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Abstract
Genome-	wide	association	 studies	 (GWAS)	have	pinpointed	 the	 chromosomal	 locus	
9p21.3	as	a	genetic	hotspot	for	various	age-	related	disorders.	Common	genetic	vari-
ants in this locus are linked to multiple traits, including coronary artery diseases, can-
cers, and diabetes. Centenarians are known for their reduced risk and delayed onset 
of these conditions. To investigate whether this evasion of disease risks involves di-
minished	genetic	risks	in	the	9p21.3	locus,	we	sequenced	this	region	in	an	Ashkenazi	
Jewish	centenarian	cohort	(centenarians:	n = 450,	healthy	controls:	n = 500).	Risk	al-
leles	associated	with	cancers,	glaucoma,	CAD,	and	T2D	showed	a	significant	deple-
tion	in	centenarians.	Furthermore,	the	risk	and	non-	risk	genotypes	are	linked	to	two	
distinct	low-	frequency	variant	profiles,	enriched	in	controls	and	centenarians,	respec-
tively. Our findings provide evidence that the extreme longevity cohort is associated 
with	collectively	lower	risks	of	multiple	age-	related	diseases	in	the	9p21.3	locus.
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Longevity is a multifaceted phenotype influenced by a combi-
nation of environmental and genetic factors. Twin studies have 
demonstrated	 that	 longevity	 is	moderately	heritable	 (estimated	at	
20%–	30%),	with	 genetic	 factors	 playing	 a	more	 significant	 role	 in	
achieving	extended	longevity	at	higher	ages	(Hjelmborg	et	al.,	2006).	
Extremely	 long-	lived	 individuals	 often	 exhibit	 healthy	 aging	 char-
acteristics,	 such	 as	 the	 absence	 or	 delayed	 onset	 of	 age-	related	
diseases, suggesting that they may be genetically protected from 
age-	related	disease	risks	(Perls,	2006).	However,	previous	research	
has	shown	that	disease	risk	alleles	identified	through	genome-	wide	
association	 studies	 (GWAS)	 are	 commonly	 found	 in	 longevity	 co-
horts	 (Brooks-	Wilson,	 2013).	 This	 implies	 the	 existence	 of	 alter-
native mechanisms for controlling these disease risks, such as the 
presence of protective rare variants.

The	9p21.3	non-	coding	locus,	located	upstream	of	the	INK4/ARF	
(CDKN2A/B)	genes,	remains	one	of	the	most	consistently	replicated	
GWAS	hotspots	(Hannou	et	al.,	2015;	Jeck	et	al.,	2012).	This	locus	
has	 been	 linked	 to	 risk	 of	multiple	 age-	related	 diseases,	 including	
cardiovascular	 diseases	 (CVD),	 Type	 2	 diabetes	 (T2D),	 glaucoma,	
and	multiple	cancers	(Cugino	et	al.,	2012; Helgadottir et al., 2008; 
Rahmioglu et al., 2014;	Samani	et	al.,	2007;	Sherborne	et	al.,	2010; 
Wiggs	et	al.,	2012;	Wrensch	et	al.,	2009).	In	contrast	to	the	strong	
association	of	9p21.3	with	age-	related	diseases,	fewer	studies	have	
explored	the	locus's	relationship	with	longevity.	A	genome-	wide	as-
sociation	study	of	the	New	England	Centenarian	cohort	reported	a	
weak association signal for rs1063192, a 3′	UTR	variant	on	CDKN2B,	
which	has	also	been	 linked	 to	glaucoma	 (Kotake	et	 al.,	2011).	 The	
UK	Biobank	 identified	an	association	between	rs1556516,	a	CAD-	
related	variant,	and	parental	longevity	(Pilling	et	al.,	2017).	Another	
top variant associated with coronary artery disease, rs1333049, was 
found	to	be	connected	to	longevity	in	a	Spanish	centenarian	cohort	
as	well	as	the	Wellderly	healthy	aging	cohort	 (Erikson	et	al.,	2016; 
Pinos	et	al.,	2014).	However,	this	association	was	not	confirmed	in	
two	Japanese	studies	performed	by	independent	groups	(Congrains	
et al., 2015;	Pinos	et	al.,	2014).	It	is	important	to	note	that	the	major-
ity of studies have focused on genotyping common disease variants. 
Consequently,	 the	 implications	of	 rare	 variants	 in	 this	 region	with	
respect	to	longevity	remain	largely	uncharacterized.

To comprehensively investigate the association between ex-
treme	longevity	and	the	9p21.3	genotype,	we	conducted	a	sequenc-
ing	study	of	this	locus	in	Ashkenazi	Jewish	(AJ)	centenarians	(n = 450;	
mean	age = 98	for	cases	and	n = 500;	mean	age = 73	for	controls).	The	
AJ	population	 is	genetically	homogenous	 (Ryu	et	al.,	2016;	Shlush	
et al., 2008).	Utilizing	pooled	capture	sequencing,	we	sequenced	the	
230 kb	GWAS	interval	(chr9:	21,950,000-	22,180,000,	hg19)	with	an	
average 30×	depth	(Ryu	et	al.,	2018).	To	validate	sequencing	results,	
we	genotyped	32	SNPs	showing	significant	allele	frequency	differ-
ence	between	the	two	groups	(Table S1).	The	result	was	highly	con-
sistent	between	the	methods	(r2 ≥ 0.99,	Figure S1).

We	 identified	 2216	 variants,	 including	 2056	 single-	nucleotide	
polymorphisms	(SNPs)	and	160	indels	(Table 1a, Table S2).	Compar-
ing	these	variants	with	the	current	SNP	database	(SNP149)	revealed	
that	785	out	of	2216	(35.4%)	were	novel,	comprising	664	SNPs	and	

47	indels.	Among	all	novel	variants,	95%	(743)	were	rare	(minor	allele	
frequency	<1%),	and	78%	(616)	were	singletons.

We	 functionally	 annotated	 1291	 variants	 with	 at	 least	 four	
counts	of	minor	alleles	(Table 1b).	The	vast	majority	of	these	variants	
were	either	intronic	(720,	55.8%)	or	intergenic	(526,	40.7%).	Among	
the	45	(3.5%)	exonic	variants,	21	were	located	in	ANRIL	and	10	in	5′ 
or 3′	UTR.	We	identified	seven	non-	synonymous	and	one	synony-
mous	SNPs,	including	three	novel	variants:	one	in	the	CDKN2A	gene	
(chr9:21974675	 A > C,	 V51G,	 MAF = 0.84%)	 and	 two	 in	 CDKN2B	
(chr9:22006101	 C > T,	 R101Q,	 MAF = 0.21%	 and	 chr9:22008790	
C > A,	 G55W,	 MAF = 0.26%).	 These	 candidate	 functional	 variants	
were	not	found	to	be	associated	with	longevity	(p > 0.05).

We	 identified	 84	 variants	 associated	 with	 longevity	 based	 on	
nominal p-	values	 (Table 1c).	 The	 majority	 of	 top	 hit	 SNPs	 were	
situated	 downstream	of	CDKN2A	 (Figure 1a).	 Among	 the	GWAS-	
reported	 SNPs,	 the	 variant	 with	 the	 highest	 significance	 was	
rs4977756	(p = 0.019,	OR = 0.78),	which	has	been	linked	to	glaucoma	
(Burdon	et	 al.,	2011).	 This	 variant	was	also	 reported	 in	 a	previous	
longevity	iGWAS	study	using	the	same	cohort	(Fortney	et	al.,	2015).	
Most	 GWAS	 variants	 were	 not	 found	 to	 be	 significantly	 associ-
ated	 with	 longevity	 in	 this	 study,	 including	 rs1333049	 (p = 0.36,	
OR = 0.92),	the	strongest	coronary	artery	disease	variant	(Table S1).	
However, a lower odds ratio for the risk allele was consistently ob-
served for centenarians across all but one trait, suggesting a trend of 
combined	risk	variant	depletion	(Figure 1b).	The	only	exception	was	
glioma	(rs1412829),	which	could	be	attributed	to	its	non-	risk	allele	
being linked to the risks of other diseases, such as glaucoma and 
cardiovascular traits.

We	probed	whether	the	longevity	variants	downstream	of	CD-
KN2A	and	within	the	GWAS	region	are	associated	with	distinct	lon-
gevity	 signals,	 or	 co-	occur	 due	 to	 linkage	disequilibrium	 (LD).	Our	
correlation	analysis	of	 the	pools	 shows	 that	 the	SNPs	 cluster	 into	
five groups with minimal interdependency, aligning with the five 
major	LD	blocks	in	the	sequenced	region	(Figure S2).	To	tackle	mul-
ticollinearity	(Chowdhury	et	al.,	2021),	we	used	nonparametric	ma-
chine	 learning,	specifically	random	forest	and	boosting	techniques	
(Ogutu	et	al.,	2011).	From	this,	we	identified	high	feature	importance	
variants	 at	 both	CDKN2A	and	 rs4977756	 sites	 (Figure S3).	 These	
combined results suggest the longevity association of 9p21.3 is 
likely polygenic.

To	statistically	 test	 the	significance	of	GWAS	risk	allele	deple-
tion	in	centenarians,	we	reduced	the	complete	list	of	GWAS	variants	
to	five	uncorrelated	(r2 ≤ 0.1)	tag	SNPs	(Figure S4)	(Machiela	&	Cha-
nock, 2015).	Each	tag	SNP	represented	its	linked	variants,	typically	
associated with the same traits, and we examined their combined 
distribution using a permutation test. The result was significant 
(p < 10−4),	suggesting	that	the	overall	age-	related	disease	risks	in	the	
9p21.3 region were lower in centenarians.

Meanwhile,	principal	component	analysis	 (PCA)	revealed	major	
differences of the 9p21.3 genotype in control and longevity cohorts 
within	the	first	three	principal	components	(Figure 1c).	Further	anal-
ysis	of	individual	principal	components	(PCs)	showed	that	the	cen-
tenarian	 group	 had	 notably	 lower	 PC2	 (p = 0.036,	Mann–	Whitney	
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U-	test)	and	higher	PC3	(p = 0.089)	values.	Applying	a	support	vector	
classifier	(SVC),	we	found	the	two	PCs	significantly	distinguished	the	
two	cohorts	(accuracy = 74%,	p = 0.017,	permutation	test).

To affirm the significant differences in principal components 
(PCs)	between	the	two	groups,	we	evaluated	the	potential	for	tech-
nical	confounders	such	as	batch	effects.	This	was	done	by	analyzing	
the	34,954	variants	on	360	targeted	gene	exon	regions	sequenced	
alongside	the	9p21.3	from	the	same	cohort	 (Ryu	et	al.,	2018).	The	

exon	data	 showed	high	 uniformity	 among	pools	 (Figure S5A),	 and	
the	first	three	PCs	did	not	exhibit	significant	case	versus	control	dif-
ference	(Figure S5B,C),	suggesting	that	the	separation	is	exclusively	
associated with the 9p21.3 genotypes.

Upon	examining	the	feature	importance	in	these	components,	
we	discovered	that	PC2	and	PC3	were	characterized	by	two	dis-
tinct	groups	of	linked	low-	frequency	common	variants	(MAF	<5% 
for	 both	 PC2	 and	 PC3)	 (Figures S6	 and	 S7A).	 Interestingly,	 the	

TA B L E  1 (A)	Summary	of	variants	identified	by	sequencing	of	9p21.3	in	450	centenarians	and	500	controls	arranged	by	minor	allele	
frequency	ranges.	Variant	annotation	was	performed	with	dbSNP	database	149.	(B)	Functional	annotation	of	1064	identified	variants	with	
at	least	four	allele	counts.	Genes	considered	include	CDKN2A,	CDKN2B,	and	noncoding	transcript	ANRIL	(CDKN2BAS1).	(C)	List	of	top	10	
longevity-	associated	variants.

(A)

MAF Range

SNP: N=2056 Complex: N=160

Known variants Novel variants Known variants Novel variants

0%– 0.5% 557 664 39 47

0.5%– 1% 109 29 3 3

1%– 5% 259 21 20 11

5%– 10% 93 0 10 5

10%– 25% 99 0 11 5

25%– 50% 225 0 6 0

(B)

Total

SNP Indels

Known Variants Novel Variants Known Variants Novel Variants

Genic 765 597 106 36 26

Exonic 45 33 9 2 1

Synonymous 1 1 0 0 0

Nonsynonymous 7 4 3 0 0

Noncoding	RNA 21 16 4 1 0

5'	UTR 2 1 1 0 0

3'	UTR 14 11 1 1 1

Intronic 720 564 97 34 25

Splicing 2 2 0 0 0

Intergenic 526 436 51 28 11

(C)

Top longevity variants Chr9 position (hg19) Allele MAF (case) MAF (con) p Value Function

rs74605971 21,947,885 T > A 0.052 0.095 0.00044 Intergenic

rs12335941 21,955,669 G > A 0.339 0.413 0.00091 Intergenic

rs11521166 21,948,376 C > T 0.053 0.092 0.00147 Intergenic

rs111310495 21,990,187 A > G 0.002 0.016 0.00158 Intronic

Novel 22,068,072 G > A 0.002 0.016 0.00158 ncRNA_intronic

rs10757261 21,954,953 A > G 0.351 0.422 0.00159 Intergenic

rs2106118 21,949,528 T > A 0.401 0.473 0.00165 Intergenic

rs2106117 21,949,527 T > G 0.402 0.472 0.00226 Intergenic

rs10738612 22,174,103 T > C 0.438 0.506 0.00323 Intergenic

rs2518722 21,952,926 C > T 0.244 0.304 0.00398 Intergenic
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minor	alleles	of	variants	with	high	importance	in	PC2	were	asso-
ciated	with	the	risk	alleles	of	all	five	flag	GWAS	SNPs,	while	those	
in	PC3	were	linked	to	the	non-	risk	alleles	(Figure 1d).	This	finding	
suggests	 that	 PC2	 and	 PC3	 represent	 low-	frequency	 genotypes	
associated with high and low combinatorial disease risks, respec-
tively.	Hence,	 the	 low	PC2	 and	high	PC3	 scores	 in	 centenarians	
indicate an enrichment of genotypes with overall reduced genetic 
risks	 for	 age-	related	 diseases	 in	 the	 9p21.3	 region,	which	 aligns	
with	the	analysis	of	GWAS	SNPs.

To assess the association of clustered rare variants with lon-
gevity,	we	performed	sequence	kernel	association	test	(SKAT)	(Wu	
et al., 2011).	After	breaking	down	the	locus	by	position	of	the	genes	
and	performed	SKAT	separately,	the	association	of	CDKN2A	down-
stream region was found significant when the direction of variants 
was	 considered	 (Table S3).	We	 also	 performed	SKAT	on	potential	
regulatory	elements	in	127	epigenomes	from	Roadmap	Project.	No	
significant	 association	was	 identified	 (data	 not	 shown).	Neverthe-
less, the minor allele of the majority of variants in this region, both 
rare and common, was depleted in centenarians, indicating a possi-
ble deleterious role of alternative alleles in longevity for variants in 
this	region	(Figure S7B).

In	this	study,	we	conducted	a	comprehensive	sequencing	analy-
sis	of	the	9p21.3	locus,	which	is	associated	with	multiple	age-	related	
phenotypes,	 in	Ashkenazi	 Jewish	centenarians.	To	our	knowledge,	
this	study	is	the	first	to	extensively	characterize	the	association	of	all	
genetic variants in this locus with extreme longevity in a significant 
cohort	size.	We	identified	moderate	associations	between	multiple	
GWAS	risk	variants	in	9p21.3	and	longevity,	with	the	strongest	sig-
nal originating from rs4977756, a variant reported to be associated 
with	glaucoma	risks	(Burdon	et	al.,	2011).	Notably,	rs4977756	is	in	
high	LD	with	CAD	variants	 (R2 = 0.41	 in	Europeans)	and	 located	at	
the	 junction	 between	 cancer/glaucoma	 and	 CAD	 blocks.	 This	 LD	
block junction region represents the strongest longevity hotspot 
within	the	9p21.3	GWAS	locus	(Figure 1a).	Together	with	the	result	
that the depletion of risk alleles was moderate but consistent for all 
age-	related	disorder	variants,	our	data	suggest	 that	 instead	of	po-
tently evading the risk of one particular trait associated with 9p21.3, 
the	Ashkenazi	 Jewish	centenarians	may	carry	an	overall	 lower	ge-
netic risk at this locus.

Consistent	 with	 our	 findings	 from	 single-	variant	 analysis,	
we identified two distinct variant groups that are either en-
riched or depleted in centenarians. Despite their low minor allele 

F I G U R E  1 (a)	Regional	plots	of	9p21.3	genotype-	longevity	associations.	Solid	line	and	dash	line	represent	nominal	p and adjusted p 
threshold,	respectively.	Subdivisions	of	the	locus	with	enriched	GWAS	variants	are	indicated	at	bottom.	(b)	Forest	plot	for	five	distinct	
GWAS	SNPs	representing	major	disease	traits	associated	with	the	9p21	locus	(c)	Distribution	of	first	three	principal	components	from	PCA	
for	the	18	centenarian	pools	and	20	control	pools.	Ellipsoids	indicate	distribution	confidence	interval.	(d)	Correlation	matrix	between	the	
high	importance	SNPs	from	PC2	and	PC3	and	the	GWAS	risk	variants	in	(B).
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frequencies,	 both	 variant	 groups	 showed	 strong	 correlations	 in	
sample	 distribution	 (Figure 1d).	 Although	 further	 haplotyping	 is	
required	for	confirmation,	such	patterns	strongly	suggest	that	the	
minor alleles of these variants belong to one or a few haplotypes. 
We	 demonstrated	 that	 these	 two	 variant	 groups	 are	 associated	
with	combined	GWAS	non-	risk	and	risk	alleles,	which	are	enriched	
and depleted in centenarians, respectively. These findings indicate 
the presence of rare high and low combined disease risk haplo-
types in the 9p21.3 region, which are respectively negatively and 
positively selected in centenarians. To validate the presence and 
heritability of the protective haplotypes in centenarians, future 
studies should be performed to identify these haplotypes in their 
offspring.

Despite	being	one	of	the	earliest	identified	GWAS	loci,	the	mech-
anism by which 9p21.3 contributes to disease risk remains largely 
unclear. It has been demonstrated that the noncoding variants within 
this locus have regulatory functions and alter the expression levels 
of	neighboring	genes,	 including	INK4/ARF	and	the	 long	noncoding	
RNA	transcript	CDKN2B-	AS1	(Almontashiri	et	al.,	2015; Harismendy 
et al., 2011).	By	sequencing	the	9p21.3	locus,	we	provide	a	compre-
hensive list of variants associated with longevity, which serves as a 
valuable resource for further study of the regulatory mechanisms of 
this locus.
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