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Abstract

In this work, we propose a novel deep learning reconstruction framework for rapid and accurate 

reconstruction of 4D flow MRI data. Reconstruction is performed on a slice-by-slice basis 

by reducing artifacts in zero-filled reconstructed complex images obtained from undersampled 

k-space. A deep residual attention network FlowRAU-Net is proposed, trained separately for 

each encoding direction with 2D complex image slices extracted from complex 4D images 

at each temporal frame and slice position. The network was trained and tested on 4D flow 

MRI data of aortic valvular flow in 18 human subjects. Performance of the reconstructions was 

measured in terms of image quality, 3-D velocity vector accuracy, and accuracy in hemodynamic 

parameters. Reconstruction performance was measured for three different k-space undersamplings 

and compared with one state of the art compressed sensing reconstruction method and three deep 

learning-based reconstruction methods. The proposed method outperforms state of the art methods 

in all performance measures for all three different k-space undersamplings. Hemodynamic 

parameters such as blood flow rate and peak velocity from the proposed technique show good 

agreement with reference flow parameters. Visualization of the reconstructed image and velocity 

magnitude also shows excellent agreement with the fully sampled reference dataset. Moreover, the 

proposed method is computationally fast. Total 4D flow data (including all slices in space and 

time) for a subject can be reconstructed in 69 seconds on a single GPU. Although the proposed 

method has been applied to 4D flow MRI of aortic valvular flows, given a sufficient number of 

training samples, it should be applicable to other arterial flows.
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I. Introduction

Hemodynamic parameters such as blood flow rate, peak velocity, pressure are widely 

used clinically to make important decisions about diagnosis, prognosis, and therapy in 

cardiovascular disease. 4D phase contrast (PC) MRI or 4D flow MRI is a non-invasive 

method that provides time-resolved three-dimensional blood velocity fields in a 3-D volume 

from which hemodynamic parameters can be calculated. In PC MRI, the velocity of blood 

is encoded in the phase of MR signal. Moving spins accumulate an extra phase offset in 

a spatially varying magnetic field, with the phase offset being proportional to velocity in 

the direction of the applied gradient. Flow encoding gradients can be applied to two or 

more axes. By measuring the phase shift of moving spins, velocity along each axis can be 

measured. In 4D flow MRI, velocity-sensitive flow encoding gradient is applied in three 

directions, which provides three different velocity components with time and corresponding 

3-dimensional anatomic coverage. However, data acquisition in k-space along three different 

directions with time makes the 4D flow acquisition very lengthy. It is also important to 

maintain good spatial and temporal resolution during acquisition to accurately compute 

hemodynamic parameters. In 4D flow MRI, a trade-off between scan time and resolution 

occurs due to the higher dimensional acquisition. To reduce scan time, in the past, various 

methods have been proposed. These include parallel MRI such as SENSE [33] and GRAPPA 

[32], non-Cartesian trajectory acquisitions, namely radial or spiral acquisitions [4],[5] and 

Compressed sensing [6],[7],[11] methods. In compressed sensing, scan time is reduced by 

taking fewer samples in k-space (reduced number of phase-encoding steps), and image is 

reconstructed from undersampled k-space data by exploiting sparsity in pixel domain or a 

transform domain. For compressed sensing PC MRI reconstruction, several techniques were 

proposed to reconstruct magnitude and phase with fidelity from undersampled k-space. In 

[9], a separate magnitude and phase regularization method is proposed, and a regularizer 

function is introduced, which is periodic in phase and accommodates phase wrap. Another 

method is proposed in [10], which exploits the sparsity of complex difference images and 

minimizes the total variation (TV) of both encoded and compensated images. A 4D flow 

imaging approach is proposed in [11], where temporal and spatial sparsity is exploited 

in the wavelet domain by an empirical Bayesian method. Minimization of sparsity by L1 

minimization can be computationally expensive. Despite impressive acceleration factors, 

achieving clinically relevant reconstruction time remains a challenge for many methods. 

Though acquisition time decreases in these methods because they only acquire a fraction 

of k-space, the reconstruction times increase considerably. To minimize reconstruction 

times, in recent efforts, deep learning with convolutional neural networks (CNN) has been 

applied to different medical imaging modalities. Not only reduced reconstruction times but 

also Deep CNN architecture’s ability to identify intricate features from data has shown 

better reconstruction results than the state-of-the-art methods. End to end mapping from 

subsampled k-space or zero-filled images to fully sampled images were proposed in several 

studies. In [12], a deep cascade of CNNs is proposed, which reconstructs a cine sequence 
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of 2D cardiac MR images within a second. The proposed architecture took input images 

from undersampled cartesian acquired data and combined convolution and data sharing 

approaches to learn spatio-temporal relation in a cine sequence. [13] proposed a region of 

interest-based approach ROIRecNet where a deep neural network based on cascaded CNNs 

is used to interpolate missing k-space values followed by a U-net which segmented the 

ROI to focus reconstruction on a region of interest. An image domain-based reconstruction 

approach by U-net is proposed in [14], which reconstructs brain MR images by reducing 

artifact from the zero-filled reconstructed image of 29% undersampled k-space. Another 

U-net based architecture is proposed in [15] that considers the reconstruction problem as 

a missing k-space problem and performed complex k-space learning to fill in the missing 

data. [37] proposed a generative adversarial network (GAN) based network that reduces 

aliasing artifacts from zero-filled images and preserves texture and edges from 2D brain 

MRI images.

However, the above-mentioned state of the art deep learning approaches are proposed 

for applications where magnitude image is of main interest and phase is not relevant. 

In 4D flow MRI, phase is the quantity of interest. Implementing an end-to-end 4D flow 

reconstruction by deep learning is challenging because the high dimensional nature of 4D 

flow makes it difficult to gather enough high-quality data for training. There had not been a 

previous study on deep learning reconstruction of 4D flow until recently, an approach called 

FlowVN is proposed [16]. FlowVN is a model-based approach - where 10 steps of iterative 

reconstruction is performed by an unrolled 3D variational network. This approach is similar 

in spirit to previously proposed networks involving other MR modalities [17– 19], where 

prior information or optimal parameters are learned beforehand by a neural network and 

incorporated into the framework of compressed sensing.

In our recent work [21], we proposed phase contrast image reconstruction from zero-filled 

reconstructed complex image in one encoding direction using a 2-D U-net architecture. A 

complex image consists of magnitude and phase, where phase image is the main quantity 

of interest as blood velocity is encoded in phase. Zero-filled reconstruction corrupts both 

magnitude and phase by creating artifacts in the image. In [21], we showed that the 

magnitude and velocity of PC MRI can be restored in a single encoding direction with 

high fidelity by complex image domain learning using the U-Net. In this paper, we improve 

on our previous results by adopting a combined residual and attention mechanism in the 

U-Net and propose an approach for 4D flow reconstruction by extending reconstruction to 

three velocity encoding directions. We propose an independent reconstruction approach for 

4D Flow MRI, a data-driven image domain de-aliasing-based approach. The advantage of 

this approach is that there is no involvement of k-space in the training process, which is 

relevant when dealing with images acquired by different sequences or MRI scanners. The 

proposed approach is more versatile, agnostic to the specific of k-space, and reconstruction 

is a hassle-free plug-and-play approach once we have the zero-filled reconstructed images 

from the acquisition. The main contributions of this paper are as follows-

1. We propose a novel 2-D network architecture where integrated residual block 

and spatial and channel-wise attention block is used as the backbone of a 

Unet network. We refer to our proposed network as Flow Residual Attention 
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U-net or FlowRAU-net. Proposed FlowRAU-net reduces artifacts in zero-filled 

reconstructed complex images and restores velocity information in all encoding 

directions by learning to map zero-filled reconstructed complex image to fully 

sampled complex image for each encoding direction separately.

2. Performance of the reconstruction is measured in terms of reconstructed image 

quality, 3D velocity vector accuracy from phase image at three encoding 

directions, and two flow parameters- flow rate and peak velocity. Proposed 

FlowRAU-net shows improved ability for reconstruction and better performance 

measures over three state-of-the-art deep learning architectures for reconstruction 

[21], [37], [38] and compressed sensing dynamic total variation reconstruction 

[20] method.

3. Reconstruction time of 4D flow is significantly lower than the state-of-the-art 

compressed sensing methods (7–8 minutes). Each 2-D complex image can be 

reconstructed within 150ms by FlowRAU-net, and the total 4D flow data for 

one subject can be reconstructed within 69 seconds by the proposed 4D flow 

reconstruction framework.

II. Proposed Method

A. Problem Formulation

In accelerated 4D flow MRI, a fraction of k-space is acquired to accelerate the acquisition, 

and image reconstruction problem is solved by finding the solution of the inverse problem -

y = Eu , (1)

Here u ∈ CN denotes time resolved complex valued 3D image at different velocity encoding 

direction. u = meip, where m is magnitude image, and p is phase image. N= Nx× Ny× Nz× 

Nt× Ni where Nx× Ny× Nz is 3D complex image volume and Ni and Nt denotes total number 

of velocity encodings and number of cardiac phases. y ∈ CM denotes undersampled k-space 

where M≪N and E denotes system matrix. Direct solution of equation (1) is not possible 

as system is undetermined for M≪N. Filling the unmeasured k-space with zeros and 

performing direct inversion creates zero-filled reconstructed complex image uo ∈ CN with 

artifacts. To accommodate small training data in 4D flow MRI, 2D complex image (Nx× Ny) 

is extracted from uo at different slice position z and temporal position t and reconstruction is 

done by learning direct mapping of 2D complex image in uo to 2D complex image in u. The 

main idea is to train the proposed neural network FlowRAU-net with 2D complex image pair 

with sufficient past training data so that the network will predict an output image close to the 

fully sampled image from an unseen zero-filled reconstructed input. The mapping function 

is learned separately at each velocity encoding as different encoding direction corresponds to 

different phase orientation and range of velocity. The velocity sensitive encoding is generally 

performed in foot-head (FH) direction, anterior-posterior (AP) direction, and right-left (RL) 

direction. Phase image p at each encoding direction contains velocity in that direction, which 

is the primary quantity of interest in 4D flow MRI. Fig. 1 shows the proposed overall 

reconstruction framework. Zero-filled reconstruction of subsampled k-space creates complex 
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image uo in the spatial domain. Proposed network FlowRAU-net is trained with 2D complex 

image extracted from time-resolved 3D volume of uo at each encoding direction separately. 

FlowRAU-net can reconstruct artifact free 2D complex image containing 2D magnitude and 

phase for corresponding velocity encoding direction after learning the mapping function. 

Reconstructed 2D phase image at FH, AP, and RL directions give 3D velocity information, 

and 2D magnitude image gives corresponding structural information. 2D reconstruction at 

all slices and time positions at each encoding creates a total complex image domain of 4D 

flow.

B. Network Architecture

The proposed network FlowRAU-net is based on a 2D encoder-decoder structure. Encoder-

decoder architecture has been one of the most popular frameworks for reconstruction in 

different imaging modalities as it enables deeper feature extraction in the network. Encoder 

extracts shallow, and deep features in the network, and decoder retrieves the features by 

upsampling and concatenation, maintaining the same spatial resolution. Fig. 2(a) shows the 

overall architecture of FlowRAU-net. The network takes a 2-channel 80× 80 complex image 

as input where the channel stores real and imaginary parts of zero-filled reconstructed input. 

A residual block followed by an attention block is proposed as the backbone of an encoder-

decoder architecture. From our previous study in [21], reconstruction of phase contrast 

MRI in through-plane direction using a basic encoder-decoder U-net architecture does not 

improve accuracy when the number of convolutional layers is increased. An increasing 

number of layers leads to the gradient vanishing problem and creates difficulty in training 

the network. In prior work, different segmentation networks [22], [23] have used Resnet 

as the backbone of encoder-decoder structure to mitigate the vanishing gradient problem. 

Similarly, herein we adopt a residual block instead of a traditional convolution block. Fig. 

2(b) shows the adopted residual block. A single residual block consists of convolution 

layers, batch normalization, and ReLU activation function. In our proposed method, the 

number of convolutional layers at each residual block is 3. The convolution block consists 

of a 3×3 filter with stride 1. The number of filters in the encoder residual block is 64, 128, 

and 256. After encoder blocks, there is a bottleneck layer consisting of one convolution layer 

of 512 filters. The bottleneck layer contains the most reduced dimensionality of the input 

with the most increased depth, which helps in efficient feature map learning. The bottleneck 

feature vector is then decoded to reconstruct the image in the decoder path. The number of 

filters in the decoder residual block is the same but in reverse order.

Though residual block in encoder and decoder improves accuracy, when we go deeper in the 

CNN, the volume of irrelevant pixel increases in the network, which creates inefficient 

weight learning. That is why before each pooling layer in the encoder, an attention 

mechanism is adopted to give significance to important features and ensure efficient 

pooling of features. Attention is also applied in the decoder path before upsampling and 

concatenation so that the important features are weighted in later layers. The output features 

from the residual block go through a dropout layer before entering the attention block 

for better generalization during training. Residual and attention block together create the 

residual attention (RA) block. Each RA block is followed by maxpooling in the encoder 

and average unpooling in the decoder. Average unpooling is followed by a concatenation of 
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encoder feature map maintaining same spatial resolution. After each maxpooling the next 

RA block consists of the same number of convolutions with an increased number of filters 

by factor of 2.

Fig. 2(b) describes the attention mechanism in detail. Different state of the art methods 

[24–28] adopted attention mechanism with CNNs and achieved better results in several 

applications like segmentation and classification. [38] and [41] adopted an attention 

mechanism in reconstruction application. [38] proposed a self-attention mechanism in U-

net-based architecture where pixel-wise weight is calculated by 1 × 1 convolution and 

attention is integrated after every convolution operation in the U-net architecture. [41] 

proposed a cascaded U-net architecture where channel attention is adopted in the decoder 

path of each U-net. For 4D flow reconstruction, flow region or velocity information 

recovery is most important in the recovered image, and attention should be applied to the 

flow region during training for better reconstruction. The attention mechanism described 

by Woo et al. in [25] effectively serves this purpose by incorporating maxpooling and 

average pooling operation in the attention, which is proven to be capable of locating 

salient features. Thus we adopt this attention mechanism in our architecture to ensure 

the presence of flow feature in the feature maps for better reconstruction. The output 

from residual block is followed by a dropout layer and produces intermediate feature 

F⌣ = f1, f2, … … … … . . , fncℎannels ∈ Cl1 × l2 × ncℎannels  where l1 × l2 denotes image size 

in intermediate layer. Intermediate features contain both structural information and flow 

information in different channels. Fig. 3(a) shows three examples of intermediate feature 

maps, where in different channels, some feature maps contain only structural information 

of magnitude image(left), some feature maps contain dominant flow region in brighter 

pixels(middle) and some feature maps contain suppressed flow region in darker pixels(right). 

Global maxpooling in channel attention identifies the brighter pixels of feature maps by 

taking the maximum value of the spatial region of l1 × l2 feature maps and calculating 

an output of size 1 × 1 × nchannels, thus giving more weight in the feature maps that 

contain dominant flow region and lesser weight in the feature maps that contain structural 

information. Global average pooling understands the inter-spatial relationship by taking the 

average value of the spatial region in each feature map and helps to locate the flow feature 

in each map. From Fig. 2(b), global average pooling and global max pooling squeeze the 

feature and creates Rmax and Ravg. Rmax and Ravg then go through a shared network (FC), 

which consists of 2 dense layers. Channel attention Ac ∈ C1×1×nchannels is obtained with the 

learned weight-

Ac = sigmoid FC Rmax + FC Ravg (2)

The input to spatial attention is the channel attention weighted feature map –

F⌣c = F⌣ ⊗ Ac (3)

Here ⊗ denotes element wise multiplication. In spatial attention block, average pooling and 

max pooling are both applied in the feature map. Local maxpooling in spatial attention 
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identifies the flow region with brighter pixels locally in each feature map, thus ensuring 

more weight in the flow region and local average pooling understands the total extent of 

each feature map. The combination of maxpooling and average pooling has been empirically 

proven to improve the representation power of the network [25]. Pooled features are 

concatenated and convolved by a convolution layer and generate spatial attention As-

As = sigmoid(X3 × 3[Maxpool F⌣c ), Avgpool F⌣c ]) (4)

Here, X3×3 denotes a 2D convolution with kernel size 3 × 3. Output feature map after 

attention will be F⌣attn
 where-

F⌣attn = F⌣ ⊗ Ac ⊗ As (5)

Here, F⌣attn
 is the refined feature map after sequential channel and spatial attention aiming 

to improve the reconstruction performance. Fig. 3(b) shows feature maps after the first 

maxpooling in encoder with and without attention. The first row of fig. 3(b) shows several 

examples of 40 × 40 feature maps after first maxpooling in encoder when the network is 

trained with the proposed architecture. The second row shows several feature maps after the 

first maxpooling, excluding attention block in the architecture while training. From feature 

map observation, after the first maxpooling operation in the encoder, flow region is hardly 

present in the feature maps without attention block. In contrast, flow region is a dominant 

feature in the feature maps when network is trained with attention block in the architecture. 

Attention block after each residual block thus ensures efficient flow information propagation 

by giving importance to the flow features. Output from the final attention block in the 

decoder goes into a convolutional layer consisting of 2 filters, which results in 2 channel 

outputs of the same resolution as input.

Loss Function: Pixel wise square error is considered as network loss function

L = u2D − ur, 2D 2
2

(6)

Here, ur,2D represents, reconstructed 2D complex image from the network and u2D 

represents, labelled fully sampled 2D complex image.

C. Undersampling Technique

In the compressive sensing approach, it is necessary to have a random sampling pattern 

in the phase encoding direction to avoid artifacts in the reconstruction. However, in the 

deep learning approaches, uniform undersampling or randomization in the phase encoding 

direction- both were used by previous studies [14], [15] to create subsampled k-space to 

train the network. [30] proposed a sampling augmented training strategy by using varying 

sampling pattern in k-space. According to [30], instead of using a fixed undersampling 

pattern, a varying undersampling pattern in k-space creates different artifacts in the zero-

filled reconstructed image so that the network can learn a wide range of undersampling 
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artifacts during the training. In 4D flow MRI, 3D k-space over time is acquired. For 3D 

acquisition, random undersampling can be implemented in Ky –Kz plane. [39] implemented 

random undersampling in Ky –Kz plane, keeping the low frequency region fully sampled, 

and performing random undersampling in the high frequency region. [36] implemented a 

cartesian random undersampling in Ky–Kz–t plane, where randomization is applied not only 

in Ky –Kz plane but also in Ky –t plane. We similarly adopted a random Ky–Kz–t sampling 

pattern for the undersampling in k-space so that randomization in both planes will create 

variation in artifacts in the zero-filled images and help the network in better generalization. 

A variable density Poisson-disk probability function assigns the highest probability of 

sampling in the center of Ky–Kz plane. We repeat the generation process Nt number of 

times that creates Ky –Kz sampling patterns along Nt temporal phases. The low frequency of 

Ky –Kz plane are fully sampled at all time points. Fig. 4(a) shows 20% cartesian sampling 

pattern in Ky–Kz plane, where each dot represents a readout line in k-space and 4(b) shows 

20% cartesian sampling pattern at different timepoints.

D. Data Acquisition and Network Training

The study was approved by the institutional review board at the Veterans Affairs Medical 

Center in Louisville, Kentucky. Healthy volunteers, as well as patients with severe aortic 

stenosis (AS) were scanned, concluding 18 human subject scans. It should be noted that due 

to an oversight by authors, the healthy volunteers, despite having given informed consent, 

were not initially approved by the IRB to be scanned since they were not US Veterans. 

However, the IRB subsequently approved the use of their data. Among 18 subject scans, 10 

of them were patient scans, and 8 were healthy volunteers. Patients were recruited from the 

Cardiology Clinic at the Robley Rex VA Medical Center (all male subjects, age 69 ± 8.6). 

Severe AS was defined based on Doppler echocardiography measurements: peak systolic 

velocity greater than 3.5 m/s, effective orifice area (EOA) less than 1 cm2, or transvalvular 

pressure gradient (TVPG) ≥ 40 mmHg. 4D flow data of blood flow through the aortic 

valve were collected with Cartesian readout on a 1.5T Phillips Achieva scanner with a 16 

channel XL Torso coil. The acquisition employed 4D flow encoding with Cartesian read-out, 

which employed x, y, and z velocity encoding as part of the same acquisition. A four-point 

balanced Hadamard encoding [5, 43] was used in the pulse sequence during acquisition 

which allows for improved velocity to noise ratio in each flow encoding direction. The scan 

parameters for patient data were, TE= 3ms, TR= 14ms, matrix size=80×80×10, field of 

View=200×200×50 (mm3), resolution= 2.5×2.5×5 (mm), slice thickness= 5mm, number of 

slices=10, flip angle= 80, 400<venc<500 (cm/s), scan time= 15 min(approximately). Data 

were acquired over a variable number of heart phases, with a minimum of 16 phases. The 

number of phases selected was based on whether the addition of a heart phase was possible 

and/or added time to the scan. The navigator window length was set to 100 mm, with an 

acceptance window of 7 mm. The FOV for all the subjects included 1–2 slices proximal 

to the aortic valve, with the remaining 8–9 slices distal to the valve. For consistency in the 

training data, we considered 15 temporal phases for all subjects. Respiratory gating with 

navigators was used. Phase image values were normalized to [−π, π] range and magnitude 

image values in the [1, 10] range. k-space data were downsampled retrospectively with 

20%, 30% and 40% sampling. From zero-filled reconstructed images, each time frame from 

every slice was taken as a separate training example. Despite this, the training dataset for 
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each velocity encoding is relatively small, containing only 2700 images. Therefore, we 

augmented the dataset by rotating each image between [0, 2π] in 10-degree increments, 

creating a dataset of 94,500 images for each encoding training. We split the dataset into 

training and testing set via 9-fold cross validation on 18 subjects. In 8 folds, 16 subject 

data (including augmentations) were used for training, and the remaining data for 2 subjects, 

which were in the ninth fold, were used for testing. To report the performance measures, this 

process was repeated 9 times. A batch size of 32 was used to train the network. Network 

weights were initialized using normal distribution with a standard deviation of 0.01. Pixel 

wise mean squared error between the output and labelled image was considered as loss 

function. RMSprop optimizer [35] was used to minimize the loss function with a learning 

rate of 0.0001. After every 50-epoch learning rate was decreased by half. Maximum epoch 

was set as 400, and early stopping was used as momentum to avoid overfitting. We used 

Nvidia’s GeForce GTX 1050 Ti GPU and training took 1 day. The experiments in this study 

were performed using Keras with Tensorflow whose back end is Python 2.7.

E. Performance Evaluation

Usually, reconstruction of MRI modality where magnitude image is of main importance, 

structural similarity index measurement and NMSE are chosen as performance measure 

instead of F1 score and dice co-efficient that usually used in classification and segmentation. 

However, in the 4D Flow reconstruction problem, flow information is of central importance, 

and performance measures were chosen according to the flow information or velocity 

vector recovery by the previous state-of-the-art methods [36], [11], [16], etc. Similarly, 

the performance measures in this manuscript are also chosen to reflect the effectiveness 

of velocity vector recovery. The reconstructed image is a 2-D complex image containing 

magnitude and phase information in 2-D. For quantitative image evaluation, normalized 

mean square error (NMSE) in all encoding direction, slice and time position gives an 

objective comparison between the reference 4D flow u ∈ CN and reconstructed 4D flow ur ∈ 
CN -

Image NMSE = 1
Ni × Nz × Nt

∑i = 1

Ni ∑z = 1

Nz ∑t = 1

Nt u(t, z, i) − ur(t, z, i) 2
2

u(t, z, i) 2
2 (7)

Here, u(t, z, i) and ur(t, z, i) are reference and reconstructed 2-D complex image at time 

position t, slice position z and velocity encoding direction i. From reconstructed complex 

image in three encoding direction, phase image of FH, AP and RL and corresponding 

magnitude image is calculated. Phase is encoded within the range [π − π]. From phase 

image, velocity mapping is done by - V elocity = venc
π × Pℎase . Here, venc is velocity 

encoding parameter which is set during acquisition. It is set in a way so that the maximum 

velocity in a flow direction corresponds to 180-degree phase shift. After computing velocity 

mapped image in FH, AP, and RL direction, region of interest (ROI) that contains blood 

flow is segmented by GTFlow (GyroTools, Zurich, Switzerland) software. GTFlow allows 

drawing of vessel contours with b-spline curves in different regions of the aorta and creates 

very accurate segmentation of the vessel after the user selects a few anchor points on the 

vessel boundary. Same ROI is used for velocity image in all encoding direction. Velocity 

mapped image in FH, AP and RL direction gives 3-D velocity vectors in the ROI. 3-D 
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velocity vectors in the ROI from reconstructed image are compared with 3-D velocity 

vectors from fully sampled image. Relative velocity error and Angular error of 3-D velocity 

is measured in 2-D slices and averaged over all the slices and time position to measure error 

in 4D flow by –

Relative V elocity Error =
1

Nz × Nt
∑z = 1

Nz ∑t = 1

Nt V ref(t, z) − V r(t, z) 2
2

V ref(t, z) 2
2

(8)

Angular Error =
1

Nz × Nt
∑z = 1

Nz ∑t = 1

Nt arccos V ref(t, z), V r(t, z)
V ref(t, z) 2 V r(t, z) 2

(9)

Here, υref(t, z) and υr(t, z) denotes 3D velocity vectors in ROI region from reference and 

reconstructed images in slice position z and time position t. Along with velocity accuracy 

measurement, two other flow parameter- flow rate and peak velocity is considered for 

performance evaluation. Flow rate in a 2-D slice is calculated by average velocity in through 

plane direction in flow region multiplied by flow area. Accuracy of flow rate is measured by 

calculating root mean square error (RMSE) between flow rate from reconstructed velocity 

mapped image and fully sampled velocity mapped image at all time point and slice location. 

RMSE of peak velocity at all slice location and over all time frame is also measured for 

performance evaluation-

Flow Error = ∑z = 1
NZ ∑t = 1

Nt Qref(t, z) − Qr(t, z) 2

Nz × Nt

(10)

Peak V elocity Error = ∑z = 1
Nz ∑t = 1

Nt vpref(t, z) − vpr(t, z) 2

Nz × Nt

(11)

In (10), Qref(t, z), Qr(t, z) denotes flow rate from a 2-D slice in reference image and 

reconstructed image. Similarly, in (11) vpref(t, z), vpr(t, z) denotes peak velocity in 2-D slice 

in reference image and reconstructed image. Proposed method is compared with one state 

of the art iterative compressed sensing regularization method [20] where total variation is 

used for sparsity in cardiac phase dimension of 4D flow data. Comparison is made with 

three other image domain learning based reconstruction approach [21], [37] and [38]. [21] 

adopted a U-net architecture for phase contrast MRI reconstruction in FH encoding direction 

with 2 channel complex input and output. [37] proposed a GAN based reconstruction 

approach namely DAGAN and [38] proposed an attention-based reconstruction approach 

namely SAT-net. DAGAN uses a U-net-based architecture as the generator and a CNN-based 

classification network as the discriminator. SAT-net proposes a densely connected U-net 

with local and global shortcuts and an attention mechanism integrated with each convolution 

layer. For 4D Flow reconstruction, all networks are trained and tested at three encoding 

directions separately for all subjects. Same 2 channel zero-filled reconstructed images are 

used to train the comparison networks. Adam optimizer with initial learning rate of 0.0001, 

β1 = 0.9, β2 = 0.999 were used for DAGAN network. Learning rate was halved every 5 

Nath et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



epoch. For SAT-net, initial learning rate of 0.001, β1 = 0.9, β2 = 0.999 were used and 

after each 50 epoch learning rate was decreased by half. Batch size of 16 was used for the 

network training. 9 fold cross validation was performed where at each fold 16 subjects were 

used for training and 2 subjects were kept out for testing.

III. Results

Fig. 5 and Fig. 6 show reconstructed images for one healthy volunteer and one patient 

subject. Reconstructed axial slices are shown at aortic valve position at systole phase of 

the cardiac cycle for 30% subsampling in k-space. First row of Fig. 5 and Fig. 6 shows 

the magnitude image for the reference fully sampled image, zero-filled reconstructed image, 

reconstruction by TV regularization method, U-net method, proposed FlowRAU-net method, 

DAGAN method, and SATnet method. Second, third, and fourth row of Fig. 5 and Fig. 6 

shows the corresponding velocity mapped images in FH, AP, and RL encoding direction. 

Fig. 5 and Fig. 6 demonstrates that reconstructed magnitude image and velocity image by 

FlowRAU-net can restore structural information and fine details of original image discarded 

by undersampling. Though several areas of the magnitude image suffer from blurry edges 

and textures, the proposed method appears to restore more structural information and fine 

details than the reconstructed magnitude image by other methods. Velocity images in Fig. 5 

and Fig. 6 contain the hemodynamic information and are restored by the proposed method 

without any artifact. Though velocity image by other reconstruction methods also restores 

the velocity information which is absent from zero-filled reconstructed image, it suffers 

from some degree of blurring from the reference phase image. Fig. 7 and Fig. 8 show the 

magnitude of velocity in flow region in reconstructed images for one healthy volunteer and 

one patient subject with aortic stenosis. Velocity magnitude is calculated as ‖υ‖2 where υ = 

(υFH, υAP, υRL). The first row of Fig. 7 and Fig. 8 shows the flow region in a red rectangular 

box in an axial slice of velocity mapped image. The second row shows the velocity 

magnitude ‖υ‖2 in the flow region. Different columns in Fig. 7 and Fig. 8 represent velocity 

magnitude for reconstructed images by proposed FlowRAU-net and other comparison 

methods. Third row shows the velocity magnitude error as the absolute difference of velocity 

magnitude of reference and comparison methods. Corresponding relative velocity error is 

shown in Fig. 7 and Fig. 8 where FlowRAU-net method shows minimum relative velocity 

error than the other methods. Important decisions of diagnosis and prognosis is taken by 

the clinicians by visualizing the complex flow pattern of the 4D Flow pathline. That is 

why it is important to check if the reconstructed 4D flow by the proposed method has 

good agreement with the ground truth fully sampled 4D flow MRI in 3D visualization of 

hemodynamic pathline. Fig. 9 shows 3D path-line visualization using GTFlow Software 

of reference fully sampled 4D flow and reconstructed 4D flow by FlowRAU-net for 30% 

k-space undersampling of a healthy volunteer. Corresponding velocity magnitude in an axial 

slice of aortic valve is shown at the right corner of each image. Pathline of reference 4D flow 

and reconstructed 4D Flow by proposed method shows excellent agreement. Volumetric 

flow and peak velocity over time are important hemodynamic parameters with great clinical 

value. Fig. 10(a) shows blood flow profile comparison at aortic valve position for one 

healthy subject in the first column and patient subject in the second column for different 

reconstruction methods at 30% k-space subsampling. Fig. 10(b) shows peak velocity profile 
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comparison for a healthy subject in the first column and patient subject in the second 

column. From Fig. 10(a) and (b), proposed method follows the flow profile and peak 

velocity profile better than the other four methods. From Fig. 10(a) and Fig. 10(b), the 

reconstructed flow rate and peak velocity profile by the proposed method almost align with 

the reference whereas, the other reconstructed methods show a larger deviation from the 

reference. For quantitative measurement of reconstruction error- Image NMSE, Relative 

Velocity Error, Angular Error, Flow Error, and Peak Velocity Error is calculated according 

to eqn. (7) – eqn. (11). The average measurement for all subjects with standard deviation 

is shown in Table I for three different subsampling of k-space. From Table I, the proposed 

FlowRAU-net outperforms other methods in image NMSE measurement in all three k-space 

sampling factors. Relative velocity error and angular error are measured to compare the 

accuracy of velocity vectors among different methods. Though TV regularization and three 

other deep learning methods have comparative errors, especially when subsampling is the 

lowest (20%), the proposed FlowRAU-net shows minimum error in both angular error and 

relative velocity error in all three subsampling factors. This is also evident from Fig. 7 and 

Fig. 8, which show FlowRAU-net follows reference velocity magnitude more accurately 

than the other methods. Average flow error and average peak velocity error are calculated 

according to eqn. (10) and (11), and results are shown for three k-space subsampling 

factors. At 20% subsampling factor all comparative methods show quite large flow error 

and velocity error. However, error minimizes at 30%, and 40% k-space subsampling and 

FlowRAU-net shows lower errors than the other methods.

IV. Discussion

In this paper, an image domain learning-based 4D flow reconstruction is suggested 

by reducing artifacts from zero-filled reconstructed complex image. Varying sampling 

pattern with cardiac phase in k-space is used for variation in artifact in zero-filled 

reconstructed complex images and robust learning of proposed network. Adopting residual 

block and attention block in U-net architecture significantly improves qualitative and 

quantitative measurement of image, 3-D velocity vectors, and flow parameters. Using 

local residual connection in the residual block enables efficient weight updating during 

the backpropagation, and channel, and spatial attention helps emphasize important flow 

information in the flow image. From Fig. 3(b), when no attention block is used in the 

architecture, the network fails to recognize the flow region as an important feature in the 

feature maps (low prominence). That is why our proposed architecture performs better 

than a basic U-net architecture. DAGAN employs a U-net as a generator network and 

a CNN-based classification network as a discriminator and does not emphasize the flow 

features in the image. In the SAT-net, a self-attention is proposed where weight in each 

pixel is calculated by a 1×1 convolution and a linear and embedded gaussian function. 

No inter-channel dependency is observed, which would help to locate the flow feature 

in the image. No local and global pooling is performed, which would be important 

to give importance to the flow region as brighter pixels with high prominence. The 

combination of residual block and channel and spatial attention block in the encoder-decoder 

network helps efficient propagation of flow information during the learning process and 

provides excellent reconstruction performance. From Table I, it is evident that the proposed 
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FlowRAU-net outperforms state of the art compressed sensing method and deep learning-

based reconstruction methods in all the measurements for different sampling factors. 

When undersampling in k-space is 20%, performance goes down in all the reconstruction 

techniques, notably resulting in large errors in flow parameters and velocity measurements. 

Fig. 11 shows reconstructed velocity image in FH direction for 20%, 30%, and 40% 

sampling in k-space and corresponding velocity magnitude and relative error. From Figure 

11, when k-space subsampling goes up at 40%, reconstructed velocity magnitude is almost 

close to reference fully sampled velocity magnitude with minimal error. Reconstruction 

time is significantly low in the proposed method compared to compressed sensing TV 

regularization method. 4D flow reconstruction by compressed sensing TV regularization 

takes approximately 8 minutes, whereas a single 2D complex image takes 150ms to 

reconstruct by FlowRAU-net and total 4D flow data for one subject requires 69 seconds. 

Training and reconstruction time in FlowRAU-net and U-net is almost similar but adopting 

residual block and attention block in FlowRAU-net better adopts with the data and yields 

lower training and validation error during training via 9-fold cross validation. Training 

and validation loss curve of U-net and FlowRAU-net for a single fold training in FH 

direction is shown in Fig. 12(a). Fig. 12(b) shows training and validation loss at convergence 

during each fold training of 9- fold cross validation. Proposed FlowRAU-net results in 

lower validation mean square error (MSE) loss during training at every fold. Proposed 

FlowRAU-net architecture has 3 residual attention (RA) blocks in encoder and 3 maxpooling 

function. Network performance is investigated by increasing RA block and maxpooling in 

the encoder and upsampling in the decoder. However, increasing RA block results increase 

in the network parameter. Though the training loss decreases with increased complexity in 

the network, validation loss increases and overfits. Different number of convolution block 

in residual block is also investigated in the architecture. Increasing the convolution block 

number from 3 to 4 in the residual block does not improve the accuracy in the training. 

However, increasing the convolution block number from 3 to 5 and higher number leads to 

overfitting in the training.

A. Ablation Studies

We proposed a U-net based architecture where the integrated residual block and attention 

block works as the backbone of the U-net. In the attention block, channel attention 

and spatial attention are applied consecutively. To evaluate the impact of the residual 

block and attention block in network architecture, we have performed reconstruction and 

measured reconstruction results for several variations in the architecture. In the first case, 

reconstruction is done with only residual block as the backbone of U-net, eliminating 

attention block from the architecture (Case-I). For implementation, the same residual 

block as Fig. 2(b) is used consists of convolution layer, batch normalization, and ReLU 

activation function. The number of convolution blocks in residual block and the number 

of filters in encoder and decoder is same as the architecture in the proposed network. In 

the second case study, only spatial attention (SA) is added with Resnet block eliminating 

channel attention (CA) from the architecture (Case-II). In the third case study, only channel 

attention (CA) only spatial attention (SA) is added with Resnet block eliminating channel 

attention (CA) from the architecture (Case-II). In the third case study, only channel attention 

(CA) is added with residual attention block eliminating spatial attention (SA) from the 
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architecture (Case-III). The fourth case study is the proposed architecture where both 

channel and spatial attention is used (Case-IV). Pixel wise mean squared error is considered 

as loss function, and RMSprop optimizer with a learning rate of 0.0001 is used in all the 

cases. Reconstruction for the different case study is performed for 30% k-space sampling. 

Reconstruction results for different case studies are compared in terms of image quality, 

velocity vector accuracy, and flow parameters. Eqn. (7)– Eqn (11) is used for evaluation 

and averaged over all the subjects of 4D flow. Table II shows reconstruction results for the 

case study in network architecture. Table II shows that when Resnet block (Case I) is used 

instead of convolutional blocks in U-net, average NMSE, Rel. Velocity Error and Angular 

Error are reduced by several percentages from U-net. However, in Case II, when spatial 

attention is used with Resnet block, we see a slight improvement in the network for all 

the error measures in all the measurements. But when Channel attention is used along with 

spatial attention, it shows much improvement in the reconstruction results. Fig. 13 shows the 

magnitude of velocity in flow region in reconstructed images from different case studies in 

the aortic valve region of one healthy subject. From Fig. 13, it is evident that residual block 

along with CA and SA block provides more accuracy than other network architectures.

B. Limitation of the Study

Though the proposed FlowRAU-net produces a fast and accurate reconstruction of 4D 

flow MRI, there are some limitations to the study. First, the proposed network is a 2D 

reconstruction network that considers each time point and slice location image as a separate 

training sample. The reconstruction is done by learning 2D spatial features. Reconstruction 

by learning spatio-temporal features might result in better reconstruction accuracy. Also, 

reconstruction by 3D spatial feature learning might exploit 3D structural information in 

the data. To exploit 3D spatial feature or spatio-temporal feature, reconstruction by a 3D 

network is needed. However, to accomplish this, there is need to have a significantly higher 

number of training samples. Even with augmentation, the training size for a 3D network 

would remain small. Future work will involve collecting more 4D flow data for training of 

3D networks and also improved training of 2D network by incorporating more training data.

V. Conclusion

This paper presents an end-to-end deep learning framework for accelerated reconstruction 

of 4D flow. Our proposed FlowRAU-net can learn to recover both magnitude and velocity 

information in all velocity encoding directions with high fidelity. Reconstruction time for the 

proposed method is significantly lower (69 seconds for total 4D flow data reconstruction) 

compared to iterative compressive sensing approaches (which result in reconstruction times 

on the order of 7–8 min). Although the proposed method has been applied to 4D flow 

MRI of aortic valvular flows, it should be applicable to other arterial flows given sufficient 

number of training samples. The proposed end-to-end training with an attention network 

provides a promising direction for accelerated 4D flow MRI with significant clinical impact.
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Fig.1: 
Illustration of proposed reconstruction approach. Zero-filled reconstruction of acquired k-

space will create complex images u0 ∈ CN with artifacts. FlowRAU-net is trained separately 

at each encoding direction by 2D complex image pair from u0 and u. Trained network 

can reconstruct 2D complex images at three encoding directions separately and produce 3 

directional velocity images from the phase. Reconstructed 2D complex images at all slices 

and time positions at each encoding create total complex image domain of 4D flow.

Nath et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
(a) The overall architecture of FlowRAU-net. FlowRAU-net takes a 2-channel 80× 80 image 

as input where the channel stores real and imaginary part of zero-filled reconstructed input. 

Back-to-back residual block and attention block is adopted as the backbone of a U-Net. 

Each residual attention (RA) block is followed by maxpooling in the encoder network and 

upsampling and concatenation in the decoder network. (b) The architecture of a RA block. 

Each residual block consists of 3 convolutional layers followed by batch normalization and 

ReLU. Attention block consists of channel attention and spatial attention.
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Fig. 3: 
(a) shows three different examples of 80 × 80 intermediate feature maps after several layer 

of convolutons. (b) shows 40 × 40 feature maps after first maxpooling in encoder with (first 

row) and without (second row) attention block in the architecture. From observation flow 

region is a dominant feature in the feature maps when network is trained with attention 

block in the architecture. Rectangular red box in the images indicates the flow region.
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Fig. 4: 
Example of random cartesian undersampling in k-space (a) 20% cartesian sampling pattern 

in Ky–Kz plane where each dot represents a readout line in k-space. (b) 20% cartesian 

sampling pattern in different timepoints.
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Fig. 5: 
Comparison of 4D Flow reconstructed images for various techniques in one healthy in-vivo 

subject. The first row shows magnitude image (in one encoding direction). The second, 

third, and fourth row shows velocity mapped image at FH, AP and RL direction from the 

reference image, the zero- filled reconstructed image, and the image reconstructed by U-net, 

TV regularization, DAGAN, SAT-net and proposed FlowRAU-net method. The images are 

in the peak systole phase of the cardiac cycle and is exactly at the location of the aortic 

valve.
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Fig. 6: 
Comparison of 4D Flow reconstructed images for various techniques in one patient in-vivo. 

The first row shows magnitude image (in one encoding direction). The second, third, and 

fourth row shows velocity mapped image at FH, AP and RL direction from the reference 

image, the zero- filled reconstructed image, and the image reconstructed by U-net, TV 

regularization, DAGAN, SAT-net and proposed FlowRAU-net method. The images are in the 

peak systole phase of the cardiac cycle and is exactly at the location of the aortic valve.
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Fig. 7: 
Comparison of velocity magnitude in flow region for different reconstruction methods 

in one healthy subject. The first row shows the blood flow region in a velocity image 

(FH Encoding) by a rectangular red box. The second row shows the zoomed-in velocity 

magnitude, and the third row shows the velocity magnitude error image as the absolute 

difference from the reference image. Velocity magnitude images are shown at an axial slice 

of aortic valve location and at peak systole phase of the cardiac cycle.

Nath et al. Page 24

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8: 
Comparison of velocity magnitude in flow region for different reconstruction methods 

in one patient in-vivo. The first row shows the blood flow region in a velocity image 

(FH Encoding) by a rectangular red box. The second row shows the zoomed-in velocity 

magnitude, and the third row shows the velocity magnitude error image as the absolute 

difference from the reference image. Velocity magnitude images are shown at an axial slice 

of aortic valve location and at peak systole phase of the cardiac cycle.
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Fig. 9: 
Velocity pathline in 3D view for flow at the level of aortic valve at peak systole in a healthy 

volunteer. The pathline of reference fully sampled 4D flow is shown on the left and the 

pathline for reconstructed 4D flow by FlowRAU-net is shown on the right. Corresponding 

velocity magnitude in an axial slice of the aortic valve is shown in the inset.
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Fig. 10: 
(a) shows flow rate with time and (b) shows peak velocity with time from reference velocity 

image and reconstructed image for 30% k-space subsampling by TV Regularization method, 

U-net method, DAGAN method, SAT-net method and proposed FlowRAU-net method 

in two subjects (subject 1= healthy volunteer, subject 2= patient with Aortic Stenosis), 

calculated close to the level of the aortic valve.
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Fig. 11: 
Reconstruction result for 20%, 30%, and 40% k-space sampling in a healthy volunteer 

for proposed FlowRAU-net. The First row shows reconstructed velocity image in the FH 

direction. Second and third row show corresponding zoomed-in velocity magnitude and 

velocity magnitude error. Images are shown at an axial slice of aortic valve location and at 

peak systole phase of the cardiac cycle.
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Fig. 12: 
(a) Training and validation loss curve of U-net and FlowRAU-net for a single fold training in 

FH direction (b) Training and validation loss at the convergence of U-net and FlowRAU-net 

at each fold during the training of 9-fold cross-validation.
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Fig. 13: 
3D velocity vector magnitude of reference ground truth and reconstructed image for 

different case studies in network architecture. Resnet block, along with CA and SA block as 

the backbone of U-net, provides the highest accuracy in reconstruction. Velocity magnitude 

is shown at the region of interest of aortic valve location and at peak systole phase of the 

cardiac cycle for one subject.
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