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A B S T R A C T

Background: Cataract is the world's leading eye disease that causes blindness. The prevalence of cataract aged 40
years and older is approximately 11.8%–18.8%. Currently, surgery is the only way to treat cataracts.
Main Text: From early intracapsular cataract extraction to extracapsular cataract extraction, to current phaco-
emulsification cataract surgery, the incision ranges from 12 to 3 mm, and sometimes to even 1.8 mm or less, and
the revolution in cataract surgery is ongoing. Cataract surgery has transformed from vision recovery to refractive
surgery, leading to the era of refractive cataract surgery, and premium intraocular lenses (IOLs) such as toric IOLs,
multifocal IOLs, and extended depth-of-focus IOLs are being increasingly used to meet the individual needs of
patients. With its advantages of providing better visual acuity and causing fewer complications, phacoemulsifi-
cation is currently the mainstream cataract surgery technique worldwide. However, patient expectations for the
safety and accuracy of the operation are continually increasing. Femtosecond laser-assisted cataract surgery
(FLACS) has entered the public's field of vision. FLACS is a combination of new laser technology and artificial
intelligence to replace fine manual clear corneal incision, capsulorhexis, and nuclear pre-fragmentation, providing
new alternative technologies for patients and ophthalmologists. As FLACS matures, it is being increasingly applied
in complex cases; however, some think it is not cost-effective. Although more than 26 million cataract surgeries
are performed each year, there is still a gap in the prevalence of cataracts, especially in developing countries.
Although cataract surgery is a nearly ideal procedure and complications are manageable, both patients and
doctors dream of using drugs to cure cataracts. Is surgery really the only way to treat cataracts in the future? It has
been verified by animal experiments that lanosterol therapy in rabbits and dogs could make cataract severity
alleviated and lens transparency partially recovered. Although there is still much to learn about cataract reversal,
this groundbreaking work provided a new strategy for the prevention and treatment of cataracts.
Conclusions: Although cataract surgery is nearly ideal, it is still insufficient, we expect the prospects for cataract
drugs to be bright.
1. Overview of cataract surgery

According to the World Health Organization, cataract is the world's
leading eye disease causing blindness, affecting approximately 65.2
million people.1 Approximately 51% of blindness is related to cataract,
which is also a major factor in poor vision in both developed and
developing countries.2 Among all eye diseases, the blindness rate caused
by cataract was 5% in developed countries, while 50% or more in poor
and/or remote regions. Nearly 18 million people in the world suffered
from bilaterally blind due to cataracts, and cataracts have caused mod-
erate to severe vision loss in 52.6 million individuals.1 The prevalence of
cataract in the population aged 40 years and older is approximately
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11.8%–18.8%.2 At present, there are no effective methods for cataract
prevention or drug treatment; however, surgical removal of the opaque
lens and implantation of an intraocular lens (IOL) can restore vision in
patients with cataracts. Cataract surgery is the most common ophthalmic
surgery performed worldwide.3 More than 26 million cataract surgeries
are performed annually. Driven by demographic changes and access to
more medical services, procedure volume is growing at a compound
annual rate of 3.1%.

Standards for cataract surgery are developing worldwide. The revo-
lution of cataract surgery has never stopped and has been going on, from
early intracapsular cataract extraction (ICCE) to extracapsular cataract
extraction (ECCE), even to current phacoemulsification (PCS). In
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developed countries, PCS is the mainstream method of cataract surgery.
However, due to the high cost of operation, the shortage of well-trained
surgeons and the poor maintenance of advanced equipment, the large-
scale promotion of PCS in developing countries is facing certain chal-
lenges at this stage. Hence, small incision cataract surgery (SICS), an
improved ECCE method, may be a more suitable alternative to PCS in
developing countries due to its lower cost and less technical
requirements.

2. Premium intraocular lenses (IOLs)

With the unceasing improvement in surgical equipment and tech-
niques, cataract surgery has proven to be one of the safest and most
successful operations around the world. With increases in standards of
living, new technologies, including microincision cataract surgery and
premium IOLs, have emerged one after another, while the impetus for
cataract surgery has evolved from vision rehabilitation to vision
improvement. It has converted from vision recovery to refractive surgery,
leading to the era of refractive cataract surgery (RCS), and the applica-
tion of premium IOLs is becoming more and more extensive in order to
satisfy the personalized demands of patients. Multifocal IOLs showed
superiority to monofocal IOLs in uncorrected distance visual acuity, the
distant spectacles-independent rate is over 90% in patients with multi-
focal IOLs implantation, while only 52.4%–85% in monofoal IOLs pa-
tients. Among the patients with multifocal IOLs implantation, 81.8%–

84.9% of them gained both distant and near spectacles-independence,
while 7.5%–12% in patients with monofocal IOLs.4 For patients with a
requirement to correct corneal astigmatism, Toric IOLs creates a new
possibility to meet their personal requirements during cataract surgery
process, and spectacles-independence could be achieved in over 70%
patients can see far without glasses.5,6 Despite extensive positive expe-
riences with multifocal IOLs, some patients showed dissatisfied symp-
toms postoperatively. Residual refractive error is the leading cause of
poor vision after multifocal IOLs implantation, which causes nearly 64%
of patients suffering from this.7 However, among all IOLs, the multifocal
IOLs accounts for 6–31%, and the main source is optical aberrations, for
example, glare, halo, and so on.8 Meanwhile, a new type of IOLs, the
extended depth-of -focus (EDOF) IOLs, appears in the public field of
vision. It can make up for the gap between the monofocal IOLs and the
multifocal IOLs, by improving intermediate distance visual acuity and
providing better contrast sensitivity.9–12 (See Table .1).

3. Surgery technology innovation

In addition to intraocular lens calculation and intraocular lens design,
the improvement of operation technology may also play a decisive role in
further improving the visual effect after operation.13 The advantages of
providing better visual acuity and fewer complications, along with the
Table 1
Comparison between trifocal IOLs and EDOF IOLs.

Trifocal IOLs EDOF IOLs

UDVA/CDVA12,95,96 No significant difference
UIVA/DCIVA12,95,96 No significant difference
UNVA/DCNVA12,97–99 Superior Inferior
Defocus curve95,96,98,99 Perform better from -4D

to -2D
Perform better from
-1.5D to -1D

Contrast sensitivity96–98,100 No significant difference in both photopic and
scotopic conditions

Spectacle
independence98,99,101,102

90%–100% at far
distance;

85%–100% at far
distance;

90%–100% at
intermediate distance;

85%–100% at
intermediate distance;

85%–95% at near
distance (significantly
better)

60%–90% at near
distance (significantly
worse)

Photic disturbance96,100,101 More halo and glare Less
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suitability of premium IOLs presently, make phacoemulsification the
predominant cataract surgical technique applied worldwide. Neverthe-
less, is phacoemulsification the culmination of cataract surgery
innovation.

The major complications of modern cataract extraction combined
with IOL implantation include postoperative inflammatory response,
surgically induced astigmatism, and posterior capsule opacification,
which are also refractory to poor vision recovery in patients after cataract
surgery. Surgical astigmatism is proportional to the longitude of the
surgical incision. Postoperative inflammatory response and post-
operative cataract are particularly associated with surgical trauma.
Therefore, the focal point of cataract surgery innovation in the past two
decades has been to decrease the size of the surgical incision and
establish a set of surgical techniques to reduce surgical trauma and
complications. In recent decades, the cataract surgical incision was
reduced from 11 mm (ECCE) to 1.8 mm or less (PCS),14 and surgical
techniques have been established that effectively reduced surgical
trauma, surgical astigmatism, the postoperative inflammatory response,
and the occurrence of posterior capsule opacification. The standard
procedure for 1.8 mm micro-incision surgery effectively reduced astig-
matism from 0.88 D to 0.44 D.14,15 However, a decrease in incision size
alone does not satisfy the requirement, studies showed that converting
from 3.0 to 2.0 to 1.8 mm incision will not lengthen the duration of the
surgery or reduce the efficiency of the surgery, suggesting that SICS and
MICS are equally efficient and safe.14

4. Femtosecond laser-assisted cataract surgery

Although great progress has been made in modern cataract surgery,
many patients still suffer significant complications after surgery, such as
corneal edema, macular edema, and inflammation, which may cause
severe visual impairment and require continuous review. Meanwhile, the
expectations of patients regarding the security and accuracy of surgery
are constantly increasing. Hence, cataract surgery innovation is better to
turn to a new creative way. Femtosecond laser-assisted cataract surgery
(FLACS) has come into public view as an alternative technology for pa-
tients and ophthalmologists. By 2020, 972 SCI records of FLACS had been
found, of which 712 were full-text articles. Outcomes (20.36%), cornea
influence (17.13%), and complications (16.01%) were the most con-
cerning areasarea. Learning curve, education, and equipment design
have also gained extensive attention in the past two years. In 2009 and
2013, there were two inflection points; 98% of the articles were pub-
lished after 2009, and from 2014, at least 100 articles have been pub-
lished annually.

Femtosecond laser can assist in performing lens fragmentation,
anterior capsulotomy, and self-sealing corneal incisions, and astigmatism
correction16,17 in cataract surgery. Femtosecond laser assistance enables
precise implementation of each step, which optimizes the position of the
IOL and the refractive state of the eye, remarkably promoting accuracy,
effectiveness, and safety of cataract extraction surgery and opening up
new alternatives to patients and ophthalmologists.18

Although some ophthalmologists still hold a doubt attitude towards
the advantages of FLACS, several meta-analyses and random clinical
trials (RCTs) have shown that, compared to PCS, FLACS achieves better
visual and refractive outcomes, and gets effective reduction in endothe-
lial cell loss and postoperative corneal edema.18–28 A study focusing on
endothelial analysis29 showed that low-energy FLACS has advantages in
endothelial cell loss, size, and shape variations in certain cataract grades.
FLACS was showed to have the ability to preserve endothelial cells better
and is more precise than PCS. FLACS is safe and does not cause a sig-
nificant increase in macular thickness.30 Some studies31,32 have reported
that, although macular central subfield thickness, cube volume, and cube
average thickness increased postoperatively, while the values were
similar between the FLACS and PCS throughout the whole 6-month
follow-up, and no significant differences were found in central corneal
thickness (CCT). Inflammatory flare values in FLACS were lower than
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those in PCS at 6 months. Hence, both FLACS achieved similar safety and
efficacy outcomes as PCS.33 (See Table .2).

With accumulating clinical experience, femtosecond cataract surgery
has reached a relatively mature state. The accuracy, effectiveness, and
safety of FLACS are greatly improved by optimizing the IOL position34

and the eye refractive state, which increases our confidence in applying
FLACS in complex situations. There is a high proportion of intraoperative
endothelial cell loss in PCS for hard nuclear cataracts. Compared to PCS,
FLACS for hard nuclear cataract surgery has been shown to reduce
corneal endothelial damage, reduce corneal endothelial loss from
19.96% to 7.85%, and reduce vision recovery time from 3 months to 1
month.35–37 Similarly, a mature white cataract may have increased
capsular tear due to liquefaction of the cortex, although another study
showed that compared to PCS, FLACS decreased the incidence of anterior
capsular tears (0/66 vs. 8/66) and irregularity and decentration of cap-
sulorhexis in white cataract, therefore implanting premium IOLs,
including toric IOL, can be considered.38,39 The safety of FLACS in
myopia cases was confirmed in another study40 showing that FLACS did
not cause macular thickness increasing significantly. Yamazaki et al.41

found that patients with atopic cataract can also get FLACS safely despite
anterior subcapsular fibrosis and/or intumescent white cataract (IWC).
Recent studies42–44 on cataract patients with Fuchs endothelial corneal
dystrophy indicated that FLACS may perform better than conventional
phacoemulsification in the reduction of corneal endothelial cell loss and
CCT changes. This trial of FLACS was expanded to more complex cases
such as Marfan syndrome, subluxated lens,45,46 Alport syndrome,47 and
shallow anterior chamber.48,49

The high cost of FLACS, requiring a much higher burden of scientific
evidence and justification, makes it difficult to accept FLACS widely, as
patients have to bear the cost themselves. Nevertheless, some others
think that costs could decrease with more entrants in the market, which
will lead to the procedure being more financially efficient with wide-
spread adoption, which in turn will lead to further development.
Although excellent ophthalmologists may control complications and vi-
sual outcomes in PCS to reach a level similar to that of FLACS, it should
be emphasized that FLACS may help less experienced and skilled sur-
geons. Thus, it is controversial whether FLACS is an ideal or excessive
surgical method. As the technology has been designed to promote safety
and efficacy, should it be incorporated into our practice in the same way
that phacoemulsification supplanted ECCE in the treatment of cataracts?
Is it valuable to make an ongoing effort to guide the way forward in this
new approach to cataract surgery? We believe that these questions may
be answered in the future.

5. Current situation

In addition to technological innovation, we also need to focus on an
issue of vital importance: whether surgery is the only way to cure cata-
racts. Is surgery sufficient for cataracts so that there is no need to develop
other treatments?
Table 2
Comparison between FLACS and PCS.

FLACS PCS

Visual and refractive outcomes Better in early stage in FLACS,19,24 no
significant difference in the long term19,21,24

Surgical induced astigmatism24 No significant difference
IOL decentration and tilt21 More horizontally centered in FLACS than in

PCS
Endothelial cell loss19,21,24 Less in FLACS than in PCS, especially in Fuchs

endothelial corneal dystrophy and hard
nuclear cataract35,42

Macular thickness19,24,31 No significant increase
Dry eye symptom61 Worse in FLACS than in PCS
Overall incidence of complication21 No significant difference
Price High Low
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If conditions permit, one ophthalmologist has the ability to complete
more than 2000 cataract surgeries a year, such as having sufficient sup-
port personnel, perfect infrastructure and patients who can afford and are
willing to pay for them.50 Cataract surgery rate (CSR) is the number of
cataract operations per million people per year, which is an important
indicator of cataract services availability. However, only when the
calculation of CSR includes all cataract surgeries in a country/region with
a specific population size, CSR can be used as a quantitative index of
cataract surgery services. The median of global CSR is 1406, and the
interquartile range is 633–2450. However, the median CSR in some Af-
rican regions is 488, which is only one third of the global average, and
even one tenth of that in high-income countries. Even considering the age
distribution and the difference of blindness rate in different regions,
there is still a big gap between the CSR of less than 1000 and the number
of cataract surgeries needed to prevent avoidable cataract blindness,
even less than 500. Among 102 countries that can monitor CSR, 19
countries had a CSR of less than 500, and 23 countries had that between
501 and 1000.51 Therefore, as the only way to treat cataract, surgery is in
short supply. Should we further seek other routes?

6. Complications

In addition, there is a certain risk of complications in any surgery,
including cataract surgery. The prevalence of posterior capsule rupture is
about 0.5%–5.2%, which is the most common intraoperative complica-
tion in cataract surgery.52,53 And meantime, posterior capsule rupture
leads to the increasing risk of endophthalmitis (4.22–9.49 times)54 and
retinal detachment surgery (15–18 times).55 The prevalence of endoph-
thalmitis, the most serious postoperative complication, ranges 0.03%–

0.4%.56,57 Clinical cystoid macular edema without any other complica-
tions or risk factors, had a reported prevalence of 1.2%–11.0%.58 As the
most common postoperative complication, the incidence of posterior
capsule opacification is approximately 11.8% at 1 year, 20.7% at 3 years,
and 28.4% at 5 years.59 Both FLACS and PCS may aggravate dry eye,
FLACSmay increase the risk of postoperative fluorescein staining and dry
eye symptoms.60–62 Therefore, we need to pay more attention to dry eye
patients undergoing FLACS through postoperative earlier evaluation and
treatment.

7. Artificial intelligence and drugs in cataract treatment

In recent years, artificial intelligence (AI) research in ophthalmology
has progressed rapidly, especially in the field of machine learning and
deep learning. This may trigger a revolution that may completely subvert
ophthalmic practice. AI systems have been partly used in glaucoma63 and
retinal disorders.64 Different testing modalities, including optic nerve
images, optical coherence tomography, and visual fields in automated
glaucoma detection, relying on deep learning, has been promoted65,66 AI
based on fundus photos could also show advantages in screening and
diagnosis of retinal disorders, including age-related macular degenera-
tion (AMD) and diabetic retinopathy67,68 The application of AI for cat-
aracts is growing, and the research showed that compared with
professional graders, deep learning is superior to other published auto-
matic cataract grading methods in grading nuclear cataract from
cross-sectional slit lamp images on Wisconsin grading system.69–71

However, as research on AI for cataract has been limited to providing
assistance for diagnosis, the question remains as to whether it is possible
to expand its use to surgical applications. Therefore, as a new tool, AI may
become a part of daily surgical care in the near future while bringing
benefits to both patients and clinicians.

Inadequate cataract surgery increases the economic burden, and the
emergence of postoperative complications has prompted profound
consideration of screening drugs for cataract treatment. Oxidative stress
is essential in the initiation and development of cataracts. Antioxidants or
reactive oxygen species scavengers, such as GSH, vitamin E/C, zeax-
anthin, lutein, carotenoids, and L-cystine, have been shown to protect
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lens lipid peroxidation and have a positive effect on slowing down the
process of cataract formation.72–76 Vita-iodurol (France) and Quinax
(USA) are commercially available antioxidative drops that have also been
applied to cataracts.77 Quinone is also a critical factor in the pathogenesis
of cataracts. Quinones at low concentrations can react with lentic pro-
teins and show a damaging effect. In 1958, pirenoxine was introduced as
a commercial eye drop to slow down the development of cataracts.78

Pirenoxine could block the sulfhydryl combination with lentic proteins
and slows down the development of cataracts.79 Although numerous
compounds have the potential to prevent development, the process of
cataract formation cannot be reversed.

Currently, two groundbreaking studies have been conducted. In one,
Makley et al.80 found that the molecular 5-cholesten-3β,25-diol could
reverse α-crystallin mutations related cataracts by upregulating the ac-
tivity of the α-crystallin chaperone. Compared with treatment that is
efficacious only for α-crystallin mutation-related cataracts, another more
inspired work showed that lanosterol is a universal compound for
reversing the formation of cataracts. The latter study found two lano-
sterol synthase (LSS) gene mutations related to congenital cataracts in
two families. Moreover, LSS and lanosterol could delay and reverse the
lentic protein aggregation, which has been evidenced in animals.81 These
groundbreaking studies bring a novel strategy for the cataracts treatment
and have been highly remarked as “A new dawn for cataracts” in Sci-
ence82 and “Cataracts dissolved” in Nature.83

Recently, increasingly studies have focused on the drug-likeness
mechanism of lanosterol. Kang et al. showed, via molecular dynamics
simulations, that lanosterol can disrupt γD-crystallin aggregation by
docking to the hydrophobic domain.84 Meanwhile, experimental evi-
dence has shown that lanosterol could prevent the aggregation caused by
βB1/2 crystallin aggregation.85,86 Although some conversely pointed out
that lanosterol unable to reverse protein aggregation, further mechanistic
studies have shown that lanosterol could remit and reverse universal
aggregation probably by activating the proteasome and ubiquitin sys-
tem.87–90 However, lanosterol has limitations as a potential candidate
from the perspective of drug-likeness properties. First, lanosterol would
transform into other steroids uncontrollably, which may greatly influ-
ence its half-life in-vivo.91 Second, the efficacy of lanosterol is relatively
low. Furthermore, a study showed that the efficacy of lanosterol is
strongly dependent on cataract severity in qualitative and quantitative ex
vivo assays.92 Therefore, it is worthwhile to continue studying new and
potent synthetic molecules.

With the development of high-throughput techniques, appropriate
compounds can be identified out of millions of candidates. A high-
throughput platform in which human lens particles were removed from
patients during routine cataract surgery and treated with candidate
compounds has been established.93 Based on the most recent one, 34 new
synthetic lanosterol analogs were synthesized and evaluated, and lano-
sterol derivatives were demonstrated to reverse the lentic protein ag-
gregation with better potency and efficacy.94 Further evaluation of the
lanosterol derivatives in lentoid bodies (LBs) and animal models, as well
as detailed mechanistic studies, are in progress. We found that catarac-
tous LBs became transparent when treated with a specific kind of lano-
sterol derivative. This unsubmitted result supports the anti-aggregation
effect of lanosterol derivatives in human cataracts and shows the possible
prospect of pharmaceutics.

Although ophthalmologists have been anticipating drug treatment for
cataracts, research on medications for cataract prevention and treatment
has also progressed. However, until now, there have been no rigorous
controlled clinical studies, and drug research is still in progress. Conse-
quently, surgery remains the only effective method for treating cataracts.
There is still much to learn about cataract reversal, despite the many
relevant meaningful previous results. These anti-aggregation compounds
provide the possibility of cataract medication. We expect the prospects
for cataract drugs to be bright.
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