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Abstract

Introduction: Historically, the majority of childhood cancers, including acute lymphoblastic 

leukemia (ALL), were not thought to have a hereditary basis. However, recent germline genomic 

studies have revealed that at least 5 – 10% of children with cancer (and approximately 3 – 4% of 

children with ALL) develop the disease due to an underlying genetic predisposition.

Areas covered: This review discusses several recently identified ALL predisposing conditions 

and provides updates on other more well-established syndromes. It also covers topics related to the 

evaluation and management of children and family members at increased ALL risk.

Expert opinion: Germline predisposition is gaining recognition as an important risk factor 

underlying the development of pediatric ALL. The challenge now lies in how best to capitalize on 

germline genetic information to improve ALL diagnosis, treatment, and perhaps even prevention.
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1. Introduction

Acute lymphoblastic leukemia (ALL) serves as a paradigm for the study and successful 

treatment of childhood cancer [1]. Sixty years ago, little was known about the genetic 

factors underlying development of childhood ALL. Thanks to decades of study and the 

application of high-throughput sequencing approaches, it is now recognized that ALL 

consists of multiple subtypes based on the presence of defining somatic genetic lesions, 

some of which influence the response to therapy and overall prognosis [2]. Accordingly, 

recent efforts to incorporate somatic genetic information into clinical care has moved ALL 
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treatment in the direction of ‘precision medicine’ by informing the use of targeted agents 

such as tyrosine kinase inhibitors for children whose ALL blasts express the BCR-ABL 

oncoprotein or harbor mutations affecting the JAK-STAT pathway [2].

Germline genomic investigations have also steadily increased current knowledge 

surrounding the host genetic factors that influence ALL risk, with sequencing of rare 

leukemia-prone kindreds and large ALL cohorts revealing an expanding array of leukemia 

predisposing genes and associated genetic conditions (Table 1). Notably, for several of these 

conditions, the causal genes are the same as those targeted by somatic mutations in ALL 

blasts (e.g. PAX5, IKZF1, ETV6). As with somatic genetic information, germline genetic 

data can significantly impact clinical care by identifying children who are at increased risk 

to develop therapy-associated toxicities, second malignant neoplasms, and non-oncologic 

manifestations. These factors must be carefully considered when developing a treatment 

plan for a child with an ALL predisposition. In this review, we discuss some of the recent 

advances surrounding genetic predisposition to pediatric ALL. As there have been excellent 

articles published recently on childhood cancer predisposition [3–5], we will focus on the 

newer discoveries and their implications on ALL pathogenesis and treatment.

2. Genetic predisposition to leukemia: Mendelian single gene disorders

Some of first reports discussing familial ALL appeared in the literature in the early 

1950s-1960s with descriptions of kindreds in which multiple close relatives were affected 

by the disease [10–12]. Although it was initially proposed that these familial aggregations 

might be due to inheritance of specific HLA alleles [13], it was not until 1990 when 

germline TP53 variants were discovered as the cause for Li-Fraumeni syndrome (LFS) [14] 

that the genetic basis for familial ALL truly began to emerge. Since this initial finding, 

it is now known that there are several Mendelian genetic conditions that increase ALL 

risk, with the majority following an autosomal dominant pattern of inheritance. For the 

most part, ALL predisposing conditions are caused by pathogenic germline alterations 

affecting critical genes implicated in several cellular processes such as differentiation, 

proliferation, apoptosis, repair of DNA damage, and intracellular signaling (Figure 1). 

Not surprisingly, the clinical phenotypes of many ALL-predisposing conditions correlate 

with the expression and function of the affected genes, with variants in genes controlling 

B-lymphocyte differentiation predisposing primarily to B-ALL, while variants in genes with 

a broader expression and function predispose to a wider spectrum of cancers and other 

manifestations.

2.1. Syndromes that primarily predispose to ALL

2.1.1. PAX5-associated leukemia predisposition (susceptibility to ALL 3; 
OMIM #167414)—PAX5-associated leukemia predisposition is an autosomal dominant 

ALL predisposition caused by germline variants in PAX5 (Paired Box Gene 5). PAX5 
encodes a transcription factor with important roles in B cell development and B-

leukemogenesis [15]. In mice, the genetic ablation of PAX5 leads to a profound block 

in B cell differentiation [16], while in humans, somatic mutations or translocations affecting 

PAX5 comprise the most common genetic lesions occurring in one-third of all B-ALL cases 
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[17,18]. In 2013, three unrelated families were reported in which individuals affected by 

ALL harbored the same heterozygous germline PAX5 p.Gly183Ser missense variant [19,20]. 

Within these families, several PAX5 variant carriers did not develop ALL, suggesting 

this germline variant exhibits incomplete penetrance. To date, all germline PAX5 variant-

associated ALL samples examined exhibit loss of the wildtype PAX5 allele, either through 

formation of an isochromosome or dicentric chromosome 9q [20]. Thus, PAX5 appears to 

function as a classic tumor suppressor with germline mutations acting as the first ‘hit’ and 

loss of the remaining wild-type (WT) allele serving as the second hit within leukemic blasts.

Studies are beginning to elucidate the mechanisms by which germline PAX5 variants 

promote B-leukemogenesis. PAX5 is most highly expressed in the B cell lineage 

(www.bloodspot.eu), where it regulates the expression of key downstream target genes 

involved in B cell ontogeny, including CD19, CD79A, and BLNK, as well as genes involved 

in metabolic programming, such as NR3C1 (which encodes the glucocorticoid receptor) 

and TXNIP (which encodes a glucose-feedback sensor). Notably, PAX5+/− mice do not 

spontaneously develop leukemia, even after long periods of observation [21,22]. However, 

they do exhibit alterations in B cell development with higher proportions of immature 

B-progenitors [21]. These findings suggest that PAX5 heterozygosity favors development of 

an abnormal B-precursor population that may be susceptible to oncogenic transformation. 

Consistent with this notion, delayed exposure of PAX5+/– animals to pathogens [21; see 

below Section 4.0 Germline Leukemia Predisposition and Delayed Infection Hypothesis] 

or to chemical or viral mutagens [23] promotes ALL development with leukemic blasts 

exhibiting somatic genetic lesions similar to those observed in human B-ALL samples. The 

results of these and other investigations support the concept that PAX5 protein normally 

functions to promote differentiation of B-lymphoid progenitors while restricting glucose and 

energy supply. In cells that are deficient in PAX5 function, development and metabolism are 

disrupted in a manner that favors malignant transformation upon acquisition of cooperating 

somatic genetic lesions [24].

2.1.2. ETV6-associated leukemia predisposition (thrombocytopenia V; OMIM 
#616216)—ETV6 (ETS Variant 6) encodes an ETS family transcriptional repressor 

[25,26] that is essential for establishing mouse bone marrow (BM) hematopoiesis and 

maintaining survival of hematopoietic stem cells (HSCs) [27–29]. The ETV6 protein 

contains two functional domains, including the pointed domain (enables homo- and hetero-

dimerization) and the ETS domain (mediates DNA binding). ETV6 was first identified as 

an ALL predisposition gene in 2015 following the identification of eight unrelated families 

exhibiting autosomal dominant transmission of B-ALL and thrombocytopenia in which 

damaging germline ETV6 variants co-segregated with disease [30,32–34]. Subsequently, 

Moriyama and colleagues performed targeted ETV6 sequencing using remission blood 

samples from 4,405 pediatric ALL cases and identified germline variants in ~1% of cases 

[30]. In both studies, many ETV6 variants clustered in the DNA binding domain or were 

predicted to produce a truncated protein lacking all or part of this domain.

To date, 96 individuals from 23 families have been described [30–36]. Among these 96 

individuals, 25–30% are reported to have developed leukemia [30,32–36], most commonly 

B-ALL with a hyperdiploid karyotype. Rarer cases of mixed-phenotype leukemia, acute or 
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chronic myeloid leukemia, B cell non-Hodgkin lymphoma, and multiple myeloma, have 

also been reported [35]. In a study of 38 ALL patients with germline ETV6 variants, 

two developed secondary MDS/AML suggesting a possible association with onset of 

therapy-associated myeloid neoplasms [37]. Although some ETV6 variant carriers have 

developed solid tumors, such as colorectal, duodenal, breast and renal carcinoma, breast 

fibroadenoma, and skin cancer [32–34,38], the relationship of these cancers to germline 

ETV6 status remains unclear. Mild to moderate thrombocytopenia is present in almost every 

germline ETV6 variant carrier with some exhibiting a bleeding tendency and/or platelet 

functional defects [31,39]. Severe thrombocytopenia only appears when associated with 

myelodysplastic syndrome [31,33]. Analysis of the BM in ETV6 variant positive individuals 

without leukemia reveals megakaryocyte hyperplasia, hypolobulated megakaryocytes, mild 

dyserythropoiesis, and abnormal myeloid cells [33,34,39].

The mechanisms by which germline ETV6 variants contribute to B-ALL remain poorly 

understood. The fact that many variants cluster within, and truncate or remove, the DNA 

binding domain suggests that interference with transcriptional activity is central to the 

leukemogenic process. In line with this possibility, in vitro studies show that ETV6 variant 

proteins exhibit impaired repressor activity, reduced DNA binding, and aberrant subcellular 

localization [32–34]. Furthermore, when co-expressed with WT ETV6, ALL-associated 

variant proteins exert a dominant negative effect on transcriptional repression mediated by 

WT ETV6 [34]. Based on these studies, it appears likely that germline ETV6 variants alter 

gene expression within hematopoietic progenitors, thereby disrupting normal B-lymphoid 

and megakaryocyte development, as well as platelet function.

2.1.3. IKZF1-associated predisposition to B-ALL (OMIM #616873)—IKZF1 
(IKAROS Family Zinc Finger 1) encodes the founding member of the IKAROS family 

of transcription factors [40]. IKAROS contains six zinc fingers, four N-terminal and two 

C-terminal, which mediate DNA binding and dimerization with self or other members of the 

IKAROS family [41,42]. IKAROS is widely expressed among cells of the hematopoietic 

system where it is required for specification of lymphoid lineages and involved in 

differentiation of pro-B cells into pre-B cells (reviewed in [43]). Somatic mutations affecting 

IKZF1, often resulting in loss of function or dominant negative effects, are found in high 

risk B-ALL, especially in cases expressing the BCR-ABL oncoprotein (also known as the 

Philadelphia chromosome [Ph+]) and those lacking the oncoprotein but exhibiting a similar 

transcriptional profile (Ph-like) [44,45]. In these cases, the presence of somatic IKZF1 
mutations appears to confer an even poorer response to therapy [44,45].

In 2018, Churchman and colleagues [46] described a family with five individuals who 

harbored a heterozygous germline IKZF1 variant (p.Asp186fs) that is predicted to truncate 

the protein within the region of the N-terminal zinc fingers. Among these five IKZF1 
mutation carriers, two developed B-ALL, lending credence to the possible role of this 

variant as a leukemia predisposing allele [46]. To further examine this possibility, these 

investigators performed targeted sequencing of IKZF1 in a cohort of 4,963 pediatric ALL 

cases and identified 27 unique non-silent IKZF1 coding variants among 43 individuals 

(0.9%), with all but one affected with B-ALL [46]. Genotype-phenotype studies revealed 

Bloom et al. Page 4

Expert Rev Hematol. Author manuscript; available in PMC 2023 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



no obvious correlations; however, several of the IKZF1 mutation carriers exhibited B 

lymphopenia, suggesting the presence of an underlying immunodeficiency.

Prior to the report by Churchman, germline IKZF1 variants had been described in 

individuals with common variable immune deficiency, where variants primarily clustered 

in the N-terminal zinc fingers and resulted in impaired DNA binding [47,48]. In contrast, 

B-ALL-associated germline IKZF1 variants appear distributed across the gene with some 

clustering in the C-terminal zinc fingers. Although it is poorly understood why there 

is clustering in this region, in vitro and in vivo functional studies of B-ALL-associated 

germline IKZF1 variants, including dimerization, DNA binding, transcriptional repression, 

nuclear localization, cellular adhesion, and interference with drug responsiveness, revealed 

that 22 of 28 unique variants (79%) interfered with least one of these activities, regardless 

of localization within the gene [46]. It remains to be determined how these variants alter 

hematopoiesis and promote leukemogenesis.

2.2. Syndromes predisposing to a variety of hematologic malignancies, including ALL

2.2.1. Noonan syndrome (NS; OMIM #163950)—NS is an autosomal dominant 

condition resulting from germline variants affecting genes encoding components of the 

RAS/mitogen activated protein kinase (MAPK) pathway [49–51]. Approximately 50% of 

NS patients harbor heterozygous germline variants in PTPN11 [51], with fewer patients 

carrying changes in genes such as SOS1, KRAS, RAF1, BRAF, and MEK1, among others. 

NS occurs with a frequency of 1 in 1000 to 1 in 2500 live births [49] with common non-

oncologic manifestations including distinctive facial features, congenital heart defects, short 

stature, chest deformity, abnormal pigmentation (café-au-lait macules [CALMs]), variable 

developmental impairment, thrombocytopenia, and platelet dysfunction [49,52].

Hematological malignancies, including juvenile myelomonocytic leukemia (JMML) and 

ALL represent the most frequently occurring cancers [53]. Two large studies encompassing 

over 1,800 RASopathy patients revealed that ALL is: 1) present in 0.3–0.5% of NS patients 

and characterized by a median age of onset of 6 years (range: 1.5–17 years); 2) exclusively 

of B cell phenotype; and 3) associated with a germline PTPN11 or SOS1 variant [51,54]. 

NS patients harboring germline PTPN11 variants are more likely to develop hyperdiploid 

ALL and their disease generally responds favorably to therapy [51]. Although late toxicities 

are not commonly documented, one report indicated that one-fifth of NS patients who 

were treated for ALL later presented with myelodysplasia (MDS) that either resolved 

spontaneously but exhibited persistent thrombocytopenia, or evolved into a JMML-like 

neoplasm or acute myeloid leukemia (AML) [51].

PTPN11 encodes Src homology region 2 containing protein tyrosine phosphatase 2 (SHP2), 

a phosphatase that positively regulates signaling downstream of growth factor receptors [55]. 

Consistent with this notion, human JMML cells, which commonly harbor somatic gain-of-

function mutations in PTPN11 [56], exhibit hypersensitivity to granulocyte-macrophage 

colony stimulating factor (GM-CSF) [57]. In mice, SHP2 is a positive regulator of 

hematopoiesis, where the loss of expression or decrease in catalytic activity is associated 

with reduced stem and progenitor cell numbers and function [58], and altered expression 

of important hematopoietic transcription factors, such as GATA2 and CEBPA [59,60]. 
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Conversely, expression of an activating PTPN11 mutant protein enhanced HSC proliferation 

and repopulating ability, leading to development of myeloproliferative neoplasms and AML 

[61,62]. Altogether, these human and murine studies suggest that the inability to attenuate 

RAS signaling is a critical step in myeloid leukemogenesis. Since somatic alterations in 

RAS pathway genes, including PTPN11, are observed in over 40% of pediatric B-ALL 

cases, including high hyperdiploid B-ALL, Ph-like, and non-Ph-like ‘B-other’ phenotypes 

[63], it is possible that similar mechanisms underlie development of lymphoid leukemia.

2.2.2. Neurofibromatosis type 1 (NF1; OMIM #162200)—NF1 is one of the more 

common genetic disorders, affecting approximately 1 in every 3000 births [64,65]. NF1 

exhibits autosomal dominant inheritance and is caused by germline variants in NF1, 

the gene encoding neurofibromin, a guanosine triphosphatase (GTPase)-activating protein 

that normally binds to and negatively regulates RAS [66,67]. The clinical features of 

NF1 include dermatologic findings such as CALMs and axillary and inguinal freckling; 

bony abnormalities including osteopenia or osteoporosis, dysplasia of long bones and 

sphenoid wing, and scoliosis; cardiovascular problems including systemic and pulmonary 

hypertension, vasculopathy, and pulmonary valve stenosis; neurologic issues including 

learning disabilities, behavior problems, and less commonly seizures; development of 

benign and malignant tumors such as Lisch nodules (iris hamartomas), cutaneous and 

plexiform neurofibromas, central nervous system (CNS) tumors; and less commonly 

hematologic malignancies [68,69].

The tendency for NF1 patients to develop leukemia, including chronic myelomonocytic 

leukemia (CMML), JMML, AML, and to a lesser extent ALL, has been known for decades 

[70–72]. JMML is the most common leukemia, with children with NF1 exhibiting a 200–

500-fold increase in risk compared to children without NF1 [68]. A large population-based 

study of leukemia and non-Hodgkin lymphoma associated with NF1 performed in the 

United Kingdom revealed only 12 cases of ALL (relative risk 5.4; 95% CI 2.8–9.4) [73]. 

Among the 12 ALL cases identified, three were of T-lineage and 9 of B-lineage origin. The 

average age of diagnosis was 5.1 years for B-ALL (range: 1.3–12.3 years) and 11.4 years for 

T-ALL (range: 9.8–14.5 years) [73]. In over 50% of NF1-associated myeloid malignancies, 

NF1 loss-ofheterozygosity (LOH) is detected [66]. It remains to be determined whether this 

is also the case for ALL occurring in the context of NF1.

Consistent with the low prevalence of ALL in individuals with NF1, somatic NF1 mutations 

are only rarely reported in ALL, with 3% of pediatric and young adult T-ALL cases 

harboring such mutations [2,70,74,75]. Curiously, somatic NF1 alterations are common 

in near-haploid B-ALL, where 30 of 68 (44%) samples examined exhibited sequence 

alterations or focal microdeletions [76]. Nf1-deficient mouse hematopoietic progenitors 

exhibit hypersensitivity to cytokines with abnormal proliferation of immature and lineage-

restricted progenitor populations [77], suggesting that the mechanisms of tumorigenesis are 

similar to those observed for PTPN11 perturbations.

2.2.3. Familial platelet disorder with predisposition to myeloid malignancy 
(FPDMM; OMIM #601399)—FPDMM is an autosomal dominant condition caused by 

germline variants in RUNX1, the gene encoding RUNT-related transcription factor 1 

Bloom et al. Page 6

Expert Rev Hematol. Author manuscript; available in PMC 2023 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(RUNX1; previously CBFA2 [Core-Binding Factor Subunit Alpha 2] or AML1 [Acute 

Myeloid Leukemia 1]). RUNX1 functions as a partner of Core-Binding Factor Subunit 

Beta (CBFB) to form a heterodimeric transcription factor that is one the most frequently 

altered genes in leukemias, including MDS, AML, ALL, and CMML [78]. RUNX1 is 

involved in the common t(12;21) ETV6-RUNX1 translocation in pediatric B-ALL, the 

t(8;21) RUNX1T1-RUNX1 in AML [79], and more than 50 other translocations [80]. In 

addition to translocations, somatic RUNX1 mutations have been identified in 4.5% (12/264) 

of pediatric and young adult T-ALL cases [75] and 30% (4/12) of early thymocyte precursor 

(ETP)-ALL cases [81].

Germline RUNX1 variants were first identified in 1999 in six unrelated families 

exhibiting functional platelet defects and a tendency to develop AML, with each of the 

identified variants predicted to result in RUNX1 haploinsufficiency [82]. To date, over 80 

families harboring pathogenic germline RUNX1 variants have been described [78,83]. The 

presentation of FPDMM includes lifelong thrombocytopenia and functional platelet defects 

that may or may not be associated with bleeding [84]. Individuals with germline RUNX1 
variants are at increased risk to develop MDS and AML, and to a lesser extent T-ALL 

[79], with 30–40% of mutation carriers developing a hematologic malignancy. It has been 

proposed that individuals with dominant negative RUNX1 variants have a higher incidence 

of MDS and acute leukemia than patients with loss-of-function variants [85,86]. To date, 11 

RUNX1 carriers have been reported to develop T-ALL [84,85,87–90], with three of these 

individuals developing AML less than five years after the initial T-ALL diagnosis [84,85]. 

Although somatic RUNX1 mutations have been identified in 7% of B-ALL cases [78], we 

are aware of only rare individuals with FPDMM who has developed B-ALL (K. Nichols, 

unpublished).

Mice globally deficient for Runx1 expression lack definitive hematopoiesis [91–93], 

while animals deficient for Runx1 selectively in adult BM progenitors exhibit impaired 

B and T cell development, reduced platelet production, and development of abnormal 

myeloproliferation [94]. These manifestations are similar to humans with FPDMM, whose 

leukemia samples commonly harbor mutations within the remaining RUNX1 allele [95]. 

Together, these results suggest that germline RUNX1 variants impair hematopoietic 

development, leading to the emergence of abnormal populations that are then prone to 

transformation upon loss of WT RUNX1 [95].

2.3. Syndromes predisposing to solid tumors in addition to ALL

2.3.1. Li-Fraumeni syndrome (LFS; OMIM #151623)—LFS is caused by pathogenic 

germline variants in TP53, the gene encoding the critical tumor suppressor p53. Due to its 

central role in maintaining genomic stability and preventing the proliferation of cells with 

damaged DNA, p53 has been dubbed the ‘guardian of the genome’ [96]. Approximately 

50% of all tumors contain somatic TP53 mutations, and many of the remaining cases acquire 

other genetic or epigenetic alterations that compromise p53 function [97,98]. Accordingly, 

p53 is the most commonly inactivated protein in all human cancers [99].

LFS is inherited in an autosomal dominant manner and confers a significantly increased 

lifetime risk for cancer [100]; nearly 100% of individuals with LFS develop cancer by 
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age 70, and 50% of patients develop a second primary cancer within 10 years of the 

initial cancer diagnosis [101]. While individuals with LFS have a high tendency to develop 

bone and soft tissue sarcomas, brain tumors, early onset breast cancer, and adrenocortical 

carcinoma, they also develop leukemia, albeit at a lower frequency (leukemia comprises 2–

4% of all LFS cancers) [101–105]. The leukemias associated with LFS include ALL, AML, 

and MDS, with most, but not all, ALL cases exhibiting a ‘low’ hypodiploid phenotype in 

which the leukemic blasts contain 32–39 chromosomes [76,106,107]. ALL tends to occur 

later in children with LFS, with a median age at onset of 15.5 years (versus 7.3 years for 

children without LFS), and presenting leukocyte counts tend to be lower [106]. Importantly, 

patients harboring germline TP53 variants appear to have an inferior event-free and overall 

survival compared to individuals without these variants due to a high-risk for second cancers 

[106]. Hypodiploid ALL occurring in the context of LFS almost universally shows TP53 
LOH, together with alterations in IKZF2 (65%) and RAS pathway genes (9%) [76].

In a study of 47 breast cancer survivors with therapy-associated leukemia, three (6%) 

individuals harbored pathogenic germline TP53 variants [108]. Notably, two of these three 

individuals had secondary ALL, an unusual treatment-related hematopoietic malignancy. 

Compared to primary ALL developing in children with LFS, these two cases of therapy-

related leukemia did not exhibit a low hypodiploid phenotype. Hence, for cancer patients 

who develop therapy-associated ALL, regardless of its cytogenetic make-up, consideration 

should be given to germline TP53 testing.

2.3.2. Constitutional mismatch repair deficiency (OMIM #276300)—
Constitutional mismatch repair deficiency (CMMRD; also known as biallelic mismatch 

repair deficiency) is an autosomal recessive condition caused by homozygous or compound 

heterozygous mutations affecting the mismatch repair (MMR) genes, namely MSH2, MSH6, 
MLH1, PMS2, or rarely, by deletions of the 3ʹ region of EPCAM, a gene adjacent to the 

MSH2 promoter [109]. The MMR pathway operates to correct single strand DNA mutations 

that arise during replication [110]. Proteins encoded by mutated MMR genes can no longer 

correct point mutations, resulting in microsatellite instability, compromised DNA integrity, 

and an increase in the number of mutations [111].

Heterozygous pathogenic variants in the MMR genes cause Lynch syndrome, an autosomal 

dominant disorder associated with development of adult-onset cancers, commonly colon 

and endometrial carcinoma [112]. In contrast, CMMRD is associated with an extremely 

high incidence of cancer starting in early childhood [113–115], and many patients also 

have CALMs (a feature not observed in Lynch syndrome). Approximately one-third of 

CMMRD patients develop a hematologic malignancy, with a median age at diagnosis of 6 

years (range: 0–21 years) [114–116]. Non-Hodgkin lymphoma (NHL), generally of T cell 

origin, is the most frequently reported hematologic malignancy, with fewer cases of ALL, 

also mostly of T cell origin [114–117]. Hematologic malignancies are more prevalent in 

individuals harboring MLH1 or MSH2 variants (38%), as compared to MSH6 (25%) or 

PMS2 (16%) carriers [117]. In addition, first malignancies occur at a younger age in MLH1 
or MSH2 mutation carriers (mean age at diagnosis of 2.5 years), as opposed to 7 and 9 years 

for MSH6 and PMS2 carriers, respectively [117].
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Patients with CMMRD generally do not experience undue toxicities following treatment 

with conventional ALL chemotherapy; however, they are prone to leukemia relapse. There 

are several possible explanations for this finding. First, ALL backbone therapy includes 

6-mercaptopurine (6-MP), an agent that requires intact mismatch repair to exert it cytotoxic 

effects [118–120]. Thus, 6-MP might function with lower efficacy against ALL blasts from 

CMMRD patients. Second, there is mounting evidence that certain chemotherapeutic agents 

(e.g. temozolamide) can induce somatic mutations in CMMRD-associated tumor cells 

[121,122]. Furthermore, most CMMRD-associated tumors already exhibit a hypermutator 

phenotype with >100 mutations per megabase of DNA [123]. This striking accumulation 

of somatic mutations in CMMRD-associated tumors, whether treatment-associated or not, 

likely contributes to therapy resistance.

Most recently, it has been proposed that the high mutational burden in MMR-deficient 

tumors could result in generation of neoantigens capable of being recognized by the 

immune system [124,125]. Curiously, CMMRD-associated tumors often contain a high 

number of infiltrating lymphocytes [124,125]. Thus, immune-checkpoint inhibitors might 

serve as an attractive treatment for these patients. Toward this end, recent reports describe 

the beneficial effects of pembrolizumab in adults with MMR-deficient tumors [125] and 

nivolumab in three children [126,127] and an adolescent [128] with CMMRD-associated 

gliomas. Whether immune-checkpoint inhibitors will have roles in the treatment of ALL or 

other hematologic malignancies remains to be determined.

2.4. Genetic predisposition to leukemia due to constitutional chromosome alterations

2.4.1. Down syndrome (DS; OMIM #190685)—DS, a genetic condition associated 

with constitutional trisomy for chromosome 21, was one of the first genetic syndromes 

associated with increased risk for childhood leukemia with initial reports dating back 

to the 1930s [129,130]. DS is the most common chromosomal disorder and occurs in 

approximately 1 in every 700 live births (www.CDC.gov). Children with DS present with a 

variety of congenital abnormalities, most commonly affecting the heart and gastrointestinal 

tract [131]. Additional features include intellectual disabilities and characteristic facies. 

While the majority of DS cases are not familial, in rare cases DS can be caused by 

transmission of an abnormal chromosome harboring a Robertsonian translocation involving 

chromosome 21. In so-called ‘translocation’ DS (t-DS), the affected baby inherits a 

chromosome (usually from the mother) that contains two copies of the long arm of 

chromosome 21. Children with t-DS exhibit similar phenotypic features as children with 

DS caused by an extra copy of the entire chromosome 21.

Children with DS have a 20-fold increased risk of developing ALL compared to children 

without DS, and a 500-fold increased risk of developing acute megakaryoblastic leukemia 

(AMKL) [132]. Remarkably, children with the rare Robertsonian translocation, rob(15;21)

(q10;q10)c have a 2,700-fold increased risk of developing ALL [133]. The age of leukemia 

onset in DS is bimodal, with the first peak in newborns and the second at 3–6 years of age; 

the increased risk may also extend to adulthood. The leukemias occurring in infants with DS 

are almost exclusively myeloid [129]. In contrast, ALL occurs in children with DS at ages 

similar to children without DS [129]. The vast majority of ALL cases seen in children with 
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DS are of B cell precursor origin. In a study of 700 patients with DS-ALL, only five cases 

of T-ALL were observed [134]. DS-ALL has historically been considered to have a worse 

prognosis than non-DS ALL due to therapy resistance and/or treatment related mortality 

[134,135]. However, recent reports have suggested that DS patients with ALL fare as well as 

those without DS when given appropriate supportive care [136,137].

Common somatic genetic abnormalities observed in sporadic B-ALL are less frequent in 

DS B-ALL, such as ETV6-RUNX1 and hyperdiploidy [134,138]. In contrast, up to 60% of 

DS-ALL cases overexpress Cytokine Receptor Like Factor 2 (CRLF2), the a type I cytokine 

receptor that binds thymic stromal lymphopoietin (TSLP) and is often associated with 

JAK-STAT pathway activating mutations [139,140]. In one study, Bercovitch and colleagues 

showed that somatic mutations in JAK2 were observed in 16 of 88 DS patients with B-ALL 

and only 1 of 109 non-DS patients with B-ALL [141]. Notably, this one case also harbored 

an isochromosome 21q. The authors went on to express the observed JAK2 mutants in 

mouse hematopoietic progenitor cells in vitro and observed cytokine independent growth 

due to constitutive JAK-STAT pathway activation, consistent with gain-of-function effects 

[141]. In line with these findings, recent genetic and epigenetic investigations reveal that 

Ph-like ALL is the most common DS-ALL subtype [142].

3. Genetic predisposition to leukemia: common variants acting as risk 

factors for ALL

Over the last decade, several genome-wide association studies (GWAS) have sought to 

elucidate how common germline variants, including single nucleotide polymorphisms 

(SNPs) in coding and non-coding regions of the genome, contribute to ALL. While the 

SNPs identified through GWAS generally confer a lower risk for ALL when compared to 

rare germline variants revealed through familial studies, these SNPs can nevertheless provide 

important insights into the biology of ALL. Consistent with this notion, prior GWAS have 

revealed susceptibility loci associated with pediatric ALL and involving genes known to 

play essential roles in hematopoiesis, such as IKZF1, ARID5B, CEBPE, GATA3, BMI1, 

and CDKN2A, among others (Table 2) [143–146]. GWAS have also identified risk loci 

specifically associated with drug responsiveness [147], relapse [146], and development 

of ALL in specific ethnic groups (potentially explaining racial or ancestral discrepancies 

[146,148,149]), and most recently, in children with Down syndrome [150].

Earlier this year, Qian and colleagues performed a GWAS involving 1,191 children with 

T-ALL and identified the first germline risk locus associated exclusively with this leukemia 

subtype [158]. This locus resides at 16p13.2 and includes several SNPs involving USP7 
(Ubiquitin specific peptidase-7), the gene encoding a ubiquitin specific protease that is 

somatically mutated in 12% of pediatric and young adult T-ALL cases [75]. Interestingly, 

the most common SNP in USP7 (rs74010351) is overrepresented in TAL1 mutation positive 

T-ALL, a subtype also commonly harboring somatic USP7 mutations. The USP7 risk 

allele was also over-represented in individuals of African descent, thus contributing to 

the observed higher incidence of T-ALL in this population [158]. This SNP is located 

proximal to the USP7 transcription start and resides in a cis-regulatory region marked 
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by active histone modifications and open chromatin segments, suggesting that it might 

influence USP7 expression. Further supporting this notion, in vitro luciferase reporter assays 

reveal that the presence of this SNP leads to a 2.9-fold decrease in luciferase expression 

[158]. Curiously, germline SNPs involving USP7 co-occur only rarely with somatic USP7 
mutations in T-ALL blasts. These data suggest that germline and somatic lesions play 

similar roles during the development of T-ALL, with somatic mutations likely exerting 

stronger effects. It remains to be determined how reduced USP7 expression contributes to 

T-leukemogenesis.

4. Germline leukemia predisposition and delayed infection hypothesis

It is well accepted that ALL develops due to the acquisition of multiple genetic lesions 

within a susceptible hematopoietic cell. The initiating genetic event may be somatic or 

germline, but by itself, it is unlikely to cause leukemia. The mechanisms that induce the 

additional genetic lesions needed to promote leukemia development are likely multifactorial, 

and include chance as well as environmental, infectious, and dietary factors, among others. 

In 1988, two hypotheses were put forth to implicate infection as a risk factor for ALL 

[159,160]. These hypotheses suggested that delayed exposure to infection, or exposure to 

a specific pathogen, might promote an abnormal immune response that then triggers the 

acquisition of additional genetic lesions at an age commensurate with increased lymphoid-

cell proliferation. Consistent with the concept of delayed exposure to infection, a recent 

report by Marcotte and colleagues describes a decreased risk for ALL in children exposed to 

influenza or respiratory syncytial virus early in life (e.g. the first three months) as compared 

to children exposed later (e.g. 9–12 months of age) [161].

Two recent studies have used mouse models to further investigate the contribution of 

delayed exposure to infection in the development of ALL. In the first, Martin-Lorenzo and 

colleagues show that PAX5+/– mice born and raised in a specific pathogen free environment 

do not spontaneously develop B-ALL. However, when these mice were moved to a 

‘common infectious environment’, 22% develop B-ALL [162]. Remarkably, this penetrance 

is comparable to that observed in the few human carriers of germline PAX5 variants 

[19,20]. In a second report, Rodriguez-Hernandez and colleagues use a similar experimental 

design to examine the influence of delayed infection in mice expressing the somatic 

ETV6-RUNX1 fusion protein within hematopoietic cells. The t (12;21) chromosomal 

translocation encoding this fusion is proposed to act as a ‘first hit’ in humans, much like 

germline leukemia-predisposing variants. Similar to the PAX5+/– mice, delayed transfer to 

a ‘common infectious environment’ led to emergence of B-ALL in 11% of ETV6-RUNX1-

expressing animals [21]. This again resembles the low penetrance of B-ALL development 

in human children harboring an ETV6-RUNX1 translocation positive clone [163,164]. In 

the latter mouse model, leukemia initiation following infection exposure was accompanied 

by differential regulation of epigenetic regulator genes of the lysine demethylase (KDM) 

family. It is interesting to note that the authors did not find a high proportion of differentially 

regulated epigenetic regulator genes when PAX5+/− mice were exposed to late infection, 

indicating that this is a phenomenon specific to malignant transformation of cells expressing 

the ETV6-RUNX1 fusion protein.
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Together, these epidemiological and animal modeling investigations suggest that a delayed 

exposure to infection might increase the risk for ALL while earlier exposure is protective. 

However, additional studies are needed to further examine and understand this phenomenon. 

For example, there still remains the major question of how exactly does delayed exposure 

to infection facilitate the acquisition of mutations that promote leukemogenesis? Similarly, 

how does early exposure provide protection? By testing the effects of exposure to various 

pathogens during different developmental windows using animal models, investigators are 

likely to gain novel and important insights into these poorly understood phenomena that can 

then be further examined in humans.

5. Evaluation and management of children with hereditary predisposition 

to ALL

As more and more children with germline predisposition are identified, there is increasing 

urgency to develop clinical management guidelines, not only for those already affected 

by cancer, but also for relatives who carry a predisposing germline variant but have not 

developed the disease. As limited data on the optimal methods and schedule of cancer 

screening exist, many of the current recommendations (summarized below and in Figure 2) 

are based on expert opinion.

5.1. Screening for hereditary predisposition to leukemia

Given the increasing number, as well as the phenotypic and genotypic heterogeneity of 

leukemia predisposing conditions, it is highly recommended that genetic evaluations be 

completed in consultation with providers who are familiar with these disorders. Generally, 

these providers include oncologists, geneticists, and genetic counselors who will: 1) collect 

a medical history of the patient to assess for features such as easy bruising or bleeding (an 

indicator of possible thrombocytopenia or platelet functional defects as in ETV6-related 

predisposition to ALL or FPDMM) and developmental delays/behavioral problems (as 

can be seen in NF1); 2) gather family history information about close blood relatives 

(first or second degree) who may have also developed leukemia or other cancers, or 

exhibited evidence of cytopenias; 3) complete a physical examination to look for syndrome-

specific features such as CALMs (NF1/RASopathy, CMMRD), axillary/inguinal freckling 

(NF1), and typical facial and other physical features (RASopathy); and 4) review tumor 

data focusing on findings such as low hypodiploidy (LFS), isochromosome or dicentric 

chromosome 9q (PAX5), hypermutator phenotype (CMMRD), and presence of somatic 

variants within genes indicative of a possible predisposition [165]. Clinical germline testing 

should be considered for any individual with leukemia who exhibits one or more concerning 

features, such as: 1) a personal history of multiple cancers; 2) a strong family history 

of cancers, especially those developing at earlier than expected ages; 3) hematopoietic 

malignancies diagnosed in two individuals within a three-generation pedigree; 4) a personal 

history or close relative with one or more cytopenias; and 5) a personal history or close 

relative with physical findings associated with a known predisposition syndrome. Genetic 

testing of leukemic blasts can also provide clues to an underlying leukemia predisposition, 

such as presence of pathogenic variants affecting PAX5 (with isochromosome or dicentric 

chromosome 9q), ETV6, IKZF1, NF1, PTPN11, or TP53 at an allele frequency of ~30–50%. 
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Such cases suggest the possibility of germline heterozygosity and should prompt genetic 

testing, as discussed below (Section 5.2 Genetic testing for germline predisposition to ALL).

5.2. Genetic testing for germline predisposition to ALL

Following appropriate counseling about the testing process, its associated risks and benefits, 

and the potential outcomes, the counselor and/or primary care team must determine 

which germline tissue to test. As leukemia cells circulate in the blood, blood and BM 

do not represent the optimal tissues for germline testing, especially during early phases 

of treatment. While some laboratories do accept a remission blood sample, it may be 

difficult to determine whether any identified mutations are germline or somatic in origin. 

Indeed, somatic mutations associated with clonal hematopoiesis of indeterminate potential 

(CHIP) can persist in the blood even during remission [166,167]. Similarly, saliva can be 

contaminated with circulating blood cells. Therefore, fibroblasts cultured from a skin biopsy 

are the optimal tissue to be used for germline testing in a patient with a hematopoietic 

malignancy [168]. One downside of using cultured skin fibroblasts is the long time required 

to generate a cell line, usually on the order of 3–6 weeks. Therefore, in cases where 

a result is needed urgently, a remission peripheral blood sample (preferably in a patient 

with negative minimum residual disease) can be tested. If there are no pathogenic variants 

identified, then there is less concern for a germline predisposition syndrome. If, on the 

other hand, certain mutations are identified, it may be necessary to also test cultured skin 

fibroblasts. Most recently, it has been reported that plucked hairs with attached follicles 

provide a rapid and accessible source of germline DNA that may be used as an alternative 

for genetic analysis [169,170].

5.3. Management of children with an underlying germline predisposition

Learning that a child has an underlying ALL predisposing condition can provide solace 

since it explains why the leukemia developed. Parents and children can be counseled about 

the risks for additional neoplasms as well as the risks for recurrence in offspring. Finally, 

blood relatives can be counseled and tested. Any who test positive can be offered screening 

for the early detection of cancer. This approach, while less helpful for individuals at risk 

for acute leukemias such as ALL, holds potential to improve long-term outcomes for those 

at risk for solid cancers, MDS, and/or BM failure. For children undergoing allogeneic 

hematopoietic stem cell transplantation (HSCT), germline genetic information is critical to 

avoid choosing a related donor who also harbors a predisposing germline variant.

It is generally recommended that a complete blood count (CBC) with manual differential 

be performed at the initial visit for all patients at increased risk for ALL [171]. This CBC 

provides a baseline for future comparison. In asymptomatic patients, follow-up CBCs could 

be performed every 6–12 months and more frequently if there are signs or symptoms 

concerning for leukemia. Any identified abnormalities should prompt a repeat CBC, with 

the timing dependent upon the severity of the finding. A baseline BM examination with 

cytogenetic analysis and molecular testing should be considered for all patients with an 

underlying predisposition syndrome, particularly individuals with significant abnormalities 

on the baseline CBC. Cytogenetic analysis and molecular testing may disclose early signs 

of clonal evolution prior to the onset of overt leukemia. Patients with worsening BM 
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dysplasia, increasing numbers of blasts, or progressive BM clonal abnormalities should be 

followed closely and potentially transitioned to allogeneic HSCT. In children with inherited 

susceptibility to ALL and a normal initial BM evaluation, there is no consensus regarding 

the need or use of routine follow-up BM examinations [171,172].

For children with ALL due to an underlying predisposition, germline genetic information 

can inform the risk for therapy-associated toxicities and provide prognostic information. 

For individuals with genetic conditions associated with impaired responses to DNA 

damage, standard-dose therapies can result in serious complications. Patients with Ataxia 

Telangiectasia (AT) can experience accelerated neurological compromise following exposure 

to vinca alkaloids [173], pancytopenia and hemorrhagic cystitis following exposure to 

alkylating agents [174], and mucositis and hemorrhagic colitis following exposure to 

anthracyclines [174]. Similarly, patients with LFS are at an increased risk to develop 

chemotherapy-associated leukemias [108,175]. Finally, individuals with AT, Nijmegen 

breakage syndrome (NBS), and LFS are at significantly increased risk for radiation-induced 

toxicities, such as leukoencephalopathy (AT) and secondary malignant neoplasms (AT, NBS, 

LFS) [174,176,177]. While patients with CMMRD are not at risk for therapy-associated 

toxicities, they are prone to relapse due to therapy resistance [121,122]. Accordingly, 

information about germline predisposition can allow clinicians to tailor therapy to reduce the 

risk for these untoward side effects and intensify monitoring for possible disease recurrence 

or development of secondary neoplasms.

5.4. The advantages and challenges of surveillance for children with ALL predisposition

Many ALL predisposing conditions have only recently been identified and thus remain 

poorly defined in terms of the clinical manifestations and age-specific leukemia risks. 

Moreover, given the rapid onset of ALL and the excellent outcomes using current therapies, 

there is little evidence that surveillance provides any medically relevant benefits. That 

said, surveillance (as described in Section 5.3 Management of children with an underlying 

germline predisposition) can prove useful for the early detection of cancer in children 

predisposed to MDS and/or solid malignant neoplasms [171]. Regardless of the underlying 

genetic condition, patients, parents, and other affected relatives should be educated about the 

signs and symptoms of leukemia and encouraged to seek medical advice promptly should 

they experience any concerning signs or symptoms.

5.5. Allogeneic stem cell transplantation (HSCT) for children with ALL predispositions

While overall survival in pediatric ALL is now close to 90% in developed countries [1], 

high risk forms of ALL and relapsed disease remain major clinical challenges and comprise 

the primary indications for allogeneic HSCT. However, with expanding appreciation of 

germline predisposition, thought is being put toward the use of preemptive allogeneic HSCT 

to replace a genetically affected bone marrow with a healthy donor marrow before the 

overt onset of leukemia. Recently, Hamilton and colleagues commented on the factors to be 

considered when offering preemptive HSCT to patients predisposed to AML, such as the: 1) 

nature of the underlying syndrome (syndromes associated with solid tumor development will 

not be helped by allogeneic HSCT); 2) age of the patient (children and young adults tolerate 

HSCT better than older adults); 3) disease penetrance (preemptive HSCT is more likely 
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to benefit individuals with highly penetrant conditions compared to those with conditions 

characterized by lower disease penetrance); 4) donor type and availability (fully HLA 

matched genetically unaffected donors are preferred); and of course, 5) patient and family 

preferences [178]. It remains to be determined whether preemptive HSCT will prove useful 

for children with an underlying genetic predisposition to ALL.

6. Expert opinion

Germline predisposition is gaining increasing recognition as an important factor contributing 

to the development of pediatric cancers, including ALL. Over the last 4 years, studies 

have shown that 5–10% of children with cancer (including 3–4% with ALL), carry a 

pathogenic germline variant in a cancer predisposing gene [107,179–181]. With continued 

examination of additional cohorts and deeper scrutiny of germline data, these percentages 

will undoubtedly increase as novel variants are uncovered. As the initiating events in 

tumorigenesis, germline variants perturb cell growth and differentiation and set the stage for 

malignant transformation. Accordingly, the study of germline variants, and their associated 

genetic syndromes, is very likely to provide new and important insights into the biology of 

childhood cancers, including ALL.

Despite the opportunities afforded, there remain several challenges that must be overcome 

to fully reap the benefits of germline genetic information. For example, it is important to 

distinguish whether any newly identified germline variants are truly related to cancer and not 

simply incidental findings. To strengthen association, investigators should examine germline 

data from cancer cohorts as well as control cohorts. In so doing, it is possible to evaluate for 

enrichment of predisposing variants in individuals with cancer as compared to controls. For 

these studies, cohorts should also be carefully examined for differences in ethnicity, which 

can complicate interpretation of findings.

A second challenge relates to determining the functional relevance of any identified 

germline variants. Although in silico approaches are commonly used to assist with this 

process, these approaches do not always accurately predict the true impact of germline 

variants on the function(s) of the encoded proteins. In this regard, Churchman and 

colleagues showed that only 65% of the germline IKZF1 variants characterized as damaging 

in their study were accurately classified using in silico methods [46]. To address this 

challenge, investigators must use alternative approaches, such as expression of variant 

proteins in cell lines or live animals, followed by evaluation for downstream effects. 

Unfortunately, these approaches can be costly as well as time and labor intensive, and 

they too may have limitations. This is especially apparent for hematopoietic stem cells and 

B cells, where mouse and human cells have unique cytokine dependencies and express 

different cell surface markers, suggesting that the mouse and human systems may not be 

entirely complementary [182]. The use of induced pluripotent stem cells (iPSCs) provides 

one additional approach to model inherited cancer syndromes and confirm any phenotypes 

arising through the use of cell lines and mouse models. Indeed, patient-derived iPSCs have 

already provided insights to how GATA2 deficiency affects human hematopoiesis [183].
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A third challenge stems from poor understanding of the impacts of germline variants 

on clinical phenotypes, which severely limits our ability to optimize the management of 

children and adults with an underlying predisposition. Indeed, for many cancer predisposing 

conditions, the age-specific cancer risks have not yet been defined. As such, the degree 

of cancer risk might be higher or lower, and the spectrum of cancers wider or narrower, 

than originally proposed. In addition, it remains poorly understood how germline variants 

influence responses to therapy and overall outcomes. Historically, most individuals to 

undergo genetic testing for cancer were those who met clinical criteria for a specific 

hereditary syndrome. As might be expected, this process confirmed and further strengthened 

associations between specific phenotypes and underlying germline genotypes. However, 

recent non-biased sequencing studies are revealing individuals with cancer who harbor 

germline variants that never would have been expected based on their clinical phenotype. 

For many cases, it remains to be determined whether these novel germline variants are 

truly causal. To improve knowledge surrounding specific genotype-phenotype associations, 

investigators must uniformly collect and share clinical, family history, and germline genetic 

data.

In recognition of the emerging importance of germline predisposition in the diagnosis and 

management of patients with hematopoietic malignancies, the World Health Organization 

(WHO) provisionally recognized myeloid neoplasms with germline predisposition in the 

2016 revision of the classification of tumors of hematopoietic and lymphoid tissues [184]. 

Given the continued expansion in knowledge surrounding genetic predisposition to ALL, 

it is very likely that lymphoid neoplasms will soon join these ranks. Over the next five 

years, genetic counseling and germline genetic testing will become increasingly employed 

in pediatric oncology clinics and the resulting information will be used to inform the care 

of children with cancers, including ALL. The challenge now remains in determining how 

best to capitalize on this information to further improve the overall cure rates and enhance 

long-term outcomes for at-risk children and their families.
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Article highlights

• Recent family-based and large scale high-throughput sequencing studies 

have uncovered several novel genetic conditions predisposing to acute 

lymphoblastic leukemia (ALL).

• The genes associated with these ALL predisposing conditions are often the 

same as those targeted by somatic mutations in ALL blasts (e.g. PAX5, 

IKZF1, ETV6, PTPN11).

• For some conditions, such as those caused by germline alterations affecting 

PAX5, IKZF1, and ETV6, affected individuals are primarily predisposed to 

develop ALL.

• For others, such as Noonan syndrome (NS), Neurofibromatosis 1 (NF1), 

Li-Fraumeni syndrome (LFS), and Constitutional mismatch repair deficiency 

(CMMRD), affected individuals are at risk for ALL as well as other 

hematologic malignancies and/or solid tumors.

• Examination of the genetic status of leukemic blasts can provide clues to 

the underlying ALL predisposing condition. For example, blasts in LFS 

commonly exhibit a low hypodiploid karyotype, while blasts in CMMRD 

have a hypermutator phenotype.

• Knowledge of an underlying ALL predisposing condition informs leukemia 

treatment through avoidance of carcinogenic therapies. It also enables the 

initiation of screening programs for the early detection and treatment of 

second primary or therapy-associated cancers.

• When considering genetic testing in a child with ALL, it is important to 

choose the appropriate germline tissue; cultured skin fibroblasts are the 

preferred source of germline DNA.

• Pre-emptive allogeneic hematopoietic stem cell transplantation before the 

overt development of leukemia is a consideration for some individuals with 

ALL predisposing conditions.

• Continued efforts are warranted to better define the spectrum and penetrance 

of known ALL predisposing conditions, discover new genes and germline 

variants associated with ALL risk, elucidate the interactions between 

germline genetic variation and environmental exposures in the development of 

ALL, and optimize clinical care based on germline genetic information.
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Figure 1. 
Predisposition to pediatric acute lymphoblastic leukemia results from germline variants 

affecting genes that encode proteins involved in critical pathways such as cellular 

signaling, DNA damage response, cell cycle, cell death, and lymphocyte differentiation. 

AT, Ataxia Telangiectasia; BS, Bloom syndrome; CMMRD, Constitutional mismatch repair 

deficiency; ETV6, ETV6-associated predisposition; FA, Fanconi anemia; FPDMM, Familial 

platelet disorder with predisposition to myeloid malignancy; IKZF1, IKZF1-associated 

predisposition to B-ALL; LFS, Li-Fraumeni syndrome; NBS, Nijmegen breakage syndrome; 

NF1, Neurofibromatosis type 1; NS, Noonan syndrome; PAX5, PAX5-associated leukemia 

predisposition.
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Figure 2. 
Schematic describing the steps involved in the clinical evaluation of patients with suspected 

germline predisposition to ALL. CBC, complete blood count.
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