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Abstract

The accurate prediction of protein-ligand binding affinities is crucial for drug discovery. 

Alchemical free energy calculations have become a popular tool for this purpose. However, the 

accuracy and reliability of these methods can vary depending on the methodology. In this study, 

we evaluate the performance of a relative binding free energy protocol based on the alchemical 

transfer method (ATM), a novel approach based on a coordinate transformation that swaps the 

positions of two ligands. The results show that ATM matches the performance of more complex 

free energy perturbation (FEP) methods in terms of Pearson correlation, but with marginally 

higher mean absolute errors. This study shows that the ATM method is competitive compared to 

more traditional methods in speed and accuracy and offers the advantage of being applicable with 

any potential energy function.

1 Introduction

The ability to accurately predict the binding free energy of a ligand to a protein can provide 

crucial information for drug discovery, as it allows for the identification of compounds that 

have a higher likelihood of binding to a target. Alchemical free energy calculations have 

become the leading tools in this field.1–3 Free energy approaches are especially relevant in 

hit-to-lead and lead optimization stages of drug design while dealing with a series of similar 

ligands. Both commercial and free tools for free energy calculations have been developed 

over the past few years, with extensive use in both academia and the pharmaceutical 

industry.4–8
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One of the most common approaches to alchemical calculations is Free Energy 

Perturbation (FEP). This method involves many distinct equilibrium MD simulations for 

all states along a λ coordinate that modifies a ligand A into a ligand B alchemically. 

Commonly these simulations are split between 12 or more λ-intermediates where the 

two ligands are interchanged.9 One of the most common methodologies that use this 

approach is Schrödinger’s FEP+.7 Another way to approach alchemical calculations is via 

Thermodynamic Integration (TI), as in the Amber implementation.10 The main difference 

with FEP is that TI calculates the free energy difference by integrating the derivative of 

the Hamiltonian with respect to the alchemical progress parameter λ. The pmx5 protocol 

implements a similar strategy based on non-equilibrium trajectories. Although different, FEP 

and TI share a few common traits such as the adoption of a double-decoupling process that 

obtains the relative binding free energy from the difference of the alchemical free energies 

from separate solution and receptor legs, and the requirement of softcore potentials to 

avoid clashes and instabilities11–13. Custom alchemical topologies and the need for multiple 

simulations of distinct systems (receptor complex and ligand in solvent) tend to require 

more user expertise. Furthermore, they are usually not suited for ligand pairs with different 

net charges14, leading to potential issues with the treatment of long-range electrostatic 

interactions and artifacts in the free energy estimates, unless complex correction factors are 

introduced.15

Recently, a novel approach to performing alchemical calculations has been proposed. The 

Alchemical Transfer Method (ATM) is a protocol for the estimation of relative binding free 

energies based on a coordinate transformation that swaps the positions of two ligands. The 

method performs the calculation in a single solvent box and, unlike double-decoupling free 

energy perturbation approaches,7,10,16 avoids the split of the binding free energy calculation 

into receptor and solvation legs. Furthermore, ATM does not require the implementation 

of softcore pair potentials. ATM is implemented in the free and open-source OpenMM17 

molecular simulation package, allowing a simple and easy route to large-scale automated 

deployments and flexibility to employ any potential energy function. In spirit, ATM is 

similar to the separated topologies method18 with the difference that the latter achieves 

the transfer by decoupling the first ligand while coupling the second by modifying the 

force field parameters. Whereas in ATM, the perturbation is implemented as a coordinate 

displacement that swaps the position of the two ligands. Recently, this approach was 

reintroduced to be used in GROMACS.19 ATM can handle both relative (ATM-RBFE) and 

absolute (ATM-ABFE) binding free energy calculations. In this work we focus on testing the 

accuracy and feasibility of the RBFE approach.

All the different free energy estimation methods have their pros and cons and can vary 

in their accuracy and reliability. Therefore it is important to rigorously evaluate their 

performance against large and diverse benchmark datasets.

In this work, we aim to evaluate the performance of ATM,20,21 using the dataset of Wang 

et al.,7 one of the most popular benchmarks for evaluating relative binding free energy 

protocols. We use ATM to calculate the difference in binding free energies for 330 ligand 

pairs across 8 different protein systems. We also compared our results with state-of-the art 

methodologies such as FEP+7, Amber10 and pmx22. We show that ATM, a methodology that 
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requires less expertise and preparation than alternative protocols, performs as well as other 

existing tools and even better from a correlation point of view.

2 Methods

The aim of this study is to further expand the benchmarking of ATM to a series of 

targets tested in other similar methodologies and evaluate whether it can provide accurate 

and reliable estimates of relative binding free energies for these systems. To address this 

question, we conducted a computational study in which we applied ATM to the dataset 

of Wang et al..7 This benchmark includes eight targets relevant to pharmaceutical research 

(MCL-1, TYK2, MCL-1, JNK1, PTP1B, BACE, Thrombin and p38) with a total of 330 

ligand pairs.

ATM is based on a displacement coordinate transformation that swaps the positions of two 

ligands, one of which is initially placed in the binding site of the receptor and the other into 

the solvent bulk.21 The potential energies of the system before and after the displacement 

are combined into a λ-dependent potential function, such that the system is progressively 

transformed from the state in which the first ligand is bound to the receptor and the second 

is in solution, to the reversed situation in which the second ligand is bound to the receptor 

and the first is not. ATM protocol does not require soft-core pair potentials or modifications 

of the energy routines of the molecular dynamics engine, and it does not require splitting 

the binding free energy calculation into receptor and solvation legs. ATM is implemented 

as an OpenMM plugin.23 Further details of the methodology can be found in previous 

work.20,21,24

We used the AToM-OpenMM package25 to set up and run the alchemical calculations. 

The AToM-OpenMM workflow (Fig. 1) prepares the complex systems for simulation using 

the LEaP program in AmberTools19.26 Amber ff14SB parameters4,27 were assigned to the 

receptors while GAFF2/AM1-BCC28,29 were used for the ligands. Each complex system 

built in LEaP consists of the receptor and a pair of aligned ligands. One of the ligands 

is selected to be translated along the diagonal of the solvent box so it is placed outside 

the receptor, ensuring at least three layers of water molecules in between. A restraining 

potential is also introduced to maintain geometrical alignment between the two ligands 

aimed at enhancing the rate of convergence of the free energy estimate. The alignment 

restraints are based on the relative position and orientation of the coordinate frames of the 

two ligands defined by three chosen reference atoms.21 More information on the reference 

atoms selected for each system can be found in the Supporting Information (Supporting 

Figure 3).

Each complex system was solvated with a 10 Å solvent buffer and with sufficient sodium 

and chloride ions to neutralize the system. The solvated complexes are minimized and 

thermalized at 300 K. Next, the system was annealed from the bound state (λ = 0) to the 

symmetric alchemical intermediate (λ = 0.5) for 250 ps. This step facilitates the creation of 

an initial configuration of the system without strong repulsive interactions at the alchemical 

intermediate state, which serves as the starting point for the subsequent Hamiltonian replica 

exchange24 molecular dynamics that computes the free energies of the two ATM legs 
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connecting the alchemical intermediate to physical end states at λ = 0 and λ = 1. Cα atoms 

of the protein receptor were restrained using a flat-bottom harmonic restraining potential 

with a tolerance of 1.5 Å.Additionally, we apply binding site restraints as a flat-bottom 

distance restraint between the geometrical centres of sets of receptor atoms that surround 

the binding site and ligand atoms. This defines the binding site volume as required by the 

quasi-chemical statistical mechanics formulation of molecular binding.16 The restraints of 

the receptor and the ligands are optional and employed here to limit the conformational 

space that needs to be explored to reach convergence of the binding free energy estimate.

The softplus alchemical potential30 was used for all calculations with 11 λ-states distributed 

between λ = 0 and 0.5 for each of the two ATM legs (Supporting Table 1). AToM-

OpenMM performs asynchronous Hamiltonian replica exchanges in λ-space using the 

method described by Gallicchio et al.24 Exchanges were performed every 10 ps. To maintain 

a temperature of 300 K, a Langevin thermostat with a time constant of 2 ps was employed. 

Each ligand pair was simulated for a minimum of 50 ns per ΔΔG estimate. The sampling 

time has been chosen in order to be comparable to the aforementioned works, FEP+ studies 

sample between 36 and 60 ns per ΔΔG estimate whereas Lee et al.10 employed a total of 48 

ns per ligand pair in Amber. In the case of pmx,22 calculations were carried out for 50 ns 

per pair for two force fields, GAFF and CGenFF. Since we performed ATM calculations on 

wall time rather than simulation time, as at the time of performing these calculations there 

was no support for simulation time-based runs, the sampled simulation time is similar but 

not identical for all ligand pairs. Binding free energies and their corresponding uncertainties 

were calculated from the perturbation energy samples using the UWHAM method.31 The 

obtained relative binding free energies (ΔΔG) were compared to experimental measurements 

in terms of the mean absolute error (MAE), root mean square error (RMSE), and Pearson 

correlation coefficient. The obtained values are compared to the corresponding values 

reported in the literature.7,10,22

The parallel replica exchange alchemical molecular dynamics simulations were performed 

with the OpenMM 7.717 MD engine and the ATM Meta Force plugin23 using the CUDA 

platform on NVIDIA RTX 2080 Ti cards.

2.1 Results

We conducted a comparison of ATM’s relative binding free energies (ΔΔG) estimates for the 

benchmarking dataset of Wang et al.7 with those of commercial and open-source alchemical 

approaches: FEP+,7 Amber.10 and pmx.22 In addition to differences in the methodology, 

these comparisons test variations in protein force fields, ligand parameterization techniques, 

and differences in the behavior of MD packages as potential sources of deviation in the 

obtained results. In this study, we have chosen to maintain the parameters described in the 

previous ATM publications as we believe it would provide a fair and consistent comparison.

The results of the simulations are displayed in Figures 3 and 4, which highlight the relative 

(Pearson correlation) and absolute (MAE) performance of the method. Table 1 contains a 

comparison against other free energy methods. Comparison against the other mentioned 

methodologies can be found in Supporting Figures 1, 2 and 4. We observe that ATM 

performs similarly to the other approaches in overall Pearson correlation (0.59), with values 
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for specific systems ranging from 0.42 to 0.71. ATM’s Pearson correlation coefficients are 

particularly good for the MCL-1, JNK1, and Thrombin datasets, where it outperforms the 

other methods albeit only by relatively small margins. For the other protein targets, Pearson 

correlation metrics fall within those of the other methodologies. For instance, in the case of 

p38, the observed correlation is 0.71 for ATM, which is the lowest when compared to the 

other approaches. However, the difference is not significant as the results for all methods fall 

within the measurement error. Despite these positive observations, we did encounter some 

difficulties with the BACE dataset, as we obtained the lowest correlation (0.42) among the 

methods which is significantly lower than the best correlation value obtained using the FEP+ 

methodology (0.61). It is worth mentioning that the range of ΔΔG values of the BACE pairs 

is quite narrow and covers only 3.5 kcal/mol, while comparable in-size datasets cover a 

wider range of values of at least 5 kcal/mol. In effect inaccuracies of the method, as well as 

experimental measurements, get amplified.

When considering absolute deviations from the experimental references, ATM displayed 

consistently poorer performance than the other methodologies. ATM’s MAE metric is the 

highest among the three methods considered in the comparison. However, the difference 

between ATM and other methodologies is not very high in most cases. The exception to this 

is BACE, where, consistent with the previously mentioned results, the differences are the 

highest.

In terms of convergence, we observed that 50 to 60 ns per ΔΔG estimate (2.3-2.8 ns per 

λ) tends to be sufficient. Convergence analysis over time shows good convergence for 

most cases as illustrated in Figure (Figure 5). The variance of the predicted ΔΔG tends 

to level off for a majority of cases around 50 ns per ΔΔG estimate. We also performed 

longer simulations for a series of ligand pairs to evaluate if that extended sampling time 

was causing any drift on the predicted ΔΔG (Supporting Figure 12) where we observed that 

obtained values were stable. Furthermore, we analysed the perturbation energy distributions 

for every λ-state (Supporting Figures 5,6,7). This analysis helps to determine if the system 

has converged or will converge in a reasonable amount of time. A poor overlap between 

perturbation energy distributions are indicative of unreliable relative free energy estimates 

that could require the design of alternative alchemical routes. We have observed that in 

some of the ligand pairs that showed poor correlation with both experimental and calculated 

values from other approaches, there tends to be a poor overlap between perturbation energy 

distributions of nearby λ-states, even after conducting multiple replicates. From these results 

we can say that we obtain an analogous convergence performing a similar sampling time 

than the other mentioned methodologies in this work. The issue of convergence of binding 

free energy calculations is a very complex topic that we intend to investigate in future work.

We have observed that ATM’s performance metrics are significantly skewed by poor relative 

binding free energy predictions involving a relatively small number of problematic ligands 

(Supporting Figure 11). These ligands might be affected by force field parameterization 

issues or some specific aspects of the ATM methodology. In terms of ligand force fields, 

OPLS3 was used for FEP+, GAFF2 was used in two of the approaches (ATM and Amber), 

and a consensus of GAFF2 with CGenFF in pmx. Given that all methods perform similarly, 

the accuracy of the forcefield is of the same order as the precision of the methods. In 
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relation to this aspect, Merck published a series of guidelines for FEP calculations with the 

requirement of an RMSE lower than 1.3 kcal/mol in the validation phase.32. As we can 

observe in Table 1 ATM fulfills this requirement for most of the analyzed systems in this 

study.

One major difference between ATM and the other methods is that ATM models explicitly 

binding/unbinding processes in the alchemical space. For example, a flexible ligand with 

different conformational propensities when bound vs when in solution, will undergo an 

actual conformational transition. In double-decoupling instead, the transformation is applied 

to the bound and solution conformations individually and a conformational transition is 

not necessarily required to reach convergence. We believe that this is both a strength and 

a weakness of ATM. When conformational changes are important, especially if there are 

differences in the conformational transition between the ligands, ATM is expected to be 

superior to other methods as it explicitly models the transitions. When considering rigid 

ligands or ligands with similar transitions, the conformational rearrangements will cancel 

out and the extra work ATM needs to do is unnecessary and might hurt convergence. We 

intend to study these aspects in more detail in future work.

3 Conclusion

In this study, we evaluated the performance of the Alchemical Transfer Method (ATM), a 

novel approach for predicting protein-ligand binding affinities. We benchmarked it against 

the dataset of Wang et al.7, one of the most popular data sets on the evaluation of free 

binding energy methodologies. Our results showed that ATM is a competitive approach 

for predicting binding affinities, matching or even surpassing the performance of other 

state-of-the-art methods in terms of Pearson correlation. While mean absolute errors were 

slightly higher compared to other methods, ATM is a promising approach for the estimation 

of relative binding free energies.

Unlike other methods, ATM does not require splitting of binding free energy calculations 

into receptor and solvation legs or the use of softcore pair potentials. Furthermore, ATM 

is implemented in the open-source OpenMM MD engine, which is freely available. Its 

flexibility opens up the possibility for further improvement of the method through the use of 

new force fields, such as neural network potentials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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4 Data and software availability

The calculated free energy values, ligand and protein structures as well as preparation scripts 

are available at: https://github.com/compsciencelab/ATM_benchmark
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Figure 1: 
The AToM-OpenMM workflow used in this work. (1) Starting from the protein-ligand 

complexes from the Wang dataset7 the ligands are parametrised with GAFF2 and protein 

tropologies prepared in the Amber ff4SB forcefield. (2) System complexes are build with 

Ambertools and ligand B is displaced based on a vector. (3) Energy minimisation and 

equilibration is performed. Later an annealing and equilibration at λ=1/2 is performed. (4) 

Aysncronous replica exchange simulations are performed until a total sampling of at least 
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50ns is achieved. (5) After the simulations were finished, these were analyzed with the 

UWHAM package to obtain the calculated ΔΔG estimates.
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Figure 2: 
Top: Free energy diagram for an ATM-RBFE calculation, consisting of two independent legs 

connected to single alchemical intermediate state. The first leg starts at λ=0 where ligand A 

is bound to the receptor R’s binding site, and ligand B is present in the solvent bulk. Leg 1 

ends at λ=1/2 where both ligands A and B are simultaneously present at 50% both in the 

binding site and in the solvent bulk. The second leg starts with ligand B bound to the binding 

site and ligand A in the solvent bulk and ends in the same alchemical intermediate. Bottom: 

Graphical representations for the described events.
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Figure 3: 
(Top) Pearson correlation (r) and (bottom) Mean Absolute Error (MAE) for each 

protein-ligand system calculated with ATM and reported estimates using the alternative 

methodologies FEP+7, Amber10 and pmx5.
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Figure 4: 
Performance of the Alchemical Transfer Method (ATM) for each protein-ligand system 

studied. The calculated ΔΔG estimates are plotted against their corresponding experimental 

values. MAE is in kcal/mol, r is Pearson correlation and values refer to the number of ligand 

pairs evaluated for each system.
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Figure 5: 
Free energy convergence as a function of time for a series of ligand pairs of MCL-1, TYK2 

and JNK1. The red line corresponds to the experimental ΔΔG value.
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Table 1:

Comparison of the performance of free energy methods. Pearson correlation (r) and Mean Absolute Error 

(MAE) in kcal/mol for the 8 tested Protein Targets.

ATM FEP+7 Amber10 pmx22

r MAE r MAE r MAE r MAE

MCL1 0.58±0.10 1.7±0.2 0.51±0.10 1.4±0.2 0.51±0.10 1.3±0.2 0.32±0.11 1.2±0.2

TYK2 0.63±0.17 0.9±0.2 0.70±0.15 0.7±0.2 0.58±0.17 0.9±0.2 0.64±0.16 1.0±0.2

JNK1 0.69±0.13 0.6±0.1 0.59±0.15 0.8±0.1 0.59±0.15 0.7±0.2 0.65±0.14 0.5±0.1

PTP1B 0.66±0.11 0.9±0.2 0.66±0.11 0.9±0.2 0.72±0.10 0.8±0.2 0.74±0.10 0.8±0.2

CDK2 0.58±0.17 1.0±0.2 0.39±0.19 0.9±0.2 0.46±0.19 0.9±0.2 0.61±0.17 0.7±0.2

Thrombin 0.61±0.21 0.8±0.2 0.42±0.24 0.8±0.2 0.31±0.25 0.4±0.2 −0.02±0.27 0.5±0.2

p38 0.71±0.09 1.0±0.2 0.79±0.08 0.8±0.2 0.80±0.08 0.8±0.2 0.78±0.08 0.7±0.2

BACE 0.42±0.12 1.2±0.2 0.61±0.11 0.8±0.2 0.54±0.11 0.9±0.2 0.49±0.12 0.9±0.2

ALL 0.59±0.11 1.0±0.1 0.60±0.11 0.9±0.1 0.58±0.11 0.9±0.1 0.56±0.11 0.8±0.1
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