have focused on assessing strong correlations between 
motor features and clinical states. Given that motility is an 
intrinsic feature of the human experience, it is crucial to 
understand what constitutes a pathological motor pattern and 
how it differs from normal motor activity, be it volitional or 
not. A common source for the study of motor data are the 
so called wearables: sensors that can be worn and provide 
detailed motor/physiological information about the patient 
[39]. This objective information serves as a valuable addi-
tion to the clinical data when assessing symptoms and their 
response to stimulation, enhancing confidence in the chosen 
stimulation parameters. By providing objective measure-
ments, it also alleviates the workload on the clinicians. One 
of the major advantages of wearables is that they can be 
easily integrated in ordinary devices, such as smartwatches 
or rings. For instance, Powers et al. developed a motor fluc-
tuations monitor for Parkinson’s disease algorithm, integrat-
ing long term data collection from smartwatches, capable of 
evaluating tremor severity and the presence of dyskinesia 
[40]. Additional information on movement (e.g. extracted 
from smartphones) can also emerge from crowd-generated 
data as a proxy for wearables, as shown by Zhang et al. In 
their work, convolutional neuronal networks (CNN) and ran-
dom forest (RF) applied to smartphone accelerometer and 
gyroscope recordings were used to differentiate PD from 
control subjects [41]. Alternatively, Kleinholdermann et al. 
explored the use of non-invasive movement recordings to 
predict the best DBS settings [42]. In their work, RF models 
were trained to learn the relation between electrode settings, 
clinical ratings, and movement features (extracted from 
wearables). Their work shows not only that movement fea-
tures were able to predict the clinical mobility (correlations 
up to r = 0.68 between the predicted and true values), but 
also that these features predicted the optimal DBS param-
eters (r = 0.8).

Discrimination between PD and healthy subjects is also 
possible using information from wearables placed on a sin-
gle arm with the implementation of the K-nearest neighbors 
(KNN) algorithm, providing a quantitative assessment of 
bradykinesia, rigidity and tremor [43]. Moreover RF algo-
rithms using 3D gait data and motor readout signals have 
been used to show that a standing up test can be used to 
distinguish PD OFF DBS patients from healthy subjects; 
also, foot and lower leg kinematics are better in classifying 
motor anomalies than other gait analysis segments [44, 45]. 
This contributes not only to the diagnosis of PD, but also to 
the monitoring of the symptom progression and response to 
treatment. Different approaches for monitoring symptoms, 
combining sensors for motion, muscle activity and force, 
were presented by Angeles et al. and Tahafchi et al. [46, 47]. 

These studies used, respectively, K-nearest neighbors and 
support vector machines methods to predict motor symptom 
severity and Freezing of Gait (FoG) events. Liu et al. took 
advantage of yet another RF model to classify FoG states 
based on the Codamotion 3-D movement capture system and 
synchronized intracranial EEG data, further broadening the 
understanding of movement dynamics and contributing to 
bridging the gap between peripheral and intracranial signals 
[48].

It is important to recall that DBS is not a substitute to 
pharmacologic treatment, but rather a complementary 
therapy. Consequently, monitoring response to medication 
should also be considered when designing aDBS systems. 
In this respect, Khodakarami et al. applied linear regression 
models to predict the motor symptom state based on the 
response to the first morning dose of levodopa [49].

The ability to detect and analyze motor patterns (directly 
or indirectly) may turn out to be an indispensable compo-
nent of aDBS systems, capable of adjusting function over 
different time horizons and symptom intensities. Yet, one 
should not forget that the symptoms measured by wearables 
are but a peripheral manifestation of a neurological condi-
tion. Furthermore, the location of the wearable will affect 
the extracted features, and there is not a consensus on the 
best approach for these measurements. The information of 
wearables alone is, most likely, not sufficient to fulfil the 
needs of aDBS implementation: some of the neurological 
traits may not translate into noticeable motor manifestations 
and have non-motor implications on the patients.

Electrophysiology biomarkers

Electrophysiology signals coming from the stimulated neu-
ronal populations can be explored either in the time domain 
(amplitude as a function of time) or in the frequency domain 
(decomposition in its frequency components; Fig. S2). The 
latter, often studied using spectral analysis, is generally pre-
ferred not only because it facilitates both noise and artifact 
identification and reduction, but also because it allows the 
decomposition of the signal in pre-defined frequency bands 
(Table S7) [37]. Variations in the power of these bands have 
been associated (correlated) with different PD symptoms, 
showing their potential to work as biomarkers for patho-
logic events [38]. However, accounting for the complexity 
of neuronal dynamics, reducing the biomarker to a frequency 
band’s power may leave out useful information [50]. Here, 
ML can help to uncover patterns that traditional signal pro-
cessing tools do not.

Electrophysiology datasets (and LPFs datasets in particu-
lar) are often small, structured, and noisy. Consequently, 
specific techniques have been developed to circumvent 
these challenges. For example, these datasets are amenable 
to gradient-boosted tree learning, a popular ML method for 
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prediction. Hirschmann et al. effectively used this method to 
demonstrate that neuronal oscillations in LFPs provide accu-
rate predictions of motor symptom improvements following 
DBS [51]. In addition to signal band power, the signal coher-
ence between subthalamic and parietal regions was shown to 
have relevant predictive power of DBS’ therapeutic efficacy. 
With their approach, it was possible to study not only the 
predictive capability of the LFPs, but also which features 
would contribute more to a potential clinical application 
(among the best being the sub-thalamic high beta power). 
Additionally, logistic regression was able to identify periods 
when patients have rest tremor using LFPs from the subtha-
lamic nucleus [52]. Two studies with LFPs, using neuronal 
networks and hidden Markov model classifiers were also 
successful in decoding movement and laterality (the side in 
motion), as well as tremor prediction [53, 54].

Another approach to classification of human behavior 
with LFPs signals and considering five tasks (speech, finger 
movement, mouth movement, arm movement, and random 
segments), was possible using support vector machines 
(SVM) [55]. In Golshan et al., more complex methods such 
as CNNs were used to classify the human behavior using 
the time–frequency representation of STN-LFPs within 
the beta frequency range [56]. Interestingly, even simpler 
classification methods, such as the naïve Bayes classifier, 
can extract valuable information from LFPs. For example, 
LFPs dynamics on specific frequency bands (alpha and beta) 
allow accurate prediction of intentional limb movements, 
ahead of their execution [57]. Further combinations of ML 
techniques with Kalman filters applied to LFPs allowed the 
identification of biomarkers such as the power in the high 
beta frequency band, high gamma frequency band, and low 
beta frequency band for tremor detection [58].

It is also worth mentioning that potential biomarkers can 
be explored in a variety of neuronal activity metrics. This 
includes synchronization levels and long-term correlations 
between neuronal signals from different sources (e.g., differ-
ent hemispheres or intracerebral/peripheral). For example, 
SVMs algorithms and Gaussian Naïve Bayes models have 
been applied to LFPs recordings to decode movement behav-
ior using frequency dependent neural synchronization and 
inter-hemispheric connectivity features [59]. Recent litera-
ture emerged on the value of evoked resonant neural activity 
(ERNA) signals as potential biomarkers, however, its use is 
still under validation [33, 34].

Finally, it should be highlighted that the search for per-
sonalized biomarkers is gaining some traction. This is not 
surprising, given that the disease manifests and evolves 
differently in each patient. The “one size fits all” approach 
is being replaced by tailoring the treatment according to 
individual needs. Mohammed et al. implemented patient 
specific features extraction in combination with adaptive 
SVM classifiers [60]. The outcome of this method provided 

individualized features and a classifier for each patient. This 
highlights the importance to account for the heterogeneity 
of symptoms across patients and tones down the expecta-
tion on finding reliable population-wide neural biomarkers. 
On a similar note, supervised methods were used for the 
identification of individual neural biomarkers of hand motor 
performance in PD patients undergoing DBS. In this study, 
patient specific biomarkers improved decoding accuracy 
compared to group-level [61].

Other biomarkers

Besides affecting motor control, PD is also characterized by 
a myriad of non-motor symptoms, such as speech alteration 
and insomnia, highly debilitating and often hard to diag-
nose and manage. These symptoms could also, in principle, 
support relevant biomarkers. However, the identification 
and monitoring of non-motor symptoms poses serious chal-
lenges, due to their subjective nature. Matters become more 
complex if one intends to correlate these symptoms with 
intracranial electrophysiology signals from sensing elec-
trodes. Regarding non-motor symptoms that can be moni-
tored, two groups are highlighted here: speech and voice 
alterations, and sleep and cognition.

Speech and voice features can provide additional digital 
biomarkers as well as valuable information for the screening 
of PD patients. Given the complexity of these signals, ML 
methods have also been used for this type of analysis. In 
Braga et al., speech recordings in uncontrolled background 
conditions were used to identify PD patients and to esti-
mate early signs of PD using ML regression models [62]. 
On another approach, by extracting paralinguistic features 
of voice recordings, Tracy et al. explored the possibility to 
predict PD severity, using both classification and regression 
methods. However, no clinical validation was provided in 
the study [63].

Within non-motor symptoms, both sleep quality and cog-
nition worsen with progressing PD. They are particularly 
challenging to address, even when using ML algorithms 
since the collected data has a strong level of subjectivity 
inherent to the available assessment tools [64]. However, the 
study of electroencephalographic recordings shows potential 
to extract biomarkers for post-operative cognitive decline 
deterioration [65, 66]. Using LFPs recordings during wake-
fulness and nocturnal polysomnography sleep as inputs to 
SVMs and decision tree algorithms, Chen et al. showed that 
it is possible to classify sleep stages in PD [67].

Clinical information (admission details and UPDRS-III 
evaluations) has proven to be helpful in the prediction of 
PD progression and its response to therapy. For example, 
Khojandi et al. have used preoperative PD rating scores and 
clinical characteristics to feed a RF algorithm to predict 
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the appropriate DBS stimulation frequency (either 60 Hz 
or 130–185 Hz) for a given patient [68]. In the context of 
PD but not directly related to DBS, Shamir et al. present a 
proof-of-concept of a clinical decision support system that 
applies ML techniques such as SVMs and RF to clinical data 
in order to assist in treatment management [69].

All things considered, biomarkers with high specificity 
and sensitivity will have a crucial role in the multiple stages 
of PD management: either as immediate sources of clinical 
information or as the means for more effective DBS pro-
tocols. Wearables, and other sources of peripheral signals 
related to PD symptoms, are an important strategy to provide 
information on the patient’s clinical state. However, the use 
of additional external hardware can be uncomfortable for 
the patient and unnecessary/redundant if neuronal (electro-
physiology) biomarkers can provide equivalent information. 
ML techniques have been successfully applied in the study 
of the PD symptomatology, especially in intracranial elec-
trophysiological signals. The ideal closed-loop control sys-
tems would probably rely solely on intracranial signals, and, 
in this sense, the use of LFPs related signals, captured by 
modern DBS systems, may be the best solution. LFP analy-
sis should consider not only isolated values of the param-
eters (single or combined) but also their long-term temporal 
evolution and intrinsic patterns, both in physiological and 
pathological states. These provide a better understanding 
of the patient’s state, leading to the design of better control 

strategies. A clinically validated classification system based 
solely on intracranial signals has not yet been achieved, but 
the first steps have been taken. Although early DBS literature 
aimed towards the finding of generalized biomarkers for PD, 
recent works are increasingly adopting a personalized frame-
work, giving primacy to individual-specific biomarkers.

Bringing adaptive DBS to the clinic

Adaptive DBS systems must simultaneously monitor 
(record) physiological signals and provide stimulation to 
the neuronal targets, while adjusting the stimulation param-
eters according to disease specific biomarkers reflecting the 
current state of the patient. It is worth mentioning that the 
neuronal tissue response to electrical stimulation may fluc-
tuate over time as a result of external (environmental) or 
internal (disease progression) factors [70]. Efficacy of aDBS 
is further challenged by neuronal plasticity, which is thought 
to contribute to the loss of therapeutic effect over time in an 
open-loop framework.

Three main components are required for an aDBS system 
with closed-loop control using LFPs biomarkers (Fig. 4): 
the neurostimulator (controllable pulse generator) that pro-
vides the stimulation, a lead that delivers the stimulation and 
simultaneously records the LFPs, and a processing unit that 
reads and interprets the biomarkers present in the LFPs and 

Fig. 4  Application of machine learning towards adaptive deep brain 
stimulation using closed-loop control. In the top panel, a list of chal-
lenges at different stages of DBS therapy implementation where ML 

methods can play an important role. The diagram represents a closed-
loop feedback system for aDBS, based on LFPs sensing and electro-
physiological biomarkers identification and interpretation
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decides the appropriate stimulation response. Recent techno-
logical advances in the neurostimulation devices expanded 
the range of tunable parameters beyond the typical pulse 
parameters (amplitude, frequency, and pulse-width). For 
example, with the availability of new leads with directional 
stimulation capabilities, it is also possible to shape the elec-
trical field used in DBS [4, 71–74]. All these parameters can 
be, a priori, usable by ML algorithms for closed-loop aDBS.

Adaptive DBS control strategies

Adaptive DBS requires Implantable Pulse Generators (IPGs) 
with signal sensing and recording capabilities, in addition 
to the stimulation delivery, in order to conduct biomark-
ers monitoring and generate the stimulation protocols in a 
real-time manner [75, 76]. Biomarkers are not required to 
be causally linked to the disease mechanisms, but rather to 
show strong correlation with symptom onset and severity, 
and to be sensitive or adaptive to the disease progression 
[77–80]. Nevertheless, a causal relation would be ideal 
since it allows the identification of changes prior to the 
onset of symptoms, enabling a predictive approach rather 
than a responsive one. A common strategy in neuromodu-
lation that employs preventive (and predicted) measures is 
the delayed feedback control method, entailing closed-loop 
techniques designed to desynchronize abnormal neuronal 
activity. Aiming at the suppression of pathological collective 
synchrony, effective and robust desynchronization of STN 
GPi model neurons has been shown by stimulation proto-
cols based on delayed feedback control [81, 82]. The latency 
of the response is also an important factor to account for. 
Current neurotechnologies allow for virtually instantaneous 
and continuous adaptation of the stimulation parameter to 
the monitored biomarkers [83]. However, it is yet not clear 
how refined should the temporal resolution for aDBS be, 
considering the optimization of therapeutic effect and the 
parallel computational requirements. In Rosa et al., stimu-
lation intensity was linearly adjusted every second, in pro-
portion to LFP beta power. Despite only being deployed in 
one patient, this approach improved symptom control [84]. 
In Little et al., ON/OFF stimulation was adjusted continu-
ously in a closed-loop system with improvements on motor 
symptoms in an eight-patient cohort [83].

Amplitude modulation

Amplitude is one of the pulse parameters that can be used 
to modulate the stimulation in aDBS systems [83, 85, 86] 
(Fig. S3). The simplest paradigm consists in the delivery of 
stimulation with a predefined non-null amplitude only when 
necessary (ON/OFF controller). Other paradigms modulate 
the amplitude in different ways: gradually (or, step-wise) and 
continuously [87]. During gradual amplitude modulation, 

the amplitude is maintained between two defined discrete 
values and varies in a step-like fashion [32, 88]. In con-
tinuous modulation, the amplitude of the stimulation varies 
(proportionally, in general) according to a reference signal/
biomarker. The output amplitude reflects, with minimal 
delay, the alterations of the input signal [75, 84, 89].

Frequency and pulse‑width modulation

Changes in the frequency and pulse duration of the stimula-
tion have an impact on the neuronal response and can be 
used in a closed-loop context. Although the involved bio-
logical mechanisms remain unclear, high-frequency stimula-
tion (> 100 Hz) generally produces better therapeutic results 
than low-frequency stimulation [90, 91]. The initial param-
eters for frequency and pulse-width are often in the ranges 
of 130–180 Hz and 60–90 µs, respectively. The fact that dif-
ferent symptoms respond better to specific frequency inter-
vals is taken into account when setting parameterizations for 
personalized treatments [92]. Recent studies have explored 
the use of shorter pulse widths, which appear to offer com-
parable therapeutic effects with better energy management 
and reduced adverse effects [93]. Changes in the pulse-width 
have also been shown to provide clinical benefits by exciting 
brain sites more selectively [93, 94].

Phase modulation

A core concept supporting phase-based aDBS is the hypoth-
esis that the precise timing of stimulation is important for its 
effectiveness. This is particularly relevant in the context of 
trying to suppress pathological collective synchronization 
across neuronal populations. In this approach, the stimu-
lation signal is derived from the phase response curve of 
the monitored neuronal population. Under this hypothesis, 
adapting the stimulation at the timing that most effectively 
suppresses the patients tremor, appears to reduce side effects 
and the amount of stimulation delivered, without compro-
mising clinical results [81, 82, 95, 96].

Concluding, one should emphasize that pioneering studies 
using ML to support real-time data analysis in closed-loop 
control strategies for aBDS in PD have already started to 
emerge. In Gilron et al., subcortical and cortical oscilla-
tory signatures of motor state were used as control signals 
to achieve a fully embedded adaptive DBS, working out-
side clinical settings. Both supervised and unsupervised 
ML methods were implemented to assess the possibility 
for using (i) oscillatory phenomena in PD to decode motor 
fluctuations; and (ii) multiple recording sites to improve the 
classification of an individual’s motor state [97, 98]. In other 
movement disorders, such as essential tremor, ML-based 
stimulation protocols were already successfully applied [25]. 
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Notwithstanding, two main concerns persist. The first has to 
do with the computational cost of some of these algorithms. 
Given the power limitations of the current processing, aDBS 
is advised to operate on low complexity algorithms. Sec-
ondly, the development of such system will require progres-
sive iteration, starting from works such as the one present 
by Gilron et al., and learning from the protocols applied to 
other pathologies.

Open challenges in aDBS–future roadmap

As already explored, one of the major challenges of aDBS is 
the identification and validation of reliable biomarkers with 
high specificity and sensitivity. The recent developments in 
sensing technology widens the opportunity to understand 
how the electrophysiology at the site of stimulation evolves 
with the pathology. In this regard, LFPs from neurons in 
the stimulated regions are a prime candidate for the iden-
tification of biomarkers. For better analysis of the electro-
physiological signal, novel techniques for artifact removal 
are important to improve the robustness of LFP-based bio-
markers [99, 100]. In the established literature, attention has 
been devoted to the LFPs’ beta band power but, as addressed 
earlier, other frequency bands such as alpha and gamma also 
convey valuable information regarding the patient’s clinical 
state. Representations outside the frequency domain should 
also be better explored, as features in the time domain may 
prove useful for defining biomarkers.

Furthermore, the variability on disease and symptoms 
across patients motivated an increased attention on person-
alized therapies, where individualized biomarkers and algo-
rithms incorporating learning capabilities are necessary. To 
have maximum efficacy, “smart” DBS is required to act as 
a personalized medicine approach. Since “smart” control-
lers require a training stage (either to learn from scratch or 
adapt), one solution is to have a period in which each patient 
undergoes an initial calibration for aDBS therapy, where the 
control strategy parameters are tuned [87]. Another factor 
to take into account is the importance of having a control 
system that is able to react to patients’ everyday actions and 
behaviors, automatically differentiating normal patterns 
from pathological activity. For both these requirements, 
machine learning emerges as a powerful tool to discrimi-
nate the (pathological) signatures specific for each patient, 
a feature hardly achievable by other methods. Still, clinical 
expertise remains as an irreplaceable component, especially 
during the initial parameterization and tuning of DBS, as 
symptoms exhibit rich and dynamic symptomatology in time 
scales that range from minutes to days/months.

Machine learning is already promoting advances in DBS 
[101]. However, ML methods also have limitations and 
constraints that should be kept in mind. Some classes of 

methods require large datasets and high-performance hard-
ware for training the models, and the resulting black-box 
models are still met with caution. Moreover, the labelled 
datasets are often established in highly specific contexts, 
which limits the potential generalization of the extracted 
features. ML’s need for high quantity/high quality data can 
be met with sharing open and curated databases, allowing 
the replication and the exploration of published results in a 
collaborative scientific effort. In order to evaluate and com-
pare the existing methods across studies, a consensus on the 
parameters by which performance is measured is needed. 
There is also a lack of long-term recorded data, hindering 
our knowledge on the long-term loss of therapeutic efficacy 
and rise of adverse effects. Moreover, the current computa-
tional requirements for closed-loop systems (model training, 
deployment, and algorithm implementation), may delay its 
implementation in IPGs for real-time therapy management.

The hardware requirements for closed-loop DBS running 
ML methods also raise attention as the novel computational 
features on these neurostimulators can add to the size and 
weight of the implant. Another challenge is the heat signa-
ture and energy consumption under their continuous activity, 
covering data acquisition, processing, and stimulation. Hav-
ing a low power consumption balanced with rechargeable 
battery capacity and increased memory storage are require-
ments of future devices [4, 102, 103]. Currently, researchers 
are investigating electronic alternatives, such as memristors 
and other neuromorphic devices, aiming to achieve low-
power, small-sized, and computationally efficient implant-
able devices [104]. Another comment goes to the importance 
of developing simulation environments and biophysical 
models of closed-loop stimulation to design and test aDBS 
systems before their implementation in vivo [105, 106].

Lastly, as ML becomes increasingly integrated into 
clinical practice, with aDBS being just one example, it is 
important to assess the impact of these methodologies on 
the clinical workflow. On one hand, the use of ML in thera-
pies enhances the concept of personalized medicine but a 
clear understanding of these technologies is not integrated 
into clinical training (as it primarily falls within the realm 
of computational fields). By fostering a multidisciplinary 
environment, combining clinical and computational exper-
tise, collaborative efforts can be made towards the effec-
tive development of aDBS. Moreover, as these technologies 
scale up, continuous data management and algorithm tuning 
become crucial, highlighting the need for a strong coop-
eration between clinical, engineering, and computational 
sciences.

To progress towards adaptive DBS, we must conceptual-
ize it from the start as a multifactorial system. The chal-
lenges in this field are many, from hardware constraints 
to software needs, requirements of high amounts of data 
and the development of personalized models with clinical 
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validation. Nevertheless, the technology has shown promis-
ing results and the associated improvements in the patients’ 
quality of life should encourage the device manufacturers to 
continue pushing for aDBS systems.

Conclusion

This work reviews the available research on ML implemen-
tation towards aDBS in PD. Its implementation is possible 
throughout all the stages of DBS therapy, and in particular 
towards biomarker identification/selection—that may be 
patient-specific—and to post-operative DBS programming, 
using biomarker levels and adjusting a large number of stimu-
lation parameters. The latter may particularly benefit from ML 
application, due to its ability to perform complex mappings 
between stimulation parameters and biomarkers information. 
Nevertheless, there are still many open challenges that need to 
be addressed regarding the use of ML on aDBS. Large data-
sets and long-term studies, carefully planned and collected, 
are needed for accurate model development. The application 
of ML extends to the IPG hardware management whose bat-
tery duration, memory space and computational power may 
also benefit from its use. A key challenge is the pressing need 
for a better fundamental understanding of PD and of the DBS 
physiological mechanisms. Although ML methods provide 
powerful descriptive models to deal with complex data and 
systems, alone they are not sufficient to obtain the optimal 
aDBS system, presenting the need for a multidisciplinary 
effort, covering computational and clinical sciences. Never-
theless, these technologies have shown potential to improve 
patients’ quality of life. This fact alone should encourage the 
investment in future aDBS, not only for PD but for other neu-
rologic disorders.
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