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Abstract

Machine learning potentials have emerged as a means to enhance the accuracy of biomolecular 

simulations. However, their application is constrained by the significant computational cost arising 

from the vast number of parameters compared to traditional molecular mechanics. To tackle 

this issue, we introduce an optimized implementation of the hybrid method (NNP/MM), which 

combines neural network potentials (NNP) and molecular mechanics (MM). This approach models 

a portion of the system, such as a small molecule, using NNP while employing MM for the 

remaining system to boost efficiency. By conducting molecular dynamics (MD) simulations on 

various protein-ligand complexes and metadynamics (MTD) simulations on a ligand, we showcase 

the capabilities of our implementation of NNP/MM. It has enabled us to increase the simulation 

speed by ~5 times and achieve a combined sampling of 1 μs for each complex, marking the longest 

simulations ever reported for this class of simulation.
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Introduction

In the past decade, molecular dynamics (MD) has transitioned from CPU execution to 

accelerators such as graphical processing units (GPUs). Starting in 2006, CELLMD1 

and subsequently ACEMD2 began leveraging GPUs to enhance biomolecular simulations. 

Numerous other MD codes have either adapted (e.g., AMBER,3 GROMACS,4 NAMD5) 

or been initially designed to utilize GPUs (e.g., OpenMM,6 HOOMD,7 TorchMD8). This 

innovation has improved the cost efficiency of MD simulations by two orders of magnitude.9

During the same timeframe, improvements in the accuracy of molecular mechanics (MM) 

and its force fields (FFs) have not advanced at a comparable pace as the simulation speed. 

Widely adopted biomolecular FFs, such as AMBER,10,11 CHARMM,12,13 and others, offer 

parameters for proteins and common biomolecules. However, obtaining accurate parameters 

for novel drug-like molecules remains a challenging task.14 The recent development of 

neural network potentials (NNPs) holds promise to address this issue.15 NNPs leverage the 

characteristic of neural networks (NNs) as universal approximators, which means they can 

approximate any function with arbitrary precision relative to the training data. In the context 

of molecular simulations, NNPs are designed to predict the energy and forces of quantum 

mechanics (QM) calculations.16

Recently, numerous NNPs have been proposed (SchNet,17 TensorMol,18 AIMNet,19 

PhysNet,20 DimeNet++,21 OrbNet,22 PaiNN,23 SpookyNet,24 NequIP,25 OrbNet Denali,26 

TorchMD-NET,27 MACE,28 etc). One of the most used for organic molecules are ANI29 

and its derivatives 30-33 based on a modified Behler-Parrinello (BP) symmetry function.34 

For example, the benchmarks of ANI-2x on a set of biaryl fragment, typically found in 

drug molecules, shows better accuracy than the established general small molecule FFs 

(CGenFF,35,36 GAFF,37 OPLS,38 and OpenFF39). The mean absolute error for the entire 

potential energy profile and rotational barrier heights are 0.5 kcal/mol and 1.0 kcal/mol, 

respectively,40 but it is orders of magnitude faster than its reference QM calculations at the 

DFT level (ωB97X/6-31G*).33 However, the BP-type NNPs have several limitations. First, 
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the long-range interactions are not properly accounted for. The NNPs only consider the 

chemical environment around each atom within a given cut-off distance (5.1 Å for ANI-2x). 

Second, a limited set of elements is supported (H, C, N, O, F, S, and Cl for ANI-2x). Finally, 

only neutral molecules can be computed.33

Despite the current limitations, NNPs are already improving biomolecular simulations. It has 

demonstrated that the accuracy for drug-like molecules is improved14 by reparameterizing 

dihedral angles with ANI-1x.30 Alternatively, the hybrid method of NNP and MM (NNP/

MM)41 allows embedding NNP into a simulation. The main idea of NNP/MM is similar to 

QM/MM:42-44 an important region of a system is modeled with a more accurate method, 

while a less accurate and computationally cheaper one is used for the rest of the system.

Recently, Lahey and Rowley41 have demonstrated the first application of NNP/MM to 

protein-ligand complexes. NNP/MM is used to refine binding poses and to compute the 

conformational free energies. Rufa et al.45 have computed the binding free energies of 

the Tyk2 congeneric ligand benchmark series46 using alchemical free energy calculations. 

Instead of using NNP/MM directly, a non-equilibrium switching scheme has been devised 

to correct the standard MM calculations to NNP/MM accuracy. It reduces the errors from 

1.0 kcal/mol to 0.5 kcal/mol. Vant et al.47 have used NNP/MM for the refinement of a 

protein-ligand complex from cryo-electron microscopy data. The refinement with NNP/MM 

produces higher-quality models than QM/MM with the semi-empirical PM6 method at a 

lower computational cost. Xu et al.48 have trained a specialized NNP for zinc and used 

NNP/MM to simulate zinc-containing proteins. The obtained results are in agreement with 

QM/MM calculations.

A critical limitation for the wider adoption of NNP/MM is the simulation speed. Despite 

NNP being much faster than QM, it is still slower than MM. For example, Lahey and 

Rowley41 and Vant et al.47 have reported the simulations speed of 3.4 ns/day and 0.5 ns/day, 

respectively, on an NVIDIA TITAN Xp GPU. Also, the longest reported simulation is just 

20 ns.47

In this work, we present an optimized implementation of NNP/MM in ACEMD2 based 

on OpenMM6 and PyTorch.49 First, the method and relevant optimization strategies are 

introduced. Second, the capability of software is demonstrated by performing metadynamics 

(MTD)50 simulations of a fragment of erlotinib and molecular dynamics (MD) simulations 

of four protein-ligand complexes. Finally, the installation and setup of simulations are 

shown.

Methods

In the NNP/MM approach, a system is partitioned into NNP and MM regions similarly to 

QM/MM.42-44 The total potential energy (V ) consists of three terms:

V ( r ) = V NNP( r NNP) + V MM( r MM) + V NNP‐MM( r ) (1)
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where V NNP and V MM are the potential energies of the NNP and MM regions, respectively. 

V NNP‐MM is a coupling term; r , r NNP, and r MM are the atomic position of the entire system, 

NNP region, and MM region, respectively.

It is required that the NNP potential ( r NNP) is a function of the atomic position ( r NNP) 

and atomic numbers (Z NNP) of the NNP region. The total charge (qNNP) can be included if 

necessary:

V NNP( r NNP) ≡ V NNP(Z NNP, r NNP, qNNP) (2)

Also, it is required that V NNP is differentiable with respect to r NNP to compute the atomic 

forces (F NNP):

F NNP = − ∇V NNP (3)

In this work, we adapt the coupling term (V NNP‐MM) proposed by Lahey and Rowley: 41

V NNP‐MM( r ) = ∑
i

NNNP

∑
j

NMM

(V C
i, j + V LJ

i, j) (4)

where V C
i, j = qiqj

4πϵ0rij
 is the Coulomb potential, V LJ

i, j = 4ϵij
σij
rij

12
− σij

rij

6
 is the Lennard-Jones 

potential and NNNP and NMM are the number of NNP and MM atoms, respectively; qi and qj are 

the atomic charges; ϵij and σij are the Lennard-Jones parameters; rij is the distance between 

the atoms; and ϵ0 is the vacuum permittivity (dielectric constant). In the context of QM/MM, 

this is known as the mechanical embedding scheme.43,44

NNP/MM is implemented in ACEMD2 using several software components. OpenMM,51 

a GPU-accelerated MD library, is used to compute MM terms and propagate the MD 

trajectory. OpenMM-Torch, 52 an OpenMM plugin, is used to compute the NNP term. It 

uses PyTorch,49 a machine learning framework for NN training and inference on GPUs, to 

load and execute the NNP on GPU. TorchANI53 is used to create the PyTorch model of 

ANI-2x.33 NNPOps,54 a library of optimized CUDA kernels for NNP, is used to accelerate 

critical parts of the computations. Future versions will integrate other NNPs available in 

TorchMD-NET.27,55

We have optimized the performance of NNP/MM in three ways. First, all the terms of NNP 

and MM are computed on a GPU. Neither atomic positions nor atomic forces need to be 

transferred between the CPU and GPU, as is the case with the original implementation.41 

Second, the featurizer of ANI has been implemented as a custom CUDA kernel and is 

available in the NNPOps library.54 The original featurizer in TorchANI is implemented 

using only standard PyTorch operations, which are an inefficient way of performing this 

calculation. Third, the computation is parallelized over the NNs (ANI-2x has an ensemble 
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of 8 NNs) and atoms taking advantage that the same molecule is computed repeatedly. 

The original implementation in TorchANI computes the NNs sequentially. The original 

TorchANI version is optimized for batch computing, i.e. many molecules are computed 

simultaneously, while for MD low-latency computing, i.e. one molecule is computed as 

fast as possible is necessary. The weights and biases of the atomic NNs are replicated 

and batched in the same order as the atoms in a molecule, allowing a GPU to efficiently 

parallelize the calculation for a single molecule. The implementation of the optimized NNs 

is available in the NNPOps library (https://github.com/openmm/nnpops).

Results and Discussion

Simulations of a fragment

We use metadynamics50(MTD) to simulate a fragment (Figure 1) of erlotinib using two 

models: (1) the conventional MM with GAFF237 parameters for the fragment; and (2) the 

NNP/MM where the fragment is modeled with ANI-2x.33 Lahey and Rowley41 reported that 

the fragment has a notable discrepancy between the potential energy surfaces of CGenFF35 

and ANI-1ccx.31 In this work, we expand the benchmark by computing the free energy 

surfaces.

We use the well-tempered MTD56 with two dihedral angles (Figure 1) as collective 

variables. The MTD simulations use the NVT ensemble (T = 310 K), the time step is 

set to 4.0 fs for the MM simulations, and to 2.0 fs for the NNP/MM simulations because 

they are unstable with 4.0 fs. For MTD, PLUMED57 is used. More details are provided in 

the supplementary information.

The fragment was simulated for 100 ns with each method. This is sufficient to achieve 

extensive sampling in the collective variable space. The time series of the dihedral angles 

(Figure 1) are available in the supplementary information (Figure S1-S2).

The obtained free energy surfaces (Figure 2) show a significant difference between the 

models. The dominant conformer of the dihedral angle C3-N1-C4-N3 is predicted by 

GAFF2 and ANI-2x at ~120° and ~0°, respectively. The fragment has two aromatic rings 

connected by a conjugated linker, so a planar conformation is expected to be energetically 

favorable. This is consistent with the potential energy surfaces reported by Lahey and 

Rowley (see Ref. 41, Figure 3b). Note, the fragment has been chosen for demonstration only 

and further analysis is beyond the scope of this work.

Simulations of protein-ligand complexes

Protein-ligand complexes—We have selected four protein-ligand complexes from 

PDBbind-201958,59 following these criteria. First, the ligand contains only elements 

supported by ANI-2x (H, C, N, O, F, S, and Cl)33 and no charged functional groups (amine, 

carboxylate, etc). Second, the ligand has less than one hundred atoms. Third, the ligand 

has at least one rotatable bond, and the rotamers energies differ by >3 kcal/mol between 

GAFF237 and ANI-2x.33 We use the Parameterize tool14 to detect the rotatable bond, scan 

the dihedral angles of rotatable bonds, and compute the relative rotamer energies. The 

summary of the protein-ligand complexes is given in Table 1 and the ligand structures are 
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shown in Figure 3. Additionally, the energy profiles of the dihedral angle scan of the ligands 

are available in the supplementary information (Figure S2-S22).

The protein-ligand complex preparation and equilibration have been carried out with 

HTMD.64 Each complex has been simulated with two different methods: MM, where the 

ligand is parameterized with GAFF237 and NNP/MM, where the ligand is modeled with 

ANI-2x.33 The protein, in both cases, uses AMBER ff14SB11 FF. The MD simulations use 

the NVT ensemble (T = 310 K), the time step is set to 4.0 fs for the MM simulations, 

and to 2.0 fs for the NNP/MM simulations because they are unstable with 4.0 fs. For each 

combination of a complex and method, 10 independent simulations of 100 ns are performed 

resulting in the combined sampling of 1 μs. More details are provided in the supplementary 

information.

Analysis of protein-ligand complexes—All the proteins and ligands maintain their 

structures in the simulations with both methods (MM and NNP/MM). The protein RMSD 

fluctuates in the range of 1.8-2.8 Å and the residue RMSF have similar magnitudes when 

comparing the same protein with both methods. The ligand RMSD fluctuates in the range 

of 0.2-1.7 Å. In the case of 1AJV and 2P95, there is no significant difference between MM 

and NNP/MM, but, in the case of 1HPO and 3BE9, the fluctuations are larger by ~0.3 Å for 

NNP/MM. The time series of protein RMSD, residue RMSF, and ligand RMSD are available 

in the supplementary information (Figure S23-S34). The difference of the ligand RMSD is 

expected because, as previous works14,40,45 indicates, ANI-2x models the dihedral angles 

more accurately than GAFF. Also, it is important to note that our simulations are 50 times 

longer than previously reported41 and have not resulted in any non-physical conformation.

The dominant protein-ligand interactions (Figure 4) qualitatively agree between MM and 

NNP/MM for all the complexes. The full list of ligand-protein interactions and technical 

details are available in the supplementary information (Table S1-S8). Note, the protein-

ligand systems have been chosen for demonstration only and further analysis is beyond the 

scope of this work.

Simulation speed—On average, NNPOps54 accelerates ANI calculations (energy and 

forces) 6.5 times (Table 2). The is no strict dependency between the ligand size and the 

calculation time, which suggests significant overhead is coming from auxiliary operations 

rather than the computation of NNPs. The overhead mainly comes from PyTorch, which is 

optimized for batch computing rather than low latency.49

Overall NNP/MM is sped up 5.3 times (Table 3) on average when NNPOps54 is used. 

Despite this improvement, NNP/MM is still about an order of magnitude slower than the 

conventional MM (Table 3), but further optimizations are possible. First, ANI-2x33 uses an 

ensemble of 8 NNs. If only one NN could be used, the simulations would be 2.2 times 

faster on average (Table 3). Second, the time step for the NNP/MM simulations has to 

be reduced from 4 fs to 2 fs. If the constraint scheme could be adapted to allow 4 fs 

timestep, the simulations would be 2 times faster. Finally, not all the software components 

are already fully optimized. For example, the current implementation of OpenMM-Torch 
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(https://github.com/openmm/openmm-torch) performs the NNP and MM calculations on a 

GPU sequentially, but it would be more efficient to do that concurrently.

Extensibility with other NNPs

Our implementation of NNP/MM is agnostic to the NNP model, i.e. it can use any model 

implemented with PyTorch. As a demonstration, we performed simulations with ANI-1x30 

and TorchMD-NET27 trained with the ANI-1 data set.65 The simulation speed benchmarks 

(Table 4) are available just for 3BE9 because both NNPs are limited to 4 elements (H, C, N, 

and O).

Software installation and usage

ACEMD can be installed with the Conda package management system.66 For dependencies, 

Conda-forge67 is used to ensure compatibility with all major Linux distributions (refer 

to the ACEMD documentation for details at https://software.acellera.com. The installation 

command:

$ conda install -c conda-forge \

                -c acellera \

                -c acellera/label/rc \

                acemd=4

For the best performance, it is recommended to have an NVIDIA GPU and its latest drivers 

installed, but it is possible to run on a CPU only.

The setup of an NNP/MM simulation consists of the following steps. First, a system 

needs to be prepared for a conventional MM simulation (i.e. initial structure, topology, 

and force field parameters). Note that the NNP atoms need to be assigned partial charges and 

Lennard-Jones parameters to compute the coupling term correctly. The system preparation 

can be easily accomplished with HTMD.64,68 Second, NNP model files need to be 

generated with prepare-nnp tool included with ACEMD. It needs the initial structure 

(e.g. structure.pdb), a selection of the NNP atoms (e.g. "resname MOL"), and a name 

of NNP

$ prepare-nnp structure.pdb --selection "resname MOL" \

                            --model ANI-2x

The tool generates several files including model.json. Currently, we plan to support 

the NNP models from TorchANI53 and TorchMD-NET27 but other models will also be 

supported in the future. Finally, an ACEMD input file needs to be prepared as for a 

conventional MD simulation (refer to the ACEMD documentation69 for details) and needs 

just one additional line (nnpfile model.json) to enable NNP/MM.
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Conclusion

We have showcased an optimized implementation of NNP/MM in ACEMD,2 based on 

OpenMM6 and PyTorch,49 which delivers simulation speeds of approximately 5 times 

faster than previously reported. While still slower than classical force fields, the enhanced 

accuracy of NNPs may justify the increased computational expense (see Rufa et al.45). 

We anticipate this performance gap will continue to shrink in the future. Presently, NNPs 

have limited applicability due to constraints on charges and elements, but improvements are 

expected in the near future.

We validated our implementation by conducting metadynamics simulations of an erlotinib 

fragment and molecular dynamics simulations of four protein-ligand complexes. The 

fragment simulation results are consistent with prior findings, while the complex simulations 

exceeded previous durations by over an order of magnitude. These outcomes confirm the 

effectiveness of our implementation and demonstrate its practical application. Furthermore, 

NNP/MM can be combined with the enhanced sampling methods (e.g. metadynamics,50 

replica exchange,70 steered molecular dynamics,71 etc.) and it holds significant potential for 

alchemical free energy simulations.45 It is particularly beneficial for drug discovery efforts, 

where the simulation of novel molecules is routine but accurate force field parameters may 

be lacking.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A fragment of erlotinib. The two dihedral angles used as the collective variable are shown in 

red and green.
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Figure 2: 
Free energy surface of a fragment (Figure 1) of erlotinib computed with MTD using two 

models MM (a) and NNP/MM (b).
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Figure 3: 
Ligand structures (a-d) of the selected protein-ligand complexes.
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Figure 4: 
Probabilities of protein-ligand interactions for the different systems and methods (a-d). 

Protein residues are represented as disks (blue: non-polar, green: polar, red:positively 

charged, magenta: negatively charged, and dark cyan: aromatic). Interactions are depicted 

as dashed lines (blue: hydrogen bond, green: cation-π, orange: π-π interaction, and violet: 

σ-hole). The interactions with probabilities lower than 0.3 are excluded.
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Table 1:

Summary of protein-ligand complexes.

System
Protein Ligand Total

atomsatoms residues atoms dihedrals

1AJV60 3125 198 75 5 38325

1HPO61 3133 198 64 6 47712

2P95 62 4398 286 50 7 52477

3BE9 63 5451 328 48 2 60412
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Table 2:

Comparison of ANI-2x inference (energy and forces) time (ms) using the original TorchANI and the 

TorchANI accelerated with NNPOps (TorchANI/NNPOps). The results were obtained with an NVIDIA RTX 

4090 GPU.

System TorchANI TorchANI/NNPOps Speed-up

1AJV 11.5 2.17 5.3

1HPO 11.3 1.91 5.9

2P95 13.0 1.54 8.4

3BE9 9.4 1.52 6.2

Average 6.5
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Table 3:

Comparison of MD simulation speed (ns/day) of NNP/MM using the original TorchANI, the TorchANI 

accelerated with NNPOps (TorchANI/NNPOps), and the TorchANI accelerated with NNPOps and just one 

model of ANI-2x (1 NN). For reference, MM speed is included. The results were obtained with an NVIDIA 

RTX 4090 GPU.

System NNP/MM
(TorchANI)*

NNP/MM
(TorchANI/NNPOps)*

NNP/MM
(1 NN)*

MM†

1AJV 12.6 60.1 155 1382

1HPO 13.4 65.9 152 1227

2P95 12.2 73.5 147 1006

3BE9 14.0 74.2 151 995

*
2 fs time step

†
4 fs time step
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Table 4:

Comparison of MD simulation speed of ANI-1x and TorchMD-NET and their accuracy in mean absolute error 

(MAE). The results were obtained with an NVIDIA RTX 4090 GPU.

System 3BE9 ANI-
1x*

TorchMD-
NET*

speed (ns/day) 127 17.0

accuracy (eV) 0.057 0.010

*
2 fs time step
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